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1. Infroduction

These are lecture notes for a first-course in model theory. While not following it too closely, the
content of this lecture is chosen with Aschenbrenner et al. [ADH17, Appendix B] in mind, focusing
on quantifier-elimination and model completeness techniques and applications to algebra and ge-
ometry. Other excellent (and highly recommended) treatments of modern model theory are Marker
[Mar(02] and Tent and Ziegler [TZ12]. In addition, when discussing o-minimal, we follow van den
Dries [Dri98], and recommend this book to everyone interested in learning more about o-minimality.

Unsurprisingly, model theory studies models of theories. This is a common theme within mathematics
and algebra in particular: we are used to studying algebraic objects (called structures in model
theory) that satisfy certain axioms. Algebraic examples are groups, rings, fields, vector spaces and
so on. In each of these examples, we specify some basic operations (in the case of groups: the binary
group operation), then state axioms (the usual group axioms) that a set together with such operations,
has to satisfy. Model theory has this in common with universal algebra, but model theory focuses
more on the connection between logical formulas and these structures. As Chang and Keisler [CK73]
wrote, we can summaries this observation as

An important focus, accelerated by the emergence of o-minimality in the early 1980’s, has been the
study of definable subsets in a given structure. Basically, a set X is definable if there is a logically
formula @ in the language of the given structure such that for a tuple of elements a the formula ¢(a)
holds in this structure if and only if a € X. The overall theme is to use and analyse this syntactic
description in order to prove semantic, often geometric, consequences for the given definable set.
Again, this is a common enterprise in mathematics. For example, in algebraic geometry we study
algebraic varieties, which are solution sets of polynomial equations like

faeC" : pla)=0},

where p is polynomial with coefficients from C. Also in this setting, the syntactical description of
the sets is used to prove results about its geometry. Model theory generalizes this idea by replacing



6 Chapter 1. Introduction

the polynomial equation by an arbitrary formula, and hence the variety by a definable set. So in
Hodges’ words [Hod97],

In the case of algebraic geometry we are succesful in using the syntactical description of varieties
to prove strong geometric properties of varieties. In general, being definable in some structure has
essentially no consequences on a set, as we can simply choose structures whose languages are rich
enough to express arbitrarily complicated objects. For example, adding a predicate for the set of
integers to the field of real numbers makes every Borel - and even every projective set - definable in
that structure. So even the question whether or not all definable sets in this structure are Lebesgue
measurable, is independent of ZFC. Thus an important part of model theory, it is to determine which
(and what kind of) structures have well-behaved definable sets. Van den Dries [Dri99], quoting
Hrushovski, sums this up as follows:

Here model theorists attempt to find notions of tameness common among classes of well-behaved
structures. In this course, we will learn about as an attempt to capture the
tameness of algebraic geometry and about as an attempt to capture the tameness of
semi-algebraic geometry. Along the way, we also mention

A prerequisite for this course is basic knowledge of the syntax and semantics of first-order logic,
and some experience with expressing mathematical statements in first-order logic. Although strictly
speaking, much of this is reviewed in Chapter 2. We assume some basic knowledge of set theory, in
particular ordinals and cardinals. Throughout, we will look at examples arising from algebra such as
algebraically closed fields. Thus background knowledge as is usually obtained in a first course in
algebra, is - at the very least - helpful. A good reference for the necessary background in set theory
and basic first-order logic is Professor Koepke’s script available at

www.math.uni-bonn.de/ag/logik/teaching/2019WS/logik/Current_Scriptum.pdf


www.math.uni-bonn.de/ag/logik/teaching/2019WS/logik/Current_Scriptum.pdf

2.1

(2. Models and theories

Syntax

In this section, we will recall the definition of the syntax of first-order logic. While this section is
self-contained, it is assumed that students have seen first-order logic before.

Definition 2.1.1 A % is a triple (Sfync, Srel, ar) such that Sgy,e and S are disjoint set
and ar : Sfunc U Sret — N. We call elements of Sy , and elements of Sy
. For every element s € Sgyne U Srej, we call ar(s) the of s and say

that s is ar(s)-ary. A O-ary function symbol is called a

Outside of model theory, languages are referred to as (or vocabularies) and the set
of all .Z-sentence (or .Z-formulas) is called the language of the signature. We will not use this
terminology here, even though this would be more precise.

Notation 2.1. We often use abbreviations when defining languages. For example, if £ is the
triple ({f, ch AR}, (f—2,c—0,R— 5)), we often simply say: £ = {f,c,R} where f is a binary
function symbol, c is a constant symbol and R is a 5-ary relation symbol.

= Example 2.1 We collect a few example of languages:

1. the Zp = 0 (also called the language of pure sets),

2. the Zo:=1{-,()"!, e}, where - is binary function, ()~ is a unary function
symbol, and e is a constant symbol,

3. the % ={+,—,-,0,1}, where +, — and - are binary function symbols and
0 and 1 are constant symbols,

4. the Lo =L U{<}, where < is a binary relation symbol,

5. the Z. :={~}, where ~ is a binary relation.

Definition 2.1.2 Let . be a language. The set .7 (.Z) is defined as the smallest set such that
1. ¢ € 7(Z) for every constant symbol ¢ in .Z,
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2. x € T (%) for every variable symbol x,
3. ifty,...,t, € () and f is an n-ary function symbol in .Z, then f(zy,...,1,) € T (L).
An element of 7 (%) is called an

Notation 2.2. We often say that t(xy,...,x,) is an £ -term. This means that t is an £-term and
X1,...,Xy are variable symbol, and all variable symbols that appears in t are among the x1,. .., x;,.

Definition 2.1.3 Let .Z be a language. The set .% (%) is defined as the smallest set such that
1. s =t forevery s,t € 7 (%),
2. R(t1,...,ty) forty,....,t, € T () and n-ary relation symbol R,
3. - forevery ¢ € .7 (L),
4. (V) forevery o,y € % (%),
5. (3x@) for every ¢ € .7 (.Z) and variable symbol x.

An element of .# (.7) is called an . We call an .Z-formula ¢ if the
symbol 3 does not appear in @, if @ is quantifier-free and further the symbols — and V do
not appear in ¢. We say variable x is in an .Z-formula ¢ if it appears in ¢ outside the scope
of the quantifier Ix. A .Z-formula ¢ is called a if no variable symbol is free in .

Notation 2.3. Let ¢,y be £-formulas and let x be a variable symbol. We write (Vx@) for —~3x—¢,
we write (¢ A Y) for =(=¢@ \V ), and we write (¢ — ) for (@ \V y). We also write (¢ <> V)
for (¢ = y) A (y — @). We often say that ¢(x1,...,x,) is an L -formula. This means that @ is an

ZL-term and x1,. .., x, are variable symbols, and all variable symbols that are free in @ are among
the xi,...,%p.
Semantics

Definition 2.2.1 Let . be a language. An is a pair .# = (M,I) where M is a set,

and / is a function with domain Sgunec U Spel such that
1. I(f): M" — M for all f € Sgync with ar(f) = n,
2. I(R) C M" for all R € S, with ar(R) = n.
For f € Sune and R € Sy1, we also write f# for I(f) and R for I(R), and call these the
of these symbol in .#. We refer to M as the (or: domain, or: underlying

set) of A .

Notation 2.4. Given a language (Stunc U Srel, ar), we often simply write

A= (. ) s (R s

to define a new structure. For example, if & = {f,R}, where f is an m-ary function symbol and R
is an n-ary relation symbol, we would define an £ -structure M by specifying a set M, an m-ary
function f” : M™ — M and a subset R C M". We simply write # = (M, f* ,R7).

= Example 2.2 1. Let £ = {R, f}, where R is 2-ary relation symbol and f is binary function
symbol. Then all of the following are .Z-structures:

@ (R, <, +), © (Q,<,), © (Z],+).
(b) (R>07<7')’ (d) (Z7<7+)9



2.2 Semantics %

2. (R,<,+,—,0,1) is an L -structure.

3. A graph (V,E), where V is the set of vertices and E is the edge relation, is an .Z_-structure.
Note that an ordered set (D, <) is also an £ -structure.

4. A set X is an .Z-structure.

Given the pair .# := (M,I), we can easily recover the language .. We call .Z the

. Indeed, we often define structures with explicitly mentioning the language. We simply consider
structures as a set M together with functions (f; : M"/ — M) jc; and subsets (Ry C M");ck, and
construct the appropriate language only when necessary. It is clear that up renaming of the function,
relation and constant symbols this language is uniquely determined by the given structure.

Definition 2.2.2 Let.Z be a language and let .# be an £ -structure. For each Z-term ¢ (xy, ..., %)
we define a function % : M™ — M recursively as follows:
1. t”(a) = ¢ if t is the constant symbol ¢ in .Z,
2. t(a) = a; if t is just the variable symbol x;,
3. t7(a) = f7(t;” (a),...,t;7 (a)) if t is f(t1,...,t,) for some n-ary function symbol f in
& and ZL-terms 11,. . .t,.
We call +# the

m Example 2.3 The interpretation of a term depends very much an the choice of the structure. Let
t be the Zy-term e-y- (((x-y)-x))~!, and let .4 := (R, +,x — —x,0). Then % : R? — R maps
(a,b) € R? to —2a. If A := (N,-,x%,8), then " : N> — N maps (a,b) to 8a*b>. .

= Example 2.4 Let # := (R,+,—,-,0,1) be a ring considered as an .Z;-structure. Let #(x1,...,x,)
be an .Z-term. Then there is a polynomial p(Xi,...,X,) € Z[Xi,...,X,] such that p(ay,...,a,) =
t*(ay,...,a,) forall (ay,...,a,) €R. .

Definition 2.2.3 Let .# be an .Z-structure. For every .¢-formula ¢(xi,...,x,) and every
a € M™ we define .# |= ¢(a) recursively as follows: .#Z |= ¢(a) holds if and only if

1. t{//(a) = t‘// (a) and @ is t; = t, for some £-terms 11,17,

2. (t{%(a),...,t;” (a)) € R” and ¢ is R(t1,...,t,) for some n-ary relation symbol R in .

and some .Z-terms t1,...,1,,

3. A |~ y(a) and ¢ is —y for some .Z-formula y,

4. M = wy(a)or A = x(a),and @ is (yV x) for some Z-formulas v, x,

5. there is b € M such that .# |= y(a,b), and ¢ is Ixy for some .£-formula ¢.
We say ¢(a) if 4 = @(a). If @ is a £-sentence, we say .4 (or: models)

Q.

» Example 2.5 Let . be {+,-,0,1}, where +, - are binary function symbols and 0, 1 are constant
symbols. Consider the following five .Z’-structures:

1. e52%1 = (N7+7'7071)’ 3. '52{3 (Q7+7‘7071)a 5. '/(Z{S = (C7+7'7071)'
2. b= (Z,+,-,0,1), 4. oy = (R,+,-0,1),
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Consider the following .Z-sentences @, ..., Q4:

¢or: Vxdyx+y=0
@: Vx(x#0)— (Fyx-y=1)
¢ Ixxx=1+41
P41 Vxdyy-y=x

It is easy to check that <71 = ¢;, but o [~ ¢@; fori=1,...,4. .

Exercise 2.1 Let .Z be the language that consists of a binary function symbol f. Consider the
Z-structures 4 = (Z,+) and A = (Z x Z,+), where addition in ./ is defined coordinate-wise.
Find an .Z-sentence that is true in ./, but not in 4.

Exercise 2.2 Let .Z be the language consisting of a binary relation symbol < and a unary
relation symbol R. Then there is an .Z’-sentence o such that

(R,<,X) = o if and only if X is finite

forall X C R.

Definition 2.2.4 Let .#,./ be Z-structures and let u : M — N be injective. We say U is
if
. u(c”) = ¢ for each constant symbol ¢ in .Z,
u(f(ay,...,a))=f" (u(ay),...,u(a,)) forevery function symbol f in .Z and ay, ... ,a, €
Ma
ai,...,a,) € R if and only if (u(ay),...,u(a,)) € R*", for each relation symbol R in

N =

3.

i{\@/‘\

If u is also surjective, we say U is an . In this situation, we say that .# and ./
are . If M C N and the inclusion map is an .Z-embedding, then we say that .Z is
a of A .

» Example 2.6 The structures (R, <,+,0) and (R-¢, <, -, 1) are isomorphic with x — e*. "

= Example 2.7 Let Q' be the set of all real algebraic numbers'. Then (Q,<,+,-) is a substructure
of (Q™,<,+,-), and both these structures are substructures of (R, <,+,-). "

Lemma 2.2.1 Let .#,. 4 be .Z-structures, and let i : .# — .4 be an .£-embedding. Then for
every Z-term t(xy,...,x,) and a € M"

n(r(a) =1 (n(a)).

Proof. Using induction on terms, we show that (% (a)) =t (u(a)) for all Z-terms ¢(xy,...,x,)
and all @ € M". The base cases when ¢ is a constant symbol or a variable symbol, follow immediately
from the definition of .Z-homomorphism. Now suppose that (x) is of the form f(z,...,t,) for some

LA real number is if it is the solution of a non-trivial polynomial equations with rational coefficients.
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n-ary function symbol f and .Z-terms t1,...,t,. By the induction hypothesis, we have
p(” (@) = u(f @ (@),....t;" (a))
—f”Yut”UD

), 15, (a))
)

£ (@), .8 (u(a) =" (u(a)).

Proposition 2.2.2 Let .#,./ be £ -structures, and let i : .# — .4 be an .Z-embedding. Then
for every quantifier-free .%-formula @ (x) and every a € MM

A = @(a) if and only if A4 | @(u(a)).

Proof. We proceed by induction on quantifier-free .Z-formulas. The cases that ¢ is of the form
t1 =t for some .Z-terms or of the form R(t1,...,t,) for some n-ary relation symbol R and .Z’-terms
t1,...,t,, follow easily from Lemma 2.2.1.

Suppose that ¢ is =y for some quantifier-free .Z’-formula y. Then by the induction hypothesis and
the definition of =,

A = —y(a) if and only if A [~ y(a)
if and only if A = y(u(a)) if and only if A = -y (u(a)).

The case that ¢ is of the from y V y for some quantifier-free .Z-formulas v, ¥ can be handled
similarly. ]

Proposition 2.2.3 Let .#,./ be .Z-structures, and let u : .# — .4 be an .£-isomorphism.
Then for every .Z-formula ¢ (x) and every a € MM

A = @(a) if and only if A4 | @(u(a)).

Proof. We proceed by induction on .Z-formulas. The base cases follow from Proposition 2.2.2, and
the induction step for V and — follows by the same argument as in the proof of Proposition 2.2.2.
Suppose that ¢ is Ix y(x,x1,...,x,) for some .£-formula y. By induction, we have that for all
be M andall a e M"

A = y(b,a) if and only if A = y(u(b),u(a).
Since u is bijective, we have that for all a € M"
there is b € M such that .# |= y(b,a) if and only if there is ¢ € N such that A4 = y(c, u(a))

Thus .# |= 3xy(a) if and only if A" = Ixy(u(a)). [ |

Definable sets
Let . be a language.
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Definition 2.3.1 Let .# be an .Z-structure with universe M. A set X C M™ is
if there is an .Z-formula @(x1,...,Xu,y1,...,y,) and b € M" such that

X={aeM" : # = o¢(ab)}.

For A C M, we say X is if in the above definition the tuple b can be chosen to
be in A”. A function f: M™ — M" is said to be if its graph is A-definable in
M.

We often drop the reference to . if it can be deduced from the context; that is often write definable
instead of definable in .#. When we say , we mean (-definable. If
a €M™ and A C M, we say a is A-definable in .# if {a} is A-definable in ./Z .

» Example 2.8 Consider the structure (R, +,-). Then 0 is defined by the formula x 4+ x = x. The
order relation <, that is the set {(a,b) € R? : a < b}, is defined by

Jz(z £ 0Ny =x+722).
Since 0 is @-definable, so is <. From this, we can see that all sets of the form

{Cl eR": p(a) = 0791(4) >0,.. 'qk(a) > 0}7
where p,qi,...,qx € R[Xi,...,X,], are definable, and so are finite unions of such sets. The later sets
are called . "
» Example 2.9 Consider a graph (V,E) as an .Z_-structure. Then the set of isolated vertices is
defined by the ..

Yy —x ~y.

A S in a graph is a set of k vertices such that all other vertices have a neighbor in S.
The set of all k-tuples that form a k-dominant set is defined by the .Z._-formula

k
vy V(y=xiVx~y))

i=1
[ ]

m Example 2.10 Let & be the structure with universe R and language . that contains a binary
relation symbol < whose interpretation in % is usual order on R. Let ¢(x,y) be an .Z-formula.
Then the set

{aeR : {beR : Z} ¢(a,b)}is open}

is definable by the .Z-formula

Vyo(x,y) — (EIZ1312 0 <y<nAVza(zi <z <zn)— (p(x,m))
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Exercise 2.3 Consider the structure (R, <,+,-,H), where H : R — R is arbitrary. Show that the
set
{a € R : H is differentiable at a}

is definable in this structure.

Exercise 2.4 Letc € R\ {0} and let (a,),cn be a sequence of real numbers such that limy, e @11 —
an =c. Let A={a, : n€N}. View A as a unary relation A(—) over R and show that Z is
definable in (R, <,+,-,A).

Proposition 2.3.1 Let .# be an .Z-structure, let X C M™ be B-definable, and let u be an .Z-
automorphism of .# such that u(b) = b for all b € B. Then pu(X) = X.

Proof. Pick b € B" and an .Z-formula @(x,y) suchthat X ={ce M" : .# = ¢(c,b)}. Letac M™.
By Proposition 2.2.3 and since u(b) = b, we have

A = @(u(a),b) if and only if # = @(u(a), (b)) if and only if .# = ¢(a,b).
Thus p(a) € X if and only if a € X. It follows that u(X) = X. [ ]

» Example 2.11 Consider (Z,+) and the automorphism — : Z — Z mapping a to —a. It follows
immediately that N is not @-definable. "

» Example 2.12 Consider the complex field (C,+,-). We are going to show that R is not definable.
Suppose R is using parameters from B C C. We can assume B is finite. Take a € R,b € C\ R that
are algebraically independent over B. Then there is an automorphism tt : C — C that fixes B and
maps a to b and b to a. "

Exercise 2.5 Let .# = T., and let A C M be finite. Which subsets of M are A-definable in .#?

Exercise 2.6 Let .¥ = {P} be a language where P is a unary relation symbol. Consider the
Z-structure of = (N, E), where E is the set of even natural numbers. Let D be the set of natural
numbers divisible by 3. Prove that D is not definable in .27, even when parameters are allowed.

Definition 2.3.2 Let .’ be a language such that ¢’ O .. Let .#' be an .¢’-structure and .#
be an .Z-structure on the same universe. We say that .#’ is an of A (or: M is a
of A" if

1. ¢ = ¢ for each constant symbol ¢ in .Z,

2. [ = f for each function symbol f in .Z,

3. R = R for each relation symbol R in .Z.
If 7" and R”" are definable in .# for every function symbol f and relation symbol R in .%” \Z,
we say that .# is an of .

Notation 2.5. We use ... in the definition of a structure to indicate that we mean an expansion. For
example, when we write # = (R, <,+,...), we mean that % is an expansion of (R, <,+)

= Example 2.13 1. By Example 2.8 (R, <,+,-) is an expansion by definitions of (R, +,).
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2. The real exponential field (R, <,+,-,exp) is an expansion of (R, <,+). We will later see that
it is not an expansion by definitions.

Exercise 2.7 Let .#’ be an .’ -structure and .# be an . -structure such that ¥’ O % and .4’
is an expansions of .# by definitions. Show that every subset of M" is definable in .#’ if and
only it is definable in .Z.

Theories

Let £ be a language. We call a set of .Z-sentences an

Definition 2.4.1 Let T be an .Z-theory and let .# be an .Z-structure. We say .# is a

(or: models T) if # = o foreachc € T.
Let o be an .Z-sentence. We say o is a of T (written: T |= 0) if every
model .Z of T satisfies 4 = o.

Definition 2.4.2 Let .# be an .Z-structure. The (written: Th(.#)) is the set of all
Z-sentences o such that .# |= o. Similarly, for a class ¢ of .Z-structures, the

(written: Th(.2")) is the set of all .#-sentences o such that .Z |= o forall .# € ¢ .

Let ./ be an .Z-structure. Then we say .# and .4/ are (written: .# =
N ) if Th(.#) = Th(¥).

We collect the following consequence of Proposition 2.2.3.

Proposition 2.4.1 Let .#, ./ be Z-structures. If .# and .4 are isomorphic, then they are
elementary equivalent.

» Example 2.14 Every bijection between two Zp-structures is an .Zp-isomorphism. Thus two
Zp-structures of the same cardinality are elementary equivalent. "

= Example 2.15 We consider the empty language .%p, and define for each n € N the .%j-sentence
¢, given by

E|X13)Q...3xn /\ xi#xj.

i<j<n
The T is the Zp-theory {¢; : i € N}. Note that an Zp-structures .Z is a
model of this theory if and only if its universe is infinite. "

m Example 2.16 Let .Z. be the language of consisting of single binary relation symbol <. Let Tj,
be the .Z--theory consisting of the following .Z -sentences:

Vx —x <x
VaVyWz(x < yAy <z) = (x < 2)
VxVy(x #y) = (x <yVy<x)

An .Z_-structure .# = (M, <) is a model of Tj, if and only if <*# is a (strict) linear order on M.
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The theory obtained by adding

VaVy(x <y) = (Fzx <zAz<Yy)

Vxdyx <y

Vxdyy <x
is called . It is easy to check an .Z--structure . = (M, <*") is a model of DLO if and only if
< is a dense linear order on M without endpoints. "

= Example 2.17 Let %, = {-,e}, where - is binary function symbol and e is a constant symbol. The
T, is the set of the following three .Z;-sentences:

VaVyVzx- (y-z) = (x-y) -z
Vx (x-e=xANe-x=x)

Vxdy(x-y=eAy-x=e).

Obviously an .Z,-structure .7 is a group (in the traditional sense) if and only if .# is a model of the
theory of groups. We can also consider groups in the extended language % = {-,() ™', ¢}. In this
language, we add the sentence

-1

Vi(x-x ' =eAx! x=e).

to get the theory of groups in this extended language 7.

When considering abelian groups, it is convenient to use a different (although equivalent) language:
let % = {+,0}, where + is binary function symbol and 0 is a constant symbol. Let 7, be the
Zap-theory consisting of T, (translated into .Z;,-sentences) and the axiom

VaVy(x+y =y+x).

It is clear that an .Z,,-structure . is an abelian group (in the traditional sense) if and only if .Z is a
model of Tp. n

= Example 2.18 The Thelds in the language % = {+, —,-,0, 1} is the set consisting
of the following .Z;-sentences:

VaVyVzx+ (y+2) = (x+y) +z
Vxx+0=x
VxVyWz(x—y=zx=z+Y)
VaVyx+y=y+x

Vxx-0=0

VxVyWzx-(y-z) =(x-y)-z
Vxx-1=x

Vx (x#£0)—=Jyx-y=1
VaVyx-y=y-x
VxVyWzx-(y+z)=x-y+x-z
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Clearly, an .Z-structure .7 is a field if and only if .# |= Tjeqs. For each n € N, consider the
Z-sentence @, defined as
n—1 )
Yyo...Vy,_13x x" + Zy,-x’ =0
i=0

Set ACF to be Tfegs U{@, : n € N}, the . We can also use
this language to restrict the characteristic of the field. For p € N, let y, be the .Z;-sentence

Vxx+--+x=0
———

p-times

For a prime number p, we define ACF, to be the .Z;-theory ACFU{y,,}. We let ACF; be the

Zi-theory ACFU{—~y,, : p e Ny} .
= Example 2.19 The Tofields 1s the set of Z-sentences containing 7, U
Telas and

VaVyWz(x <y = x+z<y+2)
VxVy(0 <xA0<y—0<x-y)

Again, it is clear that an Z,,-structure .# = Tyeigs if and only . is an ordered field. n

m Example 2.20 Fix a field K, and .Zk be the language %, togehter with unary function symbols
A for each k € K. Let Tys(K) be the union of T, Ti and the set of the following £k -sentences: for
allk,/ € K

Vx A (Ae(x)) = Age(x)

Vx A (x) + Ap(x) = Appe(x)
VxVy A (x) + A(y) = M(x +y)
Vx A1 (x) = x.

We observe that .# = Tys(K) if and only if .# is an infinite K-vector space Suppose .4 |= Tys(K)
and let .Z be Zk-structure such that M C N. It is easy to see that .# is a substructure of .4 if and
only if .# is K-subspace of .#". Also note that -Z,-isomorphism between two model Tys(K) is just
a bijective K-linear map. "

Exercise 2.8 Let .Z be the language whose symbol is a unary function symbol f. For each
Z-sentence 0, let S(o) be the set of all cardinalities of finite models of ¢. (The cardinality of an
Z-structure is the cardinality of its underlying set.) Give an -Z-sentence & such that S(o) is the
set of odd natural numbers.

Definition 2.4.3 Let T be an .Z-theory. We say that T is (or: has a model) if there is
an .Z-structure .# such that #Z |=T.

Definition 2.4.4 Let T be an .£-theory. We say T is if T =0 or T = -0 for every
Z-sentence O.
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Notation 2.6. It will be convenient to sometimes use the following abbreviation: if (xi,...,x,) is a
L-formula, A is an L-structure, and T is an L -theory, then we write M |= @ if # =Nx; ...Vx,0,
and write T |= @ if T |=Vx...Vx,0.

» Example 2.21 The theory of groups 7 is not complete. Consider the following sentence & in the
language .Z of the theory of groups:

VaVy x-y=y-x.

Clearly, a model .# of T, satisfies ¢ if and only if .# is abelian. Since some groups are abelian,
while other are not, we have that 7, = ¢ and 7, [~ —0. .

m Example 2.22 Let .Z be a language and .# an .Z-structure. Then the theory of .# is complete.
Simply because for every .Z-sentence ¢, we have that .# = ¢ or .# |=—c. Thus either 6 € Th(.#)
or o € Th(.#). =

Lemma 2.4.2 Let T be an .Z-theory such that every two models of 7' are elementary equivalent.
Then T is complete.

Proof. Let # =T and let o be an .Z-sentence. We show that .# |= o if and only if T = ©.
Completeness follows, since .# |= o or .# = —0c. From the definitions, we directly have that
A = o whenever T |= 0. So now suppose that .Z |= ¢. Let .4 be another model of 7. Since .#
and ./ are elementary equivalent, then .4 = &. Since .//” was arbitrary, we have that ¢ holds in
every model of 7. Thus T |= ©. [ |

Definition 2.4.5 Let.Z,.¢”’ be languages such that .Z C ¢, let T be an .£-theory and T’ be an
Z'-theory such that T C T'. We say T’ is an if
« for every constant ¢ € £’ \ £ there is .£-formula @ (x) such that

T = (r =)  9(x)

» for every n-ary function symbol f € £’ \ & there is .Z-formula @(x|,...,x,1) such that
T' = (f(x1, %) = Xna1) <> @(X1,. -, Xne1)

* for every n-ary relation symbol R € ¥’ \ .Z there is .£-formula ¢(xi,...,x,) such that
T'=R(xy,...,xn) <> ©(x1,. .., %)

m Example 2.23 Recall Example 2.17. We have that Ty, is an extension of 7; by definitions, because
by the uniqueness of inverses

Ty = (xf1 =x) < (X1 xx=eAxy-x; =e).

Compactness via ultrdfilters

In this section, we will give the prove the compactness theorem.
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Theorem 2.5.1 — Compactness theorem. Let T be an .Z-theory such that every finite subset
of T is satisfiable. Then T is satisfiable.

The compactness theorem is a foundational result in mathematical logic and of crucial importance
in model theory. In a first course in logic the compactness theorem is obtained as a rather easy
consequence of Godel completeness theorem, which states that a theory is satisfiable if and only
if no contradiction can be derived from it. To deduce the compactness theorem, just observe that
every proof is finite and hence only uses finitely many assumptions. Thus if a contradiction can
be deduced from a theory, then there is finite subtheory with the same property. This is rather a
syntactic proof based on the formalization of what a proof precisely is. Here we give a semantic,
very model-theoretic proof based on ultrafilter.

Definition 2.5.1 Let / be a nonempty set. A is a subset U of Z(I) such that
1.0¢Uand I €U,
2. ANBeU forallA,B e U,
3. BeUforallA,BCIwithAeUand A CB.

A proper filter U on [ is an ifforallA C I, eitherAcUorI\A€U.

= Example 2.24 1. Let I be a nonempty set, and let a € I. Then the set of all the subsets of /
that contain a, is an ultrafilter. Such an ultrafilter is called a ultrafilter.
2. The set of all cofinite subset N is a proper filter on N. We will later see that this can be
extended on ultrafilter.

Exercise 2.9 Let U be an ultrafilter on /. Show that the following are equivalent:
1. There exists A € U such that for all B € U we have A C B.
2. There is a finite A € U.
3. U is a principal ultrafilter.

For the rest of this section, fix a nonempty set / and an ultrafilter U on 1.

Because 0 ¢ U, the or in the definition of an ultrafilter is exclusive. So for every A C I, we have that
AeUifandonly if I\A¢ U. If A,B C I, itis easy to see that AUB € U if and only if A € U or
B € U. Indeed, one direction follows immediately from 3. in Definition 2.5.1. For the other direction,
suppose that both A and B are not in U. Since U is an ultrafilter, /\ A and 7 \ B are in U. Then by 2.
in Definition 2.5.1, their intersection (I \A) N (/\ B) is in U as well. However,

I\((1\A)N(1\B) =AUB

and hence is not in U, because or in the definition of an ultrafilter is exclusive.
Definition 2.5.2 Let (M;);c; be a collection of sets. Let a = (a(i))icr,b = (b(i))ier € [Lic; Mi.

We write a =y b if the set {i : a(i) =b(i)} isin U.

I Lemma 2.5.2 Let (M;);c; be collection of sets. Then =y is an equivalence relation on [[;c; M;.

Proof. Since I € U, we have that =y is reflexive. Symmetry follows immediately from the definition
of =y. Finally we get transitivity from 3. in Definition 2.5.1. |
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Let . be a language. Let I be a nonempty set and let U be an ultrafilter on I. Let (.#;);c; be a
family of .Z-structures. For each i € I, we denote the domain of .#; by M;. Finally, set M to be the
set of =y-equivalence classes of [];c; M;.

Definition 2.5.3 We now define an .Z-structure .# on M (called the , sometimes
written as [ .#;), as follows:
1. for each constant symbol ¢ of .Z, set

= (c"ier) =u

2. for each n and each n-ary function symbol F of %, set F*# : M" — M be the function
given by

F (], [a]) = (Fa(0),...a () /=0

icl
3. for each n and each n-ary relation symbol P of .Z, set P#
{(ar,...,an) eM™ : {icl:(ai(i),...,a,(i)) e P U}/ =y .

Let F be a function symbol of .. We still need to argue why F** is well-defined, that is the
definition does not depend on the choice of the representatives of the equivalence class. To do so, let
a=(ai,...,an),b=(b1,...,by) € ([lie;M;)" such that a; =y b; for j =1,...,n. Observe that

n

({icl:a;(i)=b;(i)} €.

J=1

This is contained in {i € I : F%(ay(i),...,a,(i)) = F7(b1(i),...,b,(i))}. Hence the later set is
in U as well.

Lemma 2.5.3 Let#(xj,...,x,) be an .Z-term and let [a1],...,[a,] € M. Then
e ([l laal) = (#(@10), an(@)) ) =u-
i€l

Proof. We prove this by induction on terms. The cases of variables and constant symbols is

immediate from the definitions. Now suppose that ¢ is of the form f(¢,...,t,) for some m-ary
function symbol in . and .Z-terms 1y, .. .., t,. By induction hypothesis, (tj///’ (a1 (i), ... ,an(i))) -
1€
is a representative of the equivalence class tj//[ ([a1],-..,|an]) for each j=1,...,n. Thus
t (lan], - lan)) = £ (@l [an))s ot (@l aa))

- (f/fff (;%f(al(i),...,an(i)),...,t,{ff(al(i),...,an(i)))ie,/ZU
— (t//[(al(i),...,an(i))) /=u

i€l
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Exercise 2.10 Let P be an n-ary relation symbol in .Z, and let [a;],..., [a,] € M. Show

(Ja1], .., [an]) € P” ifand only if {i € I : (a1 (i),...,an(i)) € P4} € U.

Theorem 2.5.4 — tos. Let @(xy,...,x,) be an Z-formula and let [a1],...,[an] € M. Then

A= @([ar],....[an]) ifand only if {i € I : A = @(ai(i),...,an(i))} €U.

Proof. We proceed by induction on formulas. First consider the base that @ is of the form R(¢1,. . .,t,)
for an n-ary #-relation symbol R and .Z-terms 11, ...,t,. Let [a1],...,[am] € M. For j=1,...,m,
let b; € [1;e; M; be such that b;(i) = t;//"(al(i),...,an(i)) for all i € I. By Lemma 2.5.3, [b;] =
t}/”([al], ..., [am]). Then using Exercise 2.10

M =R, . 1) ([al],- - [am])
if and only if (7 ([a1],- .., [am]),-...t;% ([a1], ..., [am])) € R?
ifand only if {i € I : (by(i),...,bn(i)) eER%} €U
ifandonly if {i € I : (1;%(a1(i),...,am(i)),...,t;" (a1 (i),...,am(i))) € R4} €U
ifandonlyif {i el : 4 ER(t1,...,t,)(a1(i),...,am(i))} €U
The case that ¢ is of the form ¢; =, for some .Z-terms #;,,, can be handled the same way. For

the first induction step, suppose that ¢ is of the form =y for some .Z-formula y. Then using the
induction hypothesis and the fact that U is an ultrafilter, we get

A ==yl [an)

if and only if .#Z [~ y([a1],...,[am])

ifandonly if {i € I: #; = y(ai(i),...,an(i))} ¢ U

ifand only if {i € I : 4 [~ y(ai1(i),...,an(i))} €U

ifandonly if {i € I: 4 = —y(ai(i),...,an(i))} €U.
Now suppose that @ is of the form (yV x) for some .#-formula y and ). Using the fact that
AUB € U if and only if either A € U or B € U, we obtain

A= (wvV ) (lal; - lam))
if and only if {i € I : ; |= (a1 (i),...,am(i))} €U or {i € I+ M; = x(ar(i),...,am(i))} €U
if and only if {i € I : ;= y(ai (i), ...,am(D)) }U{i € I : A = x(a1 (i), ....an(i))} €U
ifand only if {i € I - i |= (yV x)(a1 (i), .., am(i))} €U
Finally consider the case that ¢ is of the form Jy y for some .Z-formula y. We have

A= Ty y)([a],---, [am))
if and only if thereis b € HMi s.t. A = y([b],[ai],-...[am])
i€l
if and only if thereis b€ [[M;st. {i €l : ;| w(b(i),ai(i),...,an(i))} €U
icl

ifandonly if {i €I : ;= (3yw)(ai(i),...,an(i))} €U

l
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Corollary 2.5.5 Let ¢ be an .¥-sentence. Then

A =oifandonlyif{icl : #i o} elU.

Definition 2.5.4 Let S be a subset of Z(I). If A;yN---NA, # 0 forall Ay,...,A, €S, we say
that S has

Lemma 2.5.6 Let S be a subset of &?(I) with the finite intersection property. Then there is an
ultrafilter U on [ such that S C U.

Proof. We first show that every set S with the finite intersection property can be extended to a filter.
Set

n
F(S):={ACI : thereisn €N, Aj,...,A, € Ss.t. ﬂA,»gA}.
i=1

It is easy to check that .7 (S) is a filter, since S has the finite intersection property.

We now extended this filter to an ultrafilter. By Zorn’s lemma, there is a maximal filter U extending
S. This filter is an ultrafilter. Indeed, suppose there is A C I such that A ¢ U. Since U is maximal,
U U{A} does not have finite intersection, because otherwise it could be extended to a filter extending
U. Thus there are By,...,B, € U such that By N---NB,NA = 0. Hence (_; B; C I\ A. These filters
are closed under finite intersection, we have I\ A € U. |

Exercise 2.11 Let / be an infinite set. Let F(I) = {A C1:1\ A is finite}. Show that F(I) is a
filter on /. This filter F(I) is called the on /. Note that by Lemma 2.5.6 this filter

can be extended to an ultrafilter. Let U be a nonprincipal ultrafilter on /. Show that U contains
F(I).

We are now ready to prove the compactness theorem.

Proof of Theorem 2.5.1. Let I be the set of all finite subsets of T. We construct an ultrafilter U on 1.
Foro € T,setls ={i€1:0 €i}. Let S be the subset of & (I) given by {Is : 0 € T}. Observe
that for ¢y,...,0, €T

{01,...,00} €15, NN,
Thus § has the finite intersection property and hence there is an ultrafilter U on [ such that S C U.

Now for each i € I, pick an £ -structure .#; such that .#; |= i. We will show that the ultraproduct
[1y #; is amodel of T. Let o € T. Observe that .#; = ¢ whenever ¢ € i. Since U is an ultrafilter
and

{iel : M;=0} D5,

we have that {i € I : #; =00} € U. Thus [ .#; = o by Theorem 2.5.4. [ |
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Applications of Compactness

Corollary 2.5.7 Let T be an .Z-theory and let ¢ be an .Z-sentence such that 7 = ¢. Then there
is a finite subset 7y C T such that Ty = ©.

Proof. Observe that T U{—0c} is not satisfiable. Hence by Theorem 2.5.1 there is finite subset
Tp C T such that To U {—0c'} is also not satisfiable. Thus T |= o. [ |

Corollary 2.5.8 Let 7T be an .Z-theory, let @(xi,...,x,) be an .£-formula, and let X be a
collection of .#-formulas in variables xj,...,x, such that for every .# =T and a € M" with
A = @(a) there is y € X such that .#Z = y(a). Then there are finitely many y;..., ¥, € X
such that

m

TEo— (\/v).

i=1

Proof. Define .Z. to be the language £’ together with new constant symbols c,...,c,. Let Ty be
the .Z,-theory defined as

TU{p(ct,...,cn)}

Let A(c) be the set of all .Z,-formula {—y/(cy,...,c,) : W € L}. By the assumptions on 7 and X, we
see that Tj, UA is not satisfiable. By Theorem 2.5.1, there is finite subsets A" of A such that T, UA’ is
not satisfiable. Let X1, ..., X be Z-formulas whose free variables are among the x1, ..., x, such that

A ={1(c); s xm(c)}-
Since T,, UA' is not satisfiable,
m
Ty =\ ~2i(c). 2.1)
i=1
Let yi,..., ¥, € X such that ~y; is x; for i = 1,...,m. It follows easily from (2.1) that T |= ¢ —
(VL1 ¥i)- u

Corollary 2.5.9 Let T be an .Z-theory with infinite models and let k be a cardinal. Then there
is a model of T of cardinality at least k.

Proof. Define .Z to be the language . together with constant symbols ¢, for each o € k. Let T
be the Z-theory defined as

TU{ca#cp: afcx,a#f}

A model of T is model of 7" and has cardinality at least Kk, because the interpretations of the constant
symbols are all distinct. Thus it is left to show that T is satisfiable. By Theorem 2.5.1 it is sufficient
to prove satisfiability of every finite subsets of Ty. Let T’ be finite subset of 7. Then we can assume
that there are o, ..., 0, B1,..., B € K such that

T'CTU{cq #cp, = i€{l,...,n}}.
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Let .# be an infinite model of T. Pick 2n+ 1 distinct elements ay,...,a,,b1,...,b,,c € M, and
expand .Z to an Zi-structure .’ by interpreting the constant symbols ¢, as a;, the constant
symbols cg, as b;, and all other constant symbols as c. Since a; # b; for i = 1,...,n, the resulting
structure .7’ is a model of T". [ |

Exercise 2.12 Let ¢ be an .Zp-sentence that holds in all non-trivial torsion-free abelian groups.
Show that there exists N € N such that o is true in all groups Z/pZ where p is a prime number
and p > N.

Exercise 2.13 Let Z = (R, <,+,—,-,0,1) be the real ordered field. Show that there exists a
non-archimedean ordered field .% that elementarily equivalent to % (as .Z,-structures). Recall
that an ordered field .% is if for every a € F there is n € N such that

x<l+---+1.
—_———

n-times
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3.1 Elementary maps
Definition 3.1.1 Let .#, .4 be .£-structures, and let f : A — N be such that A C M. We say f
is if for every .Z-formula ¢ (xy,...,x,) and every a;,...,a, €A

M = (ay,...,a,) ifand only if A = @(f(a1),...,f(an))-

If A =M, wecall f an . If ./ is a substructure of .4, we say .# is an
(written: .#Z =< .#") if the inclusion map is elementary.

It is immediate from the definition, that if ./ is an elementary substructure of .4, then .# and .4/
are elementary equivalent.

= Example 3.1 1. (Q,<,+,) is a substructure of (R, <,+,-), but not an elementary substruc-
ture. The two structures are not even elementary equivalent.
2. Note that (N+, <) is a substructure of (N, <). More is true: the map x — x+ 1 is an isomor-
phism between the two structures, and thus (N, <) and (N, <) are elementary equivalent.
However, consider the formula ¢(x) given by

Jyy<ax

Then (N, <) = (1), but (N-g, <) = @(1).
|
Definition 3.1.2 Let £ be a language and let .# be an .Z-structure. For A C M we denote
by .Z(A) the language .2 U {c, : a € A}; that is the language we obtain from . by adding
constant symbols for every a € A. The (written: ED_4 (A)) is
the .Z(A)-theory

{9(cays---r¢q,) + A = 0(ay,...,an)}
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| it A = M, we write ED(.#) for ED_,(M).

Under the assumption of the previous definition, every .Z-superstructure .4 of .# (including .#
itself) can be expanded into .Z’(A)-structure. We can check easily that ED_, (A) is the .Z’(A)-theory
of .# . The following lemma follows easily from the definition of an elementary diagram.

Lemma 3.1.1 Let .#, .4 be two £ -structures such that .# is a substructure of .4". Then ./ is
an elementary substructure of .4 if and only if ./ = ED(.Z).

Theorem 3.1.2 — Tarski-Vaught test. Let .#, .4 be two .Z -structure such that ./ is a substruc-
ture of .4 and for every .¢-formula ¢@(xo,x1,...,x,) and every (aj,...,a,) € M" the following
holds:

if there is ¢ € N such that A" = @(c,ay,...,an),
then there is b € M such that A" |= @(b,ay,...,a,).

Then .# is an elementary substructure of ./4".

Proof. We use induction on formulas to show that for all a € M", .# = ¢(a) if and only if .4 |=
¢(a).

We consider the base case that ¢ is of the form R(t,...,t,) for all m-ary relation symbol R in .&
and Z-terms 11,.. . ,t,. By Lemma 2.2.1, +/ (a) =t (a) for all Z-terms t(x1,...,x,) and a € M".
Since . is a substructure of .4, we also have that R "M™ = R-” . Thus for

M =R(11,. .. ,ty)(a) if and only if (£ (a),...,t;" (a)) € R

ceesby

if and only if ({" (a),...,t;" (a)) e R

el

if and only if A" = R(11,...,tn)(a)

The case when ¢ is of the form #; = #, can be handled the same way.
Now we handle the induction case. Suppose that ¢ is of the form —y and that the induction
hypothesis holds for y. Then

A = —y(a) if and only if A [~ y(a)
if and only if A [~ y(a)
if and only if A = —y(a).

The case when ¢ is of the form (yV ) can be done similarly.
Finally, consider the case that ¢ is of the form Jyy. Then by our assumption on .# and .4 and
using the induction hypothesis on y, we have that

A = (3yy)(a) if and only if thereisb € M s.t. A |= y(b,a)
if and only if thereisb € M s.t. A |= y(b,a)
if and only if there is ¢ € N s.t. A = y(c,a)
if and only if A" = (3yy)(a).
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Looking at the proof, we see that the Tarski-Vaught test states the following: if you want to use
induction of formulas to show that a substructures is an elementary substructure, then you really just
have to consider the case of a formula of the form Jyy and only one direction of the equivalence.

Exercise 3.1 Let .#, .4, /% be £-structures and for i = 1,2, let 1, : # — N; be an £~
elementary embedding. Then there is an .Z’-structure .43 and .Z’-elementary embeddings y; :
M — Az and Uy 0 N5 — A3 such that 4y o1 = Up o1y,

Theorem 3.1.3 — Downward Léwenheim-Skolem. Let .4 be an .Z-structure and let K be an
infinite cardinal such that || < k¥ < |N|. Then there is an elementary substructure of .4~ of
cardinality x.

Proof. Inductively, we define a family (M;);cy of subsets of N such that M; C M for i < j as follows:
Set My to be a subset of N of cardinality x. Let i € N and suppose that M; is already defined. For
every .Z-formula @(y,x1,...,x,) and all a € M? such that

A= ye(ya),
pick an element ny , € N such that A" |= @(ng 4,a). Define
Mg :={@(ngq,a) :a € Mi, @(y,x1,...,x,) L-formulas.t.V = Iyo(y,a)}.

It is easy to check that each M; has cardinality x, because there are only at most kK-many .Z-formulas.
Set M := {J;enyMi. Now M has cardinality x, because each M; has cardinality k. The reader can
check that the M is closed under all the interpretations (in .4”) of function symbols in .Z". Thus M
can interpreted as a substructure .# of .4". By our construction, it is clear that .# and .4 satisfy
the assumptions of the Tarski-Vaught test. Thus .#Z < 4. ]

Corollary 3.1.4 Let T be an .Z-theory with infinite models and let k be cardinal such that
K > |-Z|. Then there is a model of T are cardinality of x.

Proof. By Corollary 2.5.9, there is a model .# of T of cardinality at least k. If kK < |M|, then we
can find an elementary substructure of .# of cardinality k¥ by Theorem 3.1.3. Such an elementary
substructure is also a model of 7. |

Theorem 3.1.5 — Upward Léwenheim-Skolem. Let .# be an infinite .%-structure and let x be
an infinite cardinal such that |.Z| < k and |M| < k. Then there is .Z-structure .4 of cardinality
Kk such that there is an elementary embedding of ./ into 4.

Proof. Consider .Z as an .Z(M)-structure. By Corollary 3.1.4, there is model of ED(.#) of
cardinality k. Call this model .#". Let u: M — N map a € M to ;. Since .4 |= ED(.#), it
follows immediately that u is an elementary embedding. |

I Definition 3.1.3 Let T be an .Z-theory. We say T if for all
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Z-formulas @(y,xy,...,x, there is an n-ary function symbol f in £ such that

T |=Vx; ...Vx,,((EIy OV, X1,y Xn)) = (p(f(xl,...,xn),xl,...,x,,)).

The following lemma is a direct consequence of the Tarski-Vaught test

Lemma 3.1.6 Let T be an .Z-theory with built-in Skolem functions, and let .#,.4" be two
models of T'. If .# is a substructure of .4, then .# < .A".

Definition 3.1.4 Let (I, <) be a linear order and let (.#; : i € I) be a collection of .#-structures.
Wesay (#; : i€l)isa if .#; is a substructure of .#; whenever i,j € I and i < j. If ./#;
is an elementary substructure of .#; for i, j € I with i < j, we say that chain is an

Let (.#; : i €I) be a chain of .Z-structures. Since every .#; is a substructure of .#; for i < j, the
set U;c; M; can be turned into .Z-structure .2 such that

o ¢ =M for all i € I and constant symbols ¢ in .Z,

o % ay,...,a,) = f%ay,...,a,) foray,...,a, € M; and n-ary function symbols f in .Z,

« R NM;' = R for all i € I and n-ary relation symbols R in ..
We use |J;c; #; to denote this .Z-structure.

Proposition 3.1.7 Let (/,<) be a linear order and let (.#; : i € I) be an elementary chain. Then
; an elementary substructure of | J,;.#; for j € I.

Proof. We apply the Tarski-Vaught test. Let ¢@(y,xj,...,x,) be an .Z-formula, a € M7 and b €
Uicr M; such that U,c; 4 = @(b,ay, ... ,a,). Then there is k € I such that b € M. We can reduce to
the case that k > j. Since .#; < .#, there is ¢ € M such that .#; |= ¢(c,ay,...,a,). [ |

Categoricity and completeness
Definition 3.2.1 Let x be an infinite cardinal and let T be an .Z-theory. We say that T is

| if it has models of cardinality k and every two models of T of cardinality k are
Z-isomorphic.

= Example 3.2 1. The theory of infinite sets in the empty language is k-categorical for every k.
2. Recall from algebra that two algebraically closed fields are .Z;-isomorphic if and only if they
have the same characteristic and have the same transcendence degree over their prime field.
Let k¥ > V. It is easy to check that if an algebraically closed field has transcendence degree

K, then it is cardinality is also k. Thus ACF, and ACF, for a prime p are k-categorical.

Theorem 3.2.1 — tos-Vaught test. Let T be an .Z-theory with no finite models. If T is k-
categorical for some infinite cardinal k with k¥ > |.Z|, then T is complete.

Proof. Suppose T is not complete. Then there is an .Z-sentence ¢ such that both 7 U {c} and
T U{—o} are satisfiable. Since every model of T is infinite, so is every model of T U {c} and
TU{—0c}. By Corollary 3.1.4, there are .Z-structure .#, and .#, of cardinality k such that
M =T U{c} and 4, =T U{~0c}. Since both .#) and .#, are models of T of cardinality k, they
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are .Z-isomorphic by x-categoricity of T. Thus by Proposition 2.2.3, .#) and .#, are elementary
equivalent. This contradicts that .#] = ¢, but .4, [~ ¢@. |

I Corollary 3.2.2 All theories mentioned in Example 3.2 are complete.

The following exercise shows that the nonexistence of finite models is an important precondition
for the Los-Vaught test.

Exercise 3.2 Find a theory T (in a suitable language .#’) with a finite model that is k-categorical
for some infinite cardinal k > |.Z|, but fails to be complete.

An application to algebra

Theorem 3.2.3 — First-order Lefschetz Principle. Let ¢ be a sentence in .%;. Then the following
are equivalent:

1. (C,+,—,-,0,1) =o,

2. ACFy = o,

3. ACF, |= o for all large enough p,

4. (Fp,+,—,-,0,1) = o for all large enough p.

Proof. The equivalence of (1) and (2) follows from the completeness of ACFy, while the equivalence
of (3) and (4) follows from the the completeness of ACF), for every prime p.We now establish the
equivalence of (2) and (4).

Suppose ACF |= ¢. By Corollary 2.5.7, there is finite subset 7 of ACFy such that T = o. Let p be
a prime such that

T C ACFU{—V. =0 : gis prime, .
C {=Vxx+---+x q is prime, ¢ < p}

g-times

Thus for every prime r with r > p, we have that F, |= o.
Suppose ACF, [~ o. Since ACF, is complete by Corollary 3.2.2, we have that ACFy = —o. As
above, we can now argue that I, |= —o for all large enough primes p. ]

Theorem 3.2.4 — Ax-Grothendieck. Every injective polynomial map p : C* — C" is surjective.

Proof. Letd,n € N. We first observe that there is an .Z;-sentence o, 4 such that (C,+,—,-,0,1) |=
0,4 if and only every polynomial map of degree d in n variables that is injective, is also surjective.
Thus by Theorem 3.2.3, it is enough to that (F,,+,—,+,0,1) = 0,4 for every prime g.
We first note that if K is a finite field, then every injective map from K" to K" is surjective (whether or
not it is polynomial). So now p: F," — F," be polynomial and injective. Suppose b € F," \ p(F,").
Let A be a finite subset of Eﬂ such that contains all coordinates of b and all coefficients of p. Denote
by K the subfield of IFTIn generated by A. Since finitely generated subfield of En are finite, we known
that K is finite. However, since all coefficients of p are in K, we have that p(K") C K". However,
b € K"\ f(K"), contradicting the surjectivity of injective maps for finite fields.

|
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Decidability

We say that language .& is if there is an algorithm that decides whether or not a
sequences of symbols is an .Z’-formula.

Definition 3.3.1 Let T be an .Z-theory. We say T is if there is an algorithm that takes
as an input an .Z-sentence ¢ and returns the truth value of T |= 6. We say T is if
there is an algorithm that takes as an input an .Z’-formula ¢ and returns the truth value of 6 € T.
We say T is if there is an algorithm that enumerates of all elements of
T; that is, there is an algorithm that takes as an input n € N produces element of ¢, € T, such
that 7 = {o, : n€ N}

Proposition 3.3.1 Let .Z be a computable language and let 7' be a computable .#-theory. Then
the Z-theory {0 : T |= 0} is computably enumerable.

Sketch of proof. Enumerate all possible proofs. |

Theorem 3.3.2 Let . be a computable language and let 7' be a complete computable .Z’-theory.
Then T is decidable.

Proof. We can reduce to the case that T is satisfiable. Then the .Z-theories T’y :=={¢ : T = ¢}
and T_ := {¢@ : T |= —~¢} are disjoint. Since T is complete, the union 7 UT_ is the set of all
Z-sentences. By Proposition 3.3.1, both 7" and T_ are computably enumerable. For let n € N,
let 6, be the output of the algorithm enumerating 7' on input n, and let 0, be the output of the
algorithm enumerating 7 on input n. We now describe the algorithm to decide whether T |= & for a
given .Z-sentence . So let o be an .Z-sentence. Since T U T_ is the set of all .Z’-sentences, there
is m € N such that o = ¢, or 6 = 0,,,. We can find this m by a brute-force search; that is checking
the 0, and &, ’s until we find an m with the desired property. If ¢ = o, the algorithm returns frue,
otherwise it returns false. |

I Corollary 3.3.3 All theories mentioned in Example 3.2 are decidable.

Types
Notation 3.1. Let p be a set of £-formulas. When we write p(xy,...,x,) for this set, we mean that
all free variables occurring in the £ -formulas in p are among xi, . .., x,. We say that p(xy,...,X,) is

if there is an L-structure A and a € M" such that /A |= @(a) for all ¢(x1,...,x,) € p.

Definition 3.4.1 Let .# be an .#-structure, A C M and p(xy,...,x,) be a set of .Z(A)-formulas.
We call p(xi,...,x,) a if for all k € N and ¢y,..., ¢ € p there is a € M*
such that .2 = A", ¢;(a). We say a type p(xi,...,x,) of .4 over A is if for every
Z(A)-formula @(xy,...,x,) either ¢ € p or ~¢ € p. For each n € N, we denote the set of of all
complete types p(xi,...,x,) of .# over A by S:7 (A).

By the compactness theorem, each type over .# is satisfiable, although not necessarily in ./ .
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Notation 3.2. Sometimes types that are not complete, are referred to as . We almost
always just say p(xy,...,x,) is type over A (rather than p(xi,...,x,) is a type of M over A), because
A can usually be determined from the context.

m Example 3.3 Let .Z := (N, <,+,1) and let p(x) be set of formulas containing for each n € N the
following formula:

14+ 41<x
~————

n

Clearly, p(x) is finitely satisfiable and hence a type of .# over 0. We will later see that this is a
complete type. Let g(x) be set of formulas ¢ such that .#Z |= ¢(5) . Obviously, g(x) is type of .Z as
well. In this case it is clear that ¢ is complete, since either .# = ¢(5) or A = (—=¢)(5). .

aeM" p(x1,...,x,) if A = @(a) forall @(x,...,x,) € p(x1,...,x,). In this situation,

Definition 3.4.2 Let .# be an .Z-structure, A C M and p(xj,...,x,) be type over A. We say
we say that p . We say .4 p if p is not realized in ./ .

Lemma 3.4.1 Let .# be an .Z-structure, A C M and p(xi,...,x,) be type of .# over A. Then
there is an .Z-structure .4 such that .# < .4 and p is realized in /.

Proof. Let g be p UED(.#). 1t is enough to show that g is satisfiable. By compactness, it is enough
to show g is finitely satisfiable. Let ¢y,..., @ € p and yq,...,y, € ED(M). Since p is a type of .Z,
there is a € M" such that

M = N\ eila).
i=1

Since .# |=ED(.#), we have .4 = \'_; Wi A\ @i(a). Thus is finitely satisfiable. [ |

Definition 3.4.3 Let .# be an .Z-structure, A C M, and let a € M". The
(written: tp”" (a|A)) is defined as

{o(x1,...,x) = A = @(a)}.

Exercise 3.3 Let.# |=T.. and let A C M. Show that tp? (b|A) = tp# (c|A) for all b,c € M\ A.

Corollary 3.4.2 Let .# be an .Z-structure, A C M, and let p(xj,...,x,) be a set of .Z(A)-
formulas. Then p is a complete type over A if and only if there is elementary extension .4 of .#
and a € N” such that p = tp" (a|A).

Proof. Suppose p is a complete type. Then by Lemma 3.4.1 there is an elementary extension .4 of
A such that p is realized in .#". Let a € N" be such an realisation. Then p is a subset of tp”* (a|A).
Since p is complete, the two types are equal. |
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Definition 3.4.4 Let T be an .Z-theory and p(xi,...,x,) be a set of .Z-formulas. We call
p(x1,...,x,) a if for all k € N and ¢,...,@; € p there is a model of .# of T such that
A= xgp .. 3xy, /\le Qi(x1,...,x,). We say p(xy,...,x,) is if for every .Z-formula
©(x1,...,x,) either @ € p or =@ € p. For each n € N, we denote the set of of all complete 7'-types
p(x1,...,x,) by Su(T).

Proposition 3.4.3 Let T be a .Z-theory. Let xy,...,x, be variables and let X be a subset of the
set of all .Z-formulas of the form ¢(xi,...,x,) such that X is closed under boolean operations.
Then the following are equivalent:

1. for every .Z-formula ¢ there is w € £ such that T = ¢ <> y.

2. for p,q € S,(T) with p # g, there is a formula y € X such that y € p and y ¢ q.

Proof. Suppose (1) holds. Let p,q € S,,(T) with p # g. There is a .Z-formula ¢@(xj,...,x,) such
that ¢ € p and ¢ ¢ g. By (1), there is .Z-formula y(xi,...,x,) € £ such that T |= ¢ <+ y. Thus

vepandy ¢q.

Suppose (2) holds. Consider an .Z-formula @(xi,...,x,). Let p € S,(T) be such that ¢ € p. Then
by (2) and Corollary 2.5.8 (applied to —¢ and {—y : y € LN p}), there are y,..., ¥, € pNX
such that

Tl (=) = (~y1V--Vy,).
Since X is closed under conjunction, there is x, € pNX such that 7 |= =¢ — —,,. Thus for each
p € S,(T) with ¢ € p, we can find x, such that T |= x, — ¢.

Let A be the set of all such y,; that is

A={xp : peSa(T),p € p}.
By Corollary 2.5.8 (applied to ¢ and A), there are &;,...,&; € A such that

14

TEe—(\/&)

i=1

Since &,...,& € A, we have that T = @ < (\/'_, &). Because X is closed under disjunctions,
Vie & ex. [ |

3.5 Saturated models
Definition 3.5.1 Let x be an infinite cardinal and let .# be an .Z-structure. We say that .# is
if every type p(xj,...,x,) over A is realized in .# for all A C M with |A| < k and
every n € N.

Exercise 3.4 Let x be cardinal. What are the x-saturated models of 7..?
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Lemma 3.5.1 Let k be an infinite cardinal and let .# be an .Z-structure. Then there is an
elementary extension .4 of ./ such that for every A C M with |A| < x and every p(x) € S;7 (A),
the type p is realized in . 4.

Proof. Let A be the cardinality of sets of p(x) € S;/(A), where |A| < k. Then let (pg : o < 1) be
an enumeration of these types. By Lemma 3.4.1 and Proposition 3.1.7, we can construct a elementary
chain (#y) e of elementary extensions of .# such that

1. .//Q = ./// 5

2. My = My and My realizes py, and

3. Mo =Upg<q-#p for limit ordinal c.
Set A := g1 #o. By Proposition 3.1.7, we have that .4~ > .#¢ for all @ < A. Thus ./ realizes
po forall @ < A. [ |

Careful analysis of the proof of Lemma 3.5.1 reveals that if ¥ > |.Z|, then .#” can be constructed
such that |[N| < |M|¥.

Theorem 3.5.2 Let k be an uncountable cardinal and let .#Z be an .Z-structure. Then there is an
Z-structure .4 such that .#Z < .4 and .4 is k" -saturated.

Proof. By Lemma 3.5.1 (and Proposition 3.1.7) we can construct an elementary chain (.A4g) g+
such that

1. M =4,

2. Ng+1 = N, and for all A C N with |A| < K every type p € S;f/“ (A) is realized in A1,

3. Mo = Uﬁ <o J’ﬁ
Now set A := g+ Ha- By Proposition 3.1.7, we know that 4" > 4, for all o < k. We now
show that .4 is k*-saturated. Let A C N be such that |A| < &, and consider a type p € ;' (A). Since
successor cardinals are regular, there is @ < k™ such that A C Ny. By construction p is realized in
Nga1. Since A1 = A, we have that p is realized in 4. |

Exercise 3.5 Let .# be a k-saturated .Z-structure. Then every infinite definable subset of M"
has cardinality at least k.

Exercise 3.6 Let ./ be an w-saturated .#-structure, and let a,b € M" such that tp¥ (a) = tp™ (b).
Letay,...,a, € M. Show that there are by,...,b,, € M such that

tp‘”(a,al,...,am) :tp‘///(b,bl,...,bm).
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Definition 4.0.1 Let T be an .£-theory. We say T (short: has QE)
if for every .Z’-formula ¢ there is a quantifier-free .Z-formula y such that

TEoe+vy.
We say an .Z-structure .7 has quantifier-elimination if Th(.#) has quantifier-elimination.

When £ has at least one constant symbol, we can assume that ¢ and y have the same free
variables. Simply substitute a constant symbol for every free variable that appears in y, but not in

Q.

Exercise 4.1 Let T be an .Z-theory. Then there exists a language .’ O % and an .¢”-theory T’
such that 7" is an extension of T by definitions and 7’ has quantifier-elimination.

Definition 4.0.2 Let ¢(xi,...,x,) be an .Z-formula. We say @(xi,...,x,) is if it is
the form 3y; ... Iy, W (y1,...,Ym,X1,-..,%,) Where ¥ is quantifier-free. If y is a conjunction of
atomic formulas and negations of atomic formulas, then we say ¢ is

Lemma 4.0.1 Let T be an .Z-theory such that for every primitive existential formula ¢ there is
a quantifier-free formula y such that 7 = ¢ <> y. Then T has quantifier-elimination.

Proof. We prove this by induction on ¢. The base case is immediate. For the induction step,
suppose that for two .Z-formulas ¢; and ¢, there are quantifier-free .Z’-formulas y; and y; such
that 7 = @) <> yj and T |= ¢ <> y,. Then

TE@Ve) < (WiVy)andT = (—er) < (—y).

Thus it is left to consider the case that ¢ is of the form Jy¢@;. Then

T = (Fyer) < (yyn).
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Hence it is left to find a quantifier-free .¢-formula y such that 7' |= (Jyy;) <> y. Note that y; is
logically equivalent to a .Z’-formula of the form \/;c; x;, where [ is finite and each y; is conjunction
of atomic formulas and their negations. Thus

T Gyw) < 3V x)

iel

However, note that the .-formulas 3y \/;c; x; and \/,;; 3y are logically equivalent. By our assump-
tions there are quantifier-free .£’-formulas 6; for € I such that T |= y; <> 6; for each i € I.

T = Fyw) < (\/ 6).

iel

I Proposition 4.0.2 The theory of infinite sets 7., has quantifier-elimination.

Proof. By Lemma 4.0.1 we can assume that ¢(xy,...,x,) is of the form

dy /\y:xi/\y#xj/\X(xla""xn)v

i€l jeJ
where 1,J C {1,...,n} are finite sets and x is a conjunction of atomic formulas and negations of
atomic formulas. Suppose that / is non-empty and let iy € I. Then

T = @(x1,...,x,) < (/\xio :xi/\x,‘o ;éxj/\x(xl,...,xn))
il jel
Thus we can assume that @ is of the form

dy /\y;éxj/\x(xl,...,x,,).

jes
Since every model of T is infinite,
T = @(x1,. o0y x0) <> X (X150 yxn).
[ |

Definition 4.0.3 Let .# be an .Z-structure. We say ./ is if every definable subset of
M is either finite or cofinite. A .Z-theory T is if every model of T is minimal.
We say . is if its theory is strongly minimal.

I Corollary 4.0.3 The theory of 7., is strongly minimal.

Proof. Let .# be an infinite set, and let X C M be definable in .#. By Proposition 4.0.2, we can
assume that there is a quantifier-free formula @ (x,yi,...,y,) and b € M™ such that

X={aeM : A |}=o¢(ab)}.

Since the set of finite or cofinite subsets of M is closed under unions and complements, we may
assume that ¢ is an atomic formula. Thus we can assume that there is i € {1,...,m} such that either
@ is x =y; or x = x. In the first case X is a singleton and the second case X is co-finite. |
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Exercise 4.2 Let .# be an .¥-structure. A (Xp)pey is a family of subsets of
M" such that Y C M™ and there exists an .Z-formula ¢ (x,. .., X, y1,---,Ym) such that

Xp={aeM": A= ¢(a,b)}.

We say that .7 is if for every definable family (Xj)pcy there exists an integer n
such that for every b € Y, if X}, is finite, then |X},| < n. Now suppose that .# is strongly minimal.
Show that . is uniformly finite.

Exercise 4.3 Use Theorem 4.0.2 to show that that S,(7.) is finite for each n, and for every
M |= T., and every countable A C M, the set S;” (A) is countable. A theory satisfying the later
statement is called

Exercise 4.4 Let k be cardinal. Which models of T,, are x-saturated?

Quantifier-elimination does not imply completeness. We will later see that ACF has quantifier-
elimination, but we already know it is not complete. However, the additional assumption of the
following proposition is often satisfied in practice.

Proposition 4.0.4 Let T be an .Z-theory with quantifier-elimination, and let .# |= T such that
for every model 4" |= T there is a .Z-embedding of ./ into .#". Then T is complete.

Proof. Let /' |=T,and let u : .# — .4 be an £-embedding. It is enough to show that .# and
A are elementary equivalent. For this, we prove that u elementary. So let ¢(xj,...,x,) be an
Z-formula and a € M". Since T has quantifier-elimination, we can assume that ¢ is quantifier-free.
By Proposition 2.2.2, we have that .# |= ¢(a) if and only .4/ |= ¢(a). Thus p is elementary. W

= Example 4.1 We already know that 7., is complete, but now can also deduce this from Proposition
4.0.4. Simply observe that for every infinite set there is an injection of N into this infinite set. "

Proposition 4.0.5 Let T be a decidable .Z-theory with quantifier-elimination. Then there is an
algorithm that given a .#-formula @ outputs a quantifier-free .Z-formula y such that 7 |= ¢ <> .

Proof. Take a computable enumeration Y, Y, ... of all quantifier-free .Z-formulas. Since T is
decidable, we can check for each i € N whether 7' |= ¢ <> y;. By just check this for every i € N, we
will eventually find an i such that this holds, since 7" has quantifier-elimination. We then return this

Vi u
Back and forth
Definition 4.1.1 Let .# and ./ be two .Z-structures, and let A C M and B C N. We say a
bijection1:A — Bis a if
1. ¢ = aif and only ¢’ = 1(a) for each constant symbol ¢ in . and a € A,

2. f(ay,...,a,) = an; if and only £ (1(ay),...,1(a,)) = 1(any1) for every function
symbol fin % and ay,...,a,+1 €A

3. (ai,...,a,) € R if and only if (1(ay),...,1(a,)) € R, for every relation symbol R in
% and every ay,...,a, € A.
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Definition 4.1.2 Let .# and ./ be two .Z-structures and let .# be a set of partial isomorphisms

between .# and .#". We say .7 is a if
: forevery1:A — Bin.% and every b € N there is 1’ : A’ — B’ such that 1’ extends 1 and
beB.
: forevery 1:A — Bin .% and every a € M there is t' : A’ — B’ such that 1’ extends 1 and
acA.

m Example 4.2 Let %) be the empty language and let .#, 4" be two infinite .Z-structures (ie. two
infinite sets). Let .# be the set of bijections between finite subsets of M and N is a back-and-forth
system. "

Lemma4.1.1 Let .# and .4 be £ -structures, let .% be an back-and-forth system between .#
and .4/, and let #(xy,...,x,) be an Z-term. If 1 : A — Biis in .%, then for every ay,...,a,+1 €A

" (ay,...,an) = any if and only if 17 (1(ay), ..., 1(an)) = 1(ans1).

Proof. The case of t being a constant or being a variable symbol follows immediately from the
definition of a partial isomorphism. So now let 7(x,...,x,) be of the form f(t,...,t,) of some
m-ary function symbol f in .Z and .Z-terms ¢, .. .,t,, for which the conclusion of the lemma holds.
Letay,...,a,. € A such that % (ay,...,a,) = a,,,. Since .Z is an back-and-forth system, there
ist/ :A’ — B’ in .% extending 1 such that {t{"(a1,...,a),...,.t;% (a1,...,a,)} CA'. Since U’ is a
partial isomorphism,

PP @) V(6 (@ an) = (@)
By our induction hypothesis, we have that fori € {1,...,m}
" (Lar), ... 1an) = V(67 (ar,...,an)).
Thus

M (War), .. (@) = O ar,.an),. . @ (. an)) = Uans)-

The other direction of the “if and only if” statement can be shown similarly. |

Theorem 4.1.2 Let .# and .4 be .Z-structures, and let .% be an back-and-forth system between
A and 4. Then each 1 € .% is elementary. In particular, if .% is nonempty, then .# and ./ are
elementary equivalent.

Proof. Let @(xy,...,x,) be an Z-formula. We show by induction on ¢ that forall1:A — Bin .#
and all a,...,a, €A

M= @(ay,...,a,) ifand only if A = @(1(ar),...,1(a,)).

For the base case, consider that ¢ is of the form R(zy,...,t,), where R is an m-ary relation symbol
in % and1t,...,t, are L-terms. Fori=1,...,m, set¢; :=t:” (ay,...,ay). Since .Z is a back-and-
forth system, we can find 1" : A’ — B’ extending 1 such that {c|,...,c,} CA’. By Lemma 4.1.1, we
have foreachi=1,...,m

Vie) =t" (1(ay),...,1(ay)).
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Since 1’ is a partial isomorphism, we have
R (cy,...,cp) if and only if R (1'(c1),...,1'(cn)).

Combining the last two observations, we obtain .# = ¢(aj,...,a,) if and only if

N Eo(i(ar),... . 1(ay)).

The induction steps for V and — are immediate. So we just consider the case that ¢ is of the form
Jyy for some £-formula y(y,xi,...,x,). Let1:A — Bin % and letay,...,a, € A. Suppose that
M = @(ay,...,a,). Then there is ¢ € M such that # = y(c,ay,...,a,). Using again that .# is a
back-and-forth system, we can find 1’ : A’ — B’ in .% such that ¢ € A’. By the induction hypothesis,
we obtain that

M = y(c,ar,...,a,) ifand only if A = y(U'(c),1(ar),...,1(an)).

Thus A" = Jyy(ay,...,a,). The other direction can be shown similarly. [ |

An example: dense linear orders

Corollary 4.1.3 Let T be an .Z-theory such that for every two models .# and .4 of T the set
of partial isomorphisms between .# and .4~ with finite domain is a back-and-forth system. Then
T is complete and has quantifier-elimination.

Proof. Completeness follows immediately from Theorem 4.1.2. For quantifier-elimination, it is
enough to show by Proposition 3.4.3 that for every n € N and for every p,q € S,(T) with p # ¢,
there is quantifier-free formula y such that y € p and v ¢ g. Let p,q € S,,(T) and suppose that
¢ € pif and only @ € ¢ for every quantifier-free .Z-formula ¢(xy,...,x,). We need to show that
p = q. By Lemma 3.4.1, there are models .# and A" of T, a € M" and b € N” such that a realizes
p and b realizes g. Let 1 : {ay,...,a,} — {b1,...,b,} map a; to b; fori=1,...,n. Since a and b
satisfy the same quantifier-free formulas, 1 is partial isomorphism between .# and .4~ with finite
domain. Since such maps form a back-and-forth system by assumption, 1 is elementary. Thus
tp” (a) = tp”” (b) and so p = q. [ |

m Example 4.3 The theory T.. clearly satisfies the assumptions of Corollary 4.1.3. Thus we have
new proof of Proposition 4.0.2 without eliminating quantifiers by hand. "

Exercise 4.5 Let .2 be the language consisting of a single unary relation symbol P. Let .. » be
the .Z-theory stating that both the interpretation of P and its complement are infinite.

1. Show that T.. > has quantifier-elimination.

2. Is T., > strongly minimal?

Theorem 4.1.4 The theory DLO is complete, and has quantifier-elimination.

Proof. Let # = (M,<y), ./ = (N,<y) E DLO. By Theorem 4.1.2 and Corollary 4.1.3, it is
enough to show that the set of partial isomorphisms between .# and .#” with finite domain is a
back-and-forth system. Let 1 : A — B be an partial isomorphism between .# and .4 such that A
and B are finite. Let n € N such that |A| = n. Letay,...,a, € A such that a; <pra; <p -+ <y an
and A = {ay,...,a,}. Setb; = 1(a;) fori = 1,...,n. Since 1 is a partial isomorphism, b; <y by <y
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- <y by

We only argue the “forth” case as the “back” follows by the same arguments. Let a € M. Without
loss of generality, we can assume that a ¢ A. Since .4 = DLO, we can find b € B such that b <y b;
if and only if @ <js @;. Indeed, if a < a;, we pick some b < by, and if a > a,,, we pick some b > b,,. If
a; <a<a; forsome i€ {1,...,n— 1}, we use the density of <y tofindab € N with b; < b < b;,|.
Now extend 1 to 1" : AU{a} — BU{b} by mapping a to b. [ |

Definition 4.1.3 Let . be a language containing .Z-, and let .# be .£-structures such that
A [=DLO. We say that .# is if every subset of M definable in . is a finite union
of intervals and points. Let T be an .Z-theory such that DLO C 7. We way T is if
every model of T is o-minimal.

Remarkably, if an .Z-structure .# is o-minimal, then it is .Z-theory is o-minimal as well. We might
give a proof of this non-trivial result later on.

We make a useful observation: let .# be an expansion of a model (M, <j) of DLO. Then if
X C M is finite union of intervals and points, then so is M \ X. Thus the collection of sets that are
finite unions of intervals and points, is closed under all unions and complements. Thus if .# has
quantifier-elimination, then in order to that .# is o-minimal, it is enough to show that every subsets
of . definable by an atomic formula is a finite union of intervals and points.

I Corollary 4.1.5 The theory DLO is o-minimal.

Proof. Let # = (M,<py) =DLO and let X C M be definable in .#. By Theorem 4.1.4, there is a
quantifier-free .Z--formula @(x,y1,...,yn) and b € M™ such that

X:={aeM : /= o¢ab)}.

By the preceding remark, ¢ is of the form x; < y, y < x; or y = x. In the first two cases X defines an
interval and a singleton set in the third case. |

Exercise 4.6 Let.# |=DLO and let A C M be countable. Is S;”/ (A) countable as well?
Exercise 4.7 Find a countable model of DLO that is Xy-saturated. Is (R, <) |R|-saturated?

Exercise 4.8 Let .Z_ ; be the language of consisting of a binary relation symbol < and a unary
relation symbol P. Let DLO, be the .Z »-theory containing DLO such that the interpretation of P
is a dense and codense subset. Show that DLLO, has quantifier-elimination. Is DLO, o-minimal?

4.1.2 An example: vector spaces

Theorem 4.1.6 Let K be a field. Then the theory of infinite K-vector spaces Tys(K) is complete,
decidable, and has quantifier-elimination.
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Proof. Let .# and .4 be two infinite dimensional K-vector space. We will first construct a back-
and-forth system between .# and .4". Let .# be the set of partial isomorphisms 1 : V. — W such that
V is a finite-dimensional K-linear subspace of .# and is a finite-dimensional W is K-linear subspace.
Recall that K-linear subspaces of .# are precisely the -Zx-substructures of .# (same for .4). It is
easy to see that all bijective linear maps between a subspace of .# and a subsapce of .4 are in .#.
We now show that .# is a back-and-forth system.

Let1:V — W be in .%#, and let V and W be finite-dimensional K-linear subspaces of .# and .4/
respectively. Leta € M\ V. Since V is a K-subspace, we know that a is K-linearly independent over
V. Since W has finite dimension and .#” has infinite dimensional as K-vector spaces, there b € N
such that b is K-linearly independent over W. Now take 1’ to be the linear map extending t sending
a to b. This map is a bijection between the K-linear subspace of .# generated by V and a and the
K-linear subspace of .4 generated by W and b. Thus 1 is in .Z.

Completeness of Tys(K) follows from Theorem 4.1.2. We now conclude that 7ys(K) has quantifier-
elimination. Let p, g € S,,(T\s(K)) and suppose that ¢ € p if and only if ¢ € g for every quantifier-free
Zx-formula ¢(x1,...,x,). By Lemma 3.4.1, there are 4, .V = T\s(K), a= (ai,...,a,) € M" and
b= (bi,...,b,) € N" such that a realizes p and b realizes q. By Theorem 3.5.2 we may assume that
both .# and .4 have infinite dimension. Let £ € {1,...,n} be the maximal number such that there is

a K-linear subset of {a; : i € {1,...,n}} of cardinality . Without loss of generality, we can assume
that ay,...,ay is K-linear independent. Thus fori =1+1,...,n, thereis k; = (ki 1,... ki) € K' such
that

ai =kijar+---+kiap. 4.1)

Furthermore, for every kK’ = (K,,...,k}) € K* with ¥’ # (0,...,0)

la1+ - +kag # 0. 42)
Observe that the equalities in (4.1) and the inequalities in 4.2 can be expressed as quantifier-free -Zx-
formulas. Since a and b satisfy the same quantifier-free £k -formulas, we have that fori=¢+1,...,n

b; = ki1by +---+kisb, (4.3)

and for every for every k' = (K,,...,k}) € K',
Kiby +---+kpby # 0.

Thus by,...,b; are K-linear independent. Let V be K-linear subspace of .# generated by ay,...,ay,
and W be the K-linear subspace of .#". Note the map sending a; to b; fori =1,...,¢ extends to a
bijective linear map t between V and W. Since 1 is linear, we get from (4.1) and (4.3) that 1(a;) = b;
fori=/¢+1,...,n. Since 1 is in back-and-forth system between .# and ./, it is elementary by
Theorem 4.1.2. Thus tp¥ (a) = tp¥(b), and so p = q. [ ]

I Corollary 4.1.7 Let K be a field. Then Tys(K) is strongly minimal.

Note that both (R, +,0) and (C, +,0) be expanding by definitions into %%, because divisible torsion-
free groups are essential Q-vector space. Thus we obtain the following corollary.
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Corollary 4.1.8 The .Zp-structures (R, +,0) and (C,+,0) are elementarily equivalent, and their
theory is decidable.

Exercise 4.9 Show that for every .# |= Tys(K) and every countable A C M, the set S;” (A) is
countable.

Exercise 4.10 Let .%,,(U) be the language % together with a new unary function symbol.
Consider the %, (U)-structure (R, +,0,Q). Find a simple axiomatization of the theory of this
structure. Does this theory have quantifier-elimination?

4.2 Embedding tests

Definition 4.2.1 Let .# be an .Z-structure and A C M be nonempty. Let (A) , denote the
Z-structure whose universe is

{t?(ay,...,an) : t(x1,...,x,) is an L-term, ay, ..., a, € A}.

and such that
o ¢4« = ¢ for all constant symbols in .2,
* for all m-ary functions symbols f in .Z, all Z-terms ¢, ...,t,, and ay,...,a, € A

fAa 5 (ay,. . an), .t (a1, an) = (f(t, - tw)) Y (ar, ... an),
* P\ is the restriction of P to the universe of (A)_, for relation symbol P in .Z.

It is easy to check that (A)_, is indeed an .Z-structure. From the definition we also directly obtain
the following lemma.

Lemma 4.2.1 Let .# be an .£-structure and A C M be nonempty. Then (A) , is a substructure

of A .
Because of this observation, we call (A) , the LIf A s a
Z-substructure of .Z, we say ./ is if there is a finite subset A of M such that
N =(A) .

Definition 4.2.2 Let.# and .4 be .Z-structures. Let Sub(.#,.#") be the setof allmap 1 : A = N
such that A is a substructure of .# and 1 is an embedding of this substructure into .4". We let
Subg (4 ,./) be the subset of Sub(.#,./") of all 1 : A — N such that A is finitely generated.

Lemma4.2.2 Let.# and .4 be .Z-structures, and leta = (ay,...,a,) € M" and b= (by,...,b,) €
N" such that there is a partial isomorphism t : A — B between .# and .4 such that

1. {ar,....an}).sy CAand ({by,...,b,}) y» C B, and

2. l(a,-) = b,’ fori= 1,...,n.
Then for every quantifier-free .Z-formula ¢ (xy,...,x,)

A = ¢(a) if and only if A = @(b).



4.2 Embedding tests 41

Proof. We first show by induction on .Z-terms that for all .£-term #(x1,...,x,)
(M (a)) =" (b). 4.4)

The case of  being a constant or being a variable symbol follows immediately from the definition of
a partial isomorphism. So now let (xj,...,x,) be of the form f(t,...,t,) of some m-ary function
symbol f in .Z and .Z-terms ¢, ...,t, for which the equality in the statement of the lemma holds.
Since 1 is a partial isomorphism, we have

7 (b) = £ (b)) (0) = £ (167 (@), (5 (@) = 107 (a)).

We now prove the lemma by induction on .Z’-formulas. For the base case, consider that ¢ is of the

form R(ty,...,t,), where R is an m-ary relation symbol in . and t,...,t,, are Z-terms. By (4.4),

we have that 1(t:7 (a)) =t (b) for each i = 1,...,m. Since 1 is a partial isomorphism, we have
Rt (a),...,t; (a)) if and only if R (t{" (b),...,t;) (b)).

m rm

The induction steps for V and — are immediate. |

Lemma4.2.3 Let.# and .4 be #-structures, and leta = (ay,...,a,) € M" and b= (by,...,b,) €
N" such that for every quantifier-free .Z-formula ¢@(xy,...,x,)

A = ¢(a) if and only if 4 = @(b).

Then there is a partial isomorphism t : ({ai,...,an}).s — ({b1,...,bn}) 4 such that 1(a;) = b;
fori=1,...,n.

Proof. For ease of notation, let <7 be the ({ai,...,a,}) » and let B be ({bi,...,b,}) . We now
construct an partial isomorphism 1 : A — B. Note for every element u € A, there is an .Z-term
t(x1,...,x,) such that u = (a). We now define 1 to be the map taking # (a) to r”" (b). We have
to show that 1 is well-defined and partial isomorphism.

For well-definedness, let (x1, . ..,X,),s(x1, ..., X,) be two . such that u = t™ (a) = s™(a) for some
u € M. Since a and b satisfy the same quantifier-free .#-formulas, we have that t" (b) = s (b).
Thus 1 is well-defined.

We now prove that 1 is a partial isomorphism. Since every element of B is of the form s (b) for
Z-term s, we already have that 1 is surjective. For injectivity, suppose there are u,v € A such that
1(u) = 1(v). Lett(x1,...,x,),s(xq,...,X,) be two Z-terms such that u =t (a) and v = s (a).
Since 1(u) = 1(v), we get that +* (b) = s (b). Since a and b satisfy the same quantifier-free .#-
formulas, we get u = t™(a) = s (a) = v. Thus 1 is injective.

Let ¢(xj,...,X,) be a quantifier-free .Z-formula and let #; (xy,...,x,), ... ,tu(x1,. .., X,) be L -terms.
Since a and b satisfy the same quantifier-free .Z-formulas,

M= (... ty)(a) if and only if A |= @(t1,...,t,)(D).

It follows immediately that 1 is a partial isomorphism. |
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Proposition 4.2.4 Let T be an .Z-theory such that Subg(.#,./") is empty or a back-and-forth
system for every w-saturated models .#,.# of T. Then T has quantifier-elimination.

Proof. Let p,q € S,(T) and suppose that ¢ € p if and only if ¢ € p for every quantifier-free
Z-formula @(xi,...,x,). By Lemma 3.4.1, there are 4,4 =T, a= (a,...,a,) € M" and
b= (bi,...,b,) € N" such that a realizes p and b realizes ¢. By Theorem 3.5.2 we can assume that

M and A are @-saturated. By Lemma 4.2.3, there is a partial isomorphism t : ({ay,...,a,}) .7 —
({b1,...,bn}) y such that 1(a;) = b; fori=1,...,n. Since 1 is in a back-and-forth system between
M and ¥, it is elementary by Theorem 4.1.2. Thus tp¥ (a) = tp™ (b), and so p = q. [ ]

Theorem 4.2.5 Let T be an .Z-theory such that for every two models .# and .4 of T, every
1 € Subg(.#,./) and every a € M there exists an elementary extension .4 of .4 and 1’ €
Sub(.# ,. /") such that a is in the domain of 1" and 1’ extends 1. Then 7 has quantifier-elimination.

Proof. We show that the assumption of Proposition 4.2.4 is satisfied. Let .#,./" be w-saturated
models of 7. Let </ be a finitely generated substructure of .#, let Z be a finitely generated
substructure of 4" and let 1 : A — B be a partial isomorphism between .# and .4". Let ay,...,a,
be generators of <7, and set b; := 1(a;) fori = 1,...,n. Since 1 is a partial isomorphism, by,...,b,
generates %. Let ¢ € .. By assumption there is an elementary extension .4 of .4 and 1’ €
Sub (., /") extending 1 such that ¢ in the domain of 1’. By Lemma 4.2.2, for every quantifier-free
Z-formula @(xy,...,x,)

M = ¢(ay,. .. ay,c)if and only if A" = @(1(ay),...,1(a,),1'(c)). 4.5)

Let p be the Z-type tp”" (1'(c)|{b1,...,bn}). Since .4 is @-saturated, this type is realized in 4.
Let d € N be a realization of this type. By (4.5), for every quantifier-free .-formula ¢(xy,...,x,)

M = (ay,. .. ap,c) if and only if /' = @(1(ar),...,1(ay),d).

Thus there is a partial isomorphism t” from ({ay,...,an,c) 4 to ({b1,...,b,,d)_, mapping c to d
and a; to b; for every i = 1,...,n. It is easy to check that 1" extends 1. [ |

Corollary 4.2.6 Let T be a .Z-theory and let k be a cardinal such that k¥ > |.Z|. Suppose for
all models .#, 4 of T with |M| < Kk and .4 k" -saturated, for every 1 € Sub(.#,./") either the
domain of 1 is M or t has a proper extension 1" € Sub(.#,.4"). Then T has quantifier-elimination.

Proof. We show that the assumptions of Theorem 4.2.5 are satisfied. Let .#,.4" be two models of
T,let1 € Subg(.#,./") and let a € M. Let <7 be the finitely generated substructure of .# such that
A is the domain of 1. Since |A| < |.Z|, we get by Theorem 3.1.3 an elementary substructure .’ of
A such that (AU{a}) » C M’ and |[M’| < k. By Theorem 3.5.2 there is an elementary extension
A" of A such that 4" is k" -saturated. It is enough to show that t can be extended to a partial
isomorphism 1" € Sub(.#,./") whose domain is M'.

Let .7 be the subset of Sub(.#,./") containing all partial isomorphisms A who extend t and whose
domain is a substructure of .#’. Since 1 is in .#, we know that .# is non-empty. We defined partial
order on .#: for A,u € ., we say A < u if u is an extension of g. If C C .# is a chain, then the



4.2.1

4.2 Embedding tests 43

union of C is an element of .#. Thus by Zorn’s Lemma, there is a maximal element A € .. By our
assumption on T, the domain of A has to be M’, because otherwise we could extend A. Set 1’ to be
A. [ |

Exercise 4.11 Show that (Z,s), where s(x) := x+ 1, has quantifier-elimination and is strongly
minimal.

Exercise 4.12 Let .Z be the language consisting of a single unary function symbol, and let Ty,
be the .Z-theory extending 7. by the following axioms:

vy (x =y < f(x) = f())
Wx ff(x) = x
Vx x # f(x).

1. Show that Tj,y, has quantifier-elimination.
2. Determine whether Tj,, is strongly minimal.
3. Let k be an infinite cardinal. Determine which models of T;,,, are @w-saturated.

An example: ordered vector spaces

Let K be a an ordered field whose order we denote by <1. Let %,k be the language Zx together with
unary relation symbol <. Define Toys(K) be the £,k -theory containing Tys(K) and each k € K with
0k

VaVyWz (x <y) = (x+z<y+2)
VaVy (x <y) — (kx < ky).

Let # = Tyvs(K). Note that %k -structures are K-linear subspaces. Thus for A C M, the subspace
(A)_ is just the subspace spanned by A.

Theorem 4.2.7 T,ys(K) has quantifier-elimination.

Proof. We show that the assumptions of Corollary 4.2.6 are satisfied. Let .#,.4" be models of
Tovs(K) such that |[M| < k and ./ is k" -saturated. Let 1 : &/ — % € Sub(.#,.4") and leta € M.
We need to find an extension 1’ € Sub(.#,.4") of 1 in whose domain a is. We immediately reduce to
the case that a ¢ A. Since <7 is a K-linear subspace of .#, we know that a is K-linearly independent
over A. Let p(x) be the set of all .%,(B)-formulas of the form

1(c) <xAx<1(d),

where ¢,d € A and ¢ < a < d. We show that p(x) is realized in 4. Since .4 is k" -saturated and
|A| < K, itis enough to show that p(x) is finitely satisfiable in .4". Letn € Nand cy,...,c,,d1,...,d, €
A such that¢; <a < d;foralli=1,...,n. Note that

max{cy,...,cp} <min{dy,...,d,}.
Since 1 is a partial isomorphisms,

max{1(cy),...,1(cy)} <min{i(dy),...,1(dy)}.
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Set b’ := Y (max{t(cy),...,1(cy)} + min{1(d1),...,1(dy)}). Thenfori=1,...,n
1(c;) <max{t(cy),...,1(cy)} < b <min{t(dy),...,1(dy)} < 1(d;)

Thus p(x) is finitely satisfiable. Let b € N be a realization of p(x). Since a ¢ A, it follows immediately
that b ¢ B. Thus 1 can be extended to a K-linear isomorphism t’ : (AU{a})_» — (BU{b})_4 mapping
a to b. It is left to show that 1’ is a partial .Z,k-isomorphisms. Let u,v € (AU{a}) ». We just need
to argue that u < v if and only if 1(#) < 1(v). We know that there are c,d € A, k,{ € K such that
u=ka+candv=~Vla-+d. Since 1’ is K-linear,

U(u) =kb+1(c) and U’ (v) = €b+1(d).

Thus if £ <k, we deduce from b = p(x) that

1
u < v if and only if ka+c < fa+d if and only if a < k—(d—c)
1
if and only if b < k—(l(d) —1(c)) if and only if kb +1(c) < £b+1(d)
if and only if 1'(u) < 1'(v).

The cases that k < ¢ or k = £ follow similarly. |

I Corollary 4.2.8 Tyys(K) is o-minimal.

I Corollary 4.2.9 The theory Tovs (K) is complete.

Proof. Note that K itself can be seen as a model of T,ys(K). Since every model of Toys(K) is
positive dimensional as K-vector space, we can embed K into every model of T,ys(K). Thus by
Proposition 4.0.4, the theory Tyys(K) is complete. [ |

I Corollary 4.2.10 The theory of (R, <,+,—,0, (x — kx)xcq) is decidable.

Proof. By Corollary 4.2.9 the theory T,vs(Q) is complete. By Theorem 3.3.2, Toys(Q) is decidable.
Note that

(Rv <,+,—, 07 (X — kx)ke@) ): TOVS (Q)

Because this theory is complete, the decidability of the theory of (R,<,+,—,0,(x — kx)icq)
follows. [ |

Algebraically closed fields

In this subsection, we prove quantifier elimination for algebraically closed fields in the language
of rings .Z;. We make a few easy observations. Let .# |= ACF. Then an .%;-substructure of .# is
just a subring, and hence for subset A C M the substructure (A)_ is just the subring generated by A.
Taking the field of fractions of (A) , in .#, we obtain the subfield of .# generated by A.
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Lemma 4.3.1 Let .#,.# be models of ACF, and let 1 : A — B be in Sub(.#,.#"). Then there
is 1" € Sub(.#,./") extending 1 and sending the algebraic closure of A in .Z to the algebraic
closure of B in .4".

Proof. We can directly extend t to ' : (A) 4 — (B) 4 by mapping % to 2. It is easy to check that
this is well-defined and a partial isomorphism. So we can reduce to the case that A is a subfield of
. and B is a subfield of .#". Let A be the algebraic closure of A in .#, and let a € A. Repeating this
process for every such a and taking the union of all such extensions, it is enough to show that we can
extend 1 to a partial isomorphism with domain (AU {a}) 4. Let p be irreducible polynomial in A[X]
such that a is root of p. Let ¢ € B[X] be the polynomial obtained by applying 1 to the coefficients of
p. Since 1 is a partial isomorphism, g is irreducible. Since .4 is algebraically closed, there is b € N
such that g(b) = 0. It is an easy exercise in algebra that we now can extend 1 to an .Z}-isomorphism
U:(Au{a}). s — (BU{b}) y mapping a to b. [ |

Theorem 4.3.2 ACF has quantifier-elimination.

Proof. Let k be an infinite cardinal, and let .#,.4" be two models of ACF such that |M| < x and
A is Kkt -saturated. Let 1 : A — B in Sub(.#,.#"). Suppose there is a € M that is not in the domain
of 1. By Lemma 4.3.1, we can assume that A is an algebraically closed subfield of .#, B is an
algebraically closed subfield of .4 and a is transcendental over A. Since .4 is k't -saturated, there is
b € N such that b is transcendental over B. We now find t" : (AU{a})_» — (BU{b})_, mapping a to
b. Note that every element of (AU {a}) 4 is of the form co +cia+ - - - + c,a", where co,...,c, € A.
Thus we choose 1’ such that

U(co+cra+---+cpa") =1(co) +1(c1)b+ - +1(c,)b".
It is easy to check that 1’ is well-defined, extends 1 and is in Sub(.Z, .A4"). [ |

We collect the following immediate corollary of quantifier-elimination.

I Corollary 4.3.3 Let % ,.# = ACF be such that .#" is a substructure of .%. Then % < .Z.

Proof. Let @(x1,...,x,) be an Z-formula. Since ACF has quantifier-elimination, we can assume
that @ is quantifier-free. By Proposition 2.2.2, we have for all a € K" that % = ¢(a) if and only
F = o¢(a). Thus & < Z. [ |

The property that substructure who are models of the same theory, are elementary substructure, is
called and is always a consequence of quantifier-elimination and not just for
ACF. We will study this in more detail later on.

Definition 4.3.1 Let K be field. For S C K[X|,...,X,], let Vk(S) be the set
{aeK" : p(a)=0forall p e S}.
We say X C K" is if X = Vk(S) for some S C K[X,...,X,]. Wesay X C K" is
if it is a boolean combination of Zariski closed sets.

By Hilbert’s basis theorem, we know that for every S C K[Xj,...,X,] there is a finite subset Sp C S
such that Vg (So) = Vg (S). Thus every Zariski closed is definable in by a quantifier-free .Z;-formula;
indeed, by conjunction of atomic .Z;-formulas.
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I Corollary 4.3.4 Let # = ACF. Then every subset of K" definable in %" is Zariski constructible.

Proof. By Theorem 4.3.2 every subset of K" definable in %" is a boolean combination of sets defined
by atomic formula. It is easy to see that such sets are boolean combinations of sets of the form Vi (S)
for some finite S. u

| Corollary 4.3.5 ACF is strongly minimal.

Proof. Let # = ACF. It is enough to show that subsets of K defined by atomic formulas are finite
or cofinite. We already observed that such sets of the form V(S) for some finite S C K[X]. It is
well-known that such sets are either finite or equal to K. ]

Theorem 4.3.6 — Chevalley’s theorem. Let .7 = ACF, let X C K™ be Zariski constructible,
and let p : K™ — K" be a polynomial map over K. Then p(X) is a Zariski constructible subset of
K"

Proof. Observe that p(X) = {a € K" : thereis b € X s.t. p(b) = a}, and hence definable in 7 .
Now apply Corollary 4.3.4. |

Exercise 4.13 Let % be an algebraically closed field and let .# be a subfield of .#". For each
type pe S, (F)letl,={f € F[Xi,...,Xu] : "f(x1,...,x,) =07 € p}. Let Spec(F[Xi,...,X,])
be the set of prime ideals of F[Xj,...,X,]. Define the Zariski topology on Spec(F[Xi,...,X,]|) by
letting D(f) = {P: f ¢ P} be the basic open sets. Show that the map that sends a type p to I, is
a continuous bijection between S, (F) and Spec(F [X,...,X,]).

An application to algebraic geometry

We now prove a weak version of Hilbert’s Nullstellensatz, which can be stated easily. The standard
version of the Nullstellensatz can be deduced easily using the Rabinowitsch trick.

Theorem 4.3.7 — Hilbert’s (weak) Nulistellensatz. Let .7 be an algebraically closed field and
let S C K[Xj,...,X,] such that for all p;,...,p, € Sand all q1,...,g, € K[X],...,X,]

qip1+- -+ Gmpm # 1.

Then Vi (S) is nonempty.

Proof. By Hilbert’s basis theorem, we can assume that there are polynomial py, ..., p, € K[Xi,...,X,]
such that S = {py,..., p,}. Let p be a prime ideal containing S. Then K[X,...,X,]/p is a ian integral
domain .#” containing .#" such that Vi/(S) is nonempty. Let .# T be an algebraically closed field
containing .#”. Then Vi+(S) is nonempty. Thus

vl E .3, pr(xg,..,xn) =0A - App(xr,...,x,) =0.
Note .# is an algebraically closed subfield of .# 7. By Corollary 4.3.3,
HETxy 3 pr(xg, . x0) =0A - Apu(xg, ..., x,) = 0.

Hence Vi (S) is nonempty. [ |
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Real closed fields

Let RCF denote the .%,-theory containing Tgge1gs and the following .Z4,-sentences:

Vxdy(0 < x — x =?)

Vg . . Vuan3x X x4 ug = 0.

We call RCF the . Since polynomials of odd degree have roots in R, we
know that (R, <,+,—,-,0,1) &= RCF.

Lemma 4.4.1 Let % | Tygegs and let Z = RCF such that % C Z. Then there is .#” = RCF
such that % C #" C # and every element of K’ is algebraic over K.

Proof. Consider the set .# of all subfields & of & such that every element of E is algebraic over K.
This set is nonempty and the union of chain with respect to inclusion is in the .#. Thus by Zorn’s
Lemma, .# contains a maximal element /. Maximality and the fact that % = RCF, we get that
4" ERCF. |

We call a model #” of RCF that satisfies the conclusion of Lemma 4.4.1 a of # in %.
The following theorem gives that the real closure of an ordered field is unique up to .Z5;-isomorphism.

Theorem 4.4.2 — Artin-Schreier. Let ¢ be models of Tye14s, and let %) and %, be real closures
of . Then there is a unique .%-isomorphism A : % — %, that is the identity of K.

We easily obtain the following corollary of Theorem 4.4.2.

I Corollary 4.4.3 Let %, %" = RCF. Then ¥ is algebraically closed in %

Theorem 4.4.4 Let % = RCF. Then (K[i],+,—,-,0,1) = ACF, where i2 = —1.

Corollary 4.4.5 Let % = RCF and let p(X) € K[X] be monic and irreducible. Then either
1. p(X) =X —aforsomea €K,
2. p(X) = (X —a)?+b* for some a,b € K with b # 0.

Proof. Suppose that p(X) has degree larger than 1. Then by Theorem 4.4.4 P is the minimal
polynomial over K of some a + bi for some a,b € K and b # 0. Thus

p(X) = (X —(a+bi)- (X —(a—bi)) = (X —a)>+ b~

We use Q™ to denote the real closure of QQ in R.

Theorem 4.4.6 RCF has quantifier-elimination.

Proof. Let k be an infinite cardinal, and let .#,.4" be two models of RCF such that |M| < k and
A is Kt -saturated. Let 1 : A — B in Sub(.#,./"). By Theorem 4.4.2, we can assume that A is an
real closed subfield of .. Since 1 is a partial isomorphism, B is also an real closed subfield of .4
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Suppose there is a € M that is not in the domain of 1. Let p(x) be the set of all .%,(B)-formulas of
the form

1(c) <xAx<1(d),
where ¢,d € A and ¢ < a < d. We show that p(x) is realized in .4". Since .4/ is k" -saturated and
|A| < K, itis enough to show that p(x) is finitely satisfiable in .4". Letn € Nand cy,...,c,,d1,...,d, €
A suchthat ¢; <a < d;foralli=1,...,n. Note that

max{ci,...,c,} <min{d,...,d,}.
Since 1 is a partial isomorphisms,

max{t(cy),...,t(cy)} <min{t(dy),...,1(d,)}.
Set b’ := Y (max{t(cy),...,1(cy)} + min{1(d),...,1(dy)}). Thenfori=1,...,n

1(c;) <max{t(cy),...,1(cy)} < b <min{t(dy),...,1(d,)} < 1(d;)
Thus p(x) is finitely satisfiable. Let b € N be a realization of p(x). Since a ¢ A, it follows immediately
that b ¢ B. Since A and B are real closed fields, we have by Corollary 4.4.3 that a is transcendental
over A and b is transcendental over B. Thus 1 can be extended to an .Z-isomorphism 1" : A[a] — B[b]
mapping a to b. It is left to argue that 1’ is an order-isomorphism. Let p € A[X] and let ¢(X) € B[X]
be the polynomial obtained from p by replacing the cofficients by their images under t. It is now
enough to show that p(a) > 0 if and only if g(b) > 0. We can easily reduce to the case that p is
irreducible and monic. By Corrollary 4.4.5, we can assume that there are ¢,d € A with d # 0 such
that either

p(X)=X—corp(X)=(X—c)*+d>.
If p(X) = (X —c)?+d?, then both p(a) > 0 and g(b) > 0. So now suppose that p(X) = X —c. Then

p(a) > 0 if and only if a > ¢ if and only if b > 1(c) if and only if ¢(b) > 0.

I Corollary 4.4.7 RCF is complete and decidable.

Proof. By Theorem 3.3.2 it is enough to show completeness. Note that whenever .#” = RCF, the
field . has characteristic 0. Thus the field of rational numbers embeds into .. This .%,;-embedding
extends to an .Z,;- embedding of Q™ by Theorem 4.4.2. Thus RCF is complete by Proposition
4.0.4. |

The decidability of RCF is used in automated verification. However, the decision algorithm we
presented here is highly inefficient.
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| Corollary 4.4.8 RCF is o-minimal,

Proof. Since RCF has quantifier-elimination, it is enough to check that subsets defined by atomic
Zor-formulas, are finite union of intervals or points. We reduce to the case that the set is of the form

{a€R : p(a)=0}or{aeRr : p(a) >0},

where p € R[X]. If the set is a zero sets of polynomial, then it is either finite or R, and hence finite
union of points or a single interval. For the second case, we can reduce to the case that p is irreducible,
since the set of finite union of intervals and points is closed under boolean combinations. By Corollary
4.4.5, we can assume that p is of the form X — b for some b € R. But then {a € R : p(a) > 0} is the
interval (b, ). [ |

Definition 4.4.1 Let % be an %, -structure. We say a subset of R" is ifitis a
finite union of sets of the form

{aeR" : p(a)=0,91(a) >0,...,qm(a) > 0},
where p,q1,...,qn € R[X1,...,X,].

We first observe that the boolean combinations of semialgebraic sets are also semialgebraic. Indeed,
this follows easily from the following observation:

{aeR" : pla)=0}N{aeR" : gla)=0} ={acR" : p(a)’+q(a)* =0}.

I Corollary 4.4.9 Let # = RCF. Then every subset of R” definable in Z is semialgebraic.

Proof. By Theorem 4.4.6, it is enough to show that every subset defined by a quantifier-free formula
is semialgebraic. Note that every subset defined by a atomic formula is semialgebraic. Since
semialgebraic sets are closed under boolean combinations, all quantifier-free definable sets are
semialgebraic. |

Theorem 4.4.10 — Tarski-Seidenberg. Let % = RCF. Then the projection of a semialgebraic
subset of R" is semialgebraic.

Proof. This follows immediately from Corollory 4.4.9 and the fact that definable sets are closed

under projections. |
Exercise 4.14 Let # = (F,0,1,—,+,-) be a field. A in % is a subset P of F
such that
(i) Pisclosed under + and -, i.e. Vx,y € P.x+y € PandVx,y € P.x-y € P;
(i) —1¢P;
(iii) P contains all squares, i.e. {x>:x € F} C P.
Let —-P={—x:x€P}. A is a prepositive cone P such that PU(—P) = F and

PN (—P)={0}. Suppose that . has at least one prepositive cone. By using Zorn’s lemma we
can obtain a C-maximal prepositive cone P, in .Z.
(a) Show that P, is a positive cone.
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(b) Define x <y +— y—x € P.. Show that < is a total order that is compatible with the field
structure, making .# an ordered field.

Exercise 4.15 Let .# be areal closed field. Let p, g be polynomials in variables x1, ..., x, with
coefficients in .%. Suppose that the rational function f = p/q is positive semidefinite, in the
sense that for all a € F" with g(a) # 0 we have

f(a) = p(a)/q(a) = 0.

Show that f is equal to a sum of finitely many squares of rational functions in the field of rational
functions .7 (x1,...,X,).

Hint: Assume the contrary and show that there is a prepositive cone containing — f. For that, the
following equation might be helpful:

Then set things up to use quantifier elimination for real-closed fields.

4.5 Presburger arithmetic

Let . be the language ¥ = {<,+,—,0,1}. Let Zp; be the language £ extended by adding
for each n € N>, a unary predicate symbol P,. Let Pr be the Zp-theory containing 7., and the
Zpr-sentences

0<1 (Prl)
Vx(x<0V1<x) (Pr2)

and for each n € N>, the .Zp,-sentences:

Vx (By(x) <> (3ynx=y)) (Pr3)
n—1

vx \/ (Bet)A N Rt ). (Prd)
i=0 Je{0,n—11\{i}

Lemma 4.5.1 Let k,m,n € N be such that k < n. Then

Pr ): Vx (Pn(x) < Pmn(mx))
m—1

Pr = Vx (P,(x) < \/ Pun(x+ jn))
Jj=0

Pr |= VxVy (Pn(x—i-k) = (P(x+y) & P,,(y+n—k))>

Proof. |
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Theorem 4.5.2 Pr is complete, decidable and has quantifier-elimination.
Proof. |
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(5. Further concepts from model theory

Model completeness

Definition 5.1.1 Let ¢ be an .Z’-formula. We say ¢ is if there is a quantifier-free .Z-
formula y such that @ is of the form Vx; ...Vx,y. Let T be an .Z-theory. We say T is

if all .#-sentences in T are universal. We define Ty to be the set of all universal .%#’-sentences &
such that T = o.

Lemma 5.1.1 Let .#,. 4 be .Z-structures such that ./ is a substructure of 4", let a € M", and
let @(x1,...,x,) be a universal .Z-formula. If 4" |= @(a), then .# = ¢(a).

Proof. Let y be a quantifier-free .Z-formula such that ¢ is of the form Yy, ...Vy,, . Suppose that

A = @(a). Then A |= y(b,a) for all b € N™. By Proposition 2.2.2 we deduce that .# = y/(c,a)
for all c € M". Hence .# = ¢(a). [ ]

Proposition 5.1.2 Let T be an .#-theory and let .#Z be an .Z-structure. Then .# |= Ty if and
only if .Z is a substructure of a model of 7.

Proof. Let 4 |= Ty. We now consider .# as .Z(M)-structure. Let S be the set of quantifier-free
Z(M)-sentence that hold in .#. Suppose that 7 US is satisfiable. Let 4" |= T US, and let .4 be
the .Z-reduct of .4, Obviously, 4 |=T. Let u : M — N be the function map a € M to ¢ ', the
interpretation of the constant symbol for a in .4”. Since 4" |= S, we have for every quantifier-free
Z-formula @(x,...,x,) and every ay,...,a, € M that 4/ = @(u(ay),...,1(a,)) if and only if
A E ¢(ay,...,a,). Thus u is an embedding of .# into /.

It is left to show that 7 U S is satisfiable. Let S’ C S be finite. By Theorem 2.5.1 it is enough to prove
that 7 U S’ is satisfiable. Suppose not. Let ¢ be the quantifier-free .Z (M)-sentence NyesX- Note
that o € S. Since T US' is not satsfiable, we have that T = —o. Let ¢(x1,...,x,) be a quantifier-free
Z-formula and a = (ay,...,a,) € M" such that G is Q(cq,...,Cq, ). Since cq,, . .. ,Cq, are notin .2,
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we get that T |= Vx; ... Vx,, —¢. However, Vx; ...Vx, —¢ is a universal .Z-formula. Since .# = Ty,
we have that

M }:Vxl ...VXm —Q.

In particular, # = —¢(ay,...,a,), and hence ~c € S. This contradicts ¢ € S. [ |

Corollary 5.1.3 Let T be an .Z-theory and let @(xy,...,x,) be an .Z-formula. Then the follow-
ing are equivalent:
1. forall #, /" =T with .4 C A and a € M"

if 4/ = ¢(a), then A = ¢(a).
2. there is a universal .#-formula y such that 7 |= ¢ <> .

Proof. Assume 2 holds. Let .#,. 4 =T be such that .# C .4 and a € M". Let ¥ be an uni-
versal .Z-formula such that T |= ¢ <+ y. By Lemma 5.1.1, we have that .# = y(a), whenever
A = y(a). Since both .# and .4 are models of T and T |= ¢ < y, we get that .#Z | ¢(a),
whenever A" = @(a).

Assume 1 holds. Let .Z. be the language .Z expanded by constant symbols cy,...,c,. Let T¢ be the
Z,-theory TU{@(c1,...,c,)}. We first show that TYUT = ¢(c).

Let ./ |=T; UT. By Proposition 5.1.2 there is .4 |= T, such that ./ is an .Z-substructure of .4".
Set ¢ :=(c”,...,c;"). Since A |= ¢(c), we also have that A" |= @(c?). By 1, .4 |= ¢(c?).
Thus .# = ¢(c).

By Corollary 2.5.7 there is a finite subset S C 7. such that SUT |= @(c). Let y, ..., Y, be universal
Z-formulas such that S = {y;(c),...,¥u(c)}. Since SUT = ¢(c),

m
T = (A wie) - 9lc).
i=1
Since S C T¢, we also have T = @(c) — (AL, wi(c)). [ |
Definition 5.1.2 Let T be an .Z-theory. We say that T is if forall #, 4 =T,
if ./ is a substructure of ./, then .# is an elementary substructure of .4".

Theorem 5.1.4 Let T be an .Z-theory. Then the following are equivalent:
1. T is model complete.
2. For every .Z-formula ¢ there is an universal .Z-formula y such that 7 |= ¢ <> y.
3. For every .¢-formula ¢ there is an existential .#-formula v such that T |= @ <> .

Proof. Since the negation of an universal formula is an existential formula (and the other way
around), statements 2. and 3. are equivalent.

Assume 1. Let @(xq,...,x,) be an Z-formula. Let .#, .4 |=T with .# C .4 and a € M" such that
A = ¢(a). Since T is model complete, .#Z = ¢(a). Thus by Corollary 5.1.3 there is a universal
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Z-formula y such that T |= ¢ <> .

Assume 2. Let .4,/ =T be such that .# C 4. By Corollary 5.1.3, we have for every .£-formula
¢ and every a € M" thatif .4 |= @(a), then .# = ¢(a). Thus by Theorem 3.1.2, . is an elementary
substructure of .4 |

I Corollary 5.1.5 Let T be an .Z-theory. If T has quantifier-elimination, then 7" is model complete.

m Example 5.1 The converse of Corollary 5.1.5 is false. Using quantifier-elimination for RCF, one
can check that the theory of the .Z}-structure (R, 4+, —,-,0, 1) is model complete. However, the sets
defined by quantifier-free .%;-formulas are finite or co-finite. "

Lemma 5.1.6 Let T be an .Z-theory such that for every universal .Z-formula ¢ there is an
existential Z’-formula y such that T |= ¢ <> y. Then T is model complete.

Proof. We show by induction on the .#-formula ¢ that condition 3. of Theorem 5.1.4 is satisfied. If
¢ is quantifier-free, this follows immediately from our assumption on 7. The induction step when
¢ is of the form Jxy, can be handled easily. So now consider the induction step that @ is of the
form —y. By induction, there is an existential .#-formula 6 such that T = ) <> 6. Note that =8 is
universal. Thus by our assumption there is an existential .Z’-formula y such that 7 = (=0) <> y. It
follows that T |= ¢ <> y. [ |

Theorem 5.1.7 Let T be an .Z-theory such that for all .#,. 4" |= T such that .# is a substructure
of ./, and for all elementary extensions .#™* of ./ that is k-saturated for some x > |N|, there
is an .Z-embedding of .4 to .#* extending the inclusion embedding of .# into .4". Then T is
model complete.

Proof. Let @(xy,...,x,) be auniversal .Z-formula. Let .#, 4" |=T be such that .# is a substructure
of A . Leta € M" such that A" = —¢(a).

Suppose towards a contradiction that .# = ¢@(a). Let . be an elementary extension of .# and let
W: N — A be an L -embedding fixing M. Since .Z* is an elementary extension of .#, we have
that .#* = ¢(a). However, ¢ is universal. Hence, by Lemma 5.1.1, .4 |= ¢(a). This contradicts
N = —@(a). Thus A = —¢(a).

By Corollary 5.1.3, there is an universal .Z-formula y such that T |= (—¢) <> y. Note that —y is
existential and 7 = @ <> (—y). Thus by Lemma 5.1.6 we have that T is model complete. [ |

Exercise 5.1 Let .Z;; be the languague consisting of single binary relation symbol P. A graph
(V,E) is if there is no sequence of vertices vy, ...,v € V such that viEvyE --- EviEvy. A
graph is if every vertex has exactly 2 neighbours. Show that the .Z;-theory of acyclic
2-regular graphs is model-complete, but does not have quantifier-elimination.
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Exercise 5.2 Let T be a universal model complete .Z-theory. Show that T has quantifier-
elimination.

Proposition 5.1.8 Let T be a universal .Z’-theory with quantifier-elimination. Then for every
Z-formula @(xi,...,x,,y) there are Z-terms 71 (x1,...,Xy), ., tm(x1,...,X,) such that

T = (Jyo(x,y) = (@(x,11(x)) V-V @(x,1m(x)),

where x = (x1,...,%,).

Proof. |

Model companions

Definition 5.2.1 Let .#, ./ be £ -structures. We say . is (written:
M =<3 if for for every existential .£-formula ¢(xy,...,x,) and every a € M"

A = @(a) if and only if 4 = ¢(a).

Let T be an .#-theory and let .# |=T. We say .# is an if A4
is existentially closed in every model .4" of T with .#Z C 4.

Note that if 7 is model complete, then every model of T is existentially closed. The converse is true,
too.

Proposition 5.2.1 Let T be a .Z-theory such that every of T is an existentially closed model of
T. Then T is model complete.

Proof. Let ¢(x1,...,x,) be a universal .Z-formula. By Lemma 5.1.6, it is enough to find an
existential .Z-formula y such that T |= ¢ <> y. Note that —¢ is an existential formula. Thus by
Corollary 5.1.3 and the fact every model of T is existentially closed, there is universal .Z-formula
0 such that T |= (—¢) <> 0. Thus T |= ¢ <» (—6). Since 6 is universal, ~¢ is equivalent to an
existential .Z’-formula. n

Lemma 5.2.2 Let .#, ./ be £-structures such that .#Z C .4, let @(x1,...,x,) be an existential
Z-formula, and let a € M". If 4 = ¢(a), then A |= ¢(a).

Proof. Let y(xi,...,%n,V1,---,Ym) be a quantifier-free .Z-formula such that ¢ is Jy; ... 3y, . Let
b e M™ such that # = y(a,b). By Proposition 2.2.2, we have .4 |= y(a,b). Thus A = ¢@(a). R

Definition 5.2.2 Let T be an .Z-theory. We say T is if every union of an increasing
chain of models of T is also a model of T'.

Lemma 5.2.3 Let T be an inductive theory and let .# |= T. Then there is an extension .Z™* of
 that is an existentially closed model of 7.
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Proof. Let . =T and consider this structure as %' (M)-structure. We first construct an . -structure
" such that for every .Z-formula @(x1,...,x,), every a € M", if there is an extension .4 of .Z*
with 4" = @(a), then Z* = ¢(a).

Let () )2« be an enumeration of all existential .Z(M)-sentences. We construct a family (.7, ), <«
of models of T. Set .# := .#. Suppose that A = u + 1 and .#,, is already defined. If there is
an extension of .#), such that .# |=T and .#), |= ¢, then set .#) to be this model. If no such
extension exists, set ./ := .4y If A is a limit ordinal, then .#), := U, .#). Since T is inductive,
M), is amodel of T. Finally, set .#" = J, _.#; . Again, since T is inductive, #* = T.

We now show that . has the desired property. Let ¢ (x,...,x,) be an existential .Z-formula, let
a € M", and let 4" =T be such that .#" C .4 and 4" = ¢(a). We now show that .Z* = ¢(a).
Let A < k be such that @, is ¢(cqa,,.--,Cq,)- Since .4, C M' C 4, we have by construction that
M1 = @) Hence ) 1 |= ¢(a). By Lemma 5.2.2, M = ¢(a).

We now define a family (.4;),cn of models of T as follows. Set A := .#, and let A1 := A,
Then set .Z* to be |, ey -4n- Since T is inductive, .#* |= T. From the construction, it is clear that
AM* is existential closed and A#Z C 4 *. |

Definition 5.2.3 Let T be an .Z-theory, and let 7* be model complete .#-theory with T C T*.
We say T" is a if every model of T embeds into a model of T*. We say
T is if it has a model companion.

= Example 5.2 We have seen several examples of model companions already:
1. The Z_-theory DLO is a model companion of the .Z.-theory Tj,.
2. The Z-theory ACF is a model companion of the .%-theory Tgeyds.
3. The Zy-theory RCF is a model companion of the .Z,,-theory Tgfieids-

Theorem 5.2.4 Let T be an inductive theory and let 7* be an .Z-theory. Then 7% is a model
companion of 7 if and only if the models of 7* are the existentially closed models of 7'.

Proof. Suppose that T* is a model companion of 7.

Let .#* |=T*. We first show that .#* is an existentially closed model of 7. Let .4 |=T be such that
AM* C . Since T* is a model companion of 7', there is a model .4#™* |= T* such that 4" C .4"*. By
model completeness of T, we have .Z* < 4#*. Using Lemma 5.2.2, we easily see that .#Z™* <5 .4".
Thus .#* is an existentially closed model of T'.

Now let . be an existentially closed model of 7. We need to show that .# = T*. Let .#* |=T* be
such that .# C .#*. We now show that .# < .#* and hence .# |=T*. Let @(x1,..., X, V15--+,Ym)
be Z-formula and a € M". By Theorem 3.1.2 it is enough to show that whenever there is b € (M*)™
with .Z* |= @(a,b), there is c € M™ with M* |= ¢(a,c). Since T* is model-complete, there is an
existential .Z-formula y such that T* |= @ <> y. Since .# is existential closed, there is ¢ € M™
such that .Z |= y/(a,c). By Lemma 5.2.2, #* |= y(a,c), and hence .#Z* = ¢(a,c).
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Suppose the models of 7* are the existentially closed models of 7. By Lemma 5.2.3 it is enough to
show that T* is model complete. However, every model of 7* is obviously an existential closed of
T*. Thus T* is model complete by Proposition 5.2.1. |

Corollary 5.2.5 Let T be an inductive theory. Then T is companionable if and only if the
existentially closed models of 7" form an elementary class.

5.3 Algebraic and definable closure
Definition 5.3.1 Let .# be an .Z-structure and A C M. We say that b € M is
if there is an .Z-formula @(x,y,...,y,) and ay,...,a, € A such that
l. # = o(b,a,...,a,), and
2. {ceM : M= o(c,ay,...,a,)} is finite.
We write acl 4 (A) for the set of all b € M that are algebraic over A in .Z . This set is called the

. We say A is ifacl 4(A) =A.
Definition 5.3.2 Let .# be an .Z-structure. We say that b € M is if the
set {b} is .Z(A)-definable in .#Z. We write dcl 4 (A) for the set of all b € M that are definable
over A in .7 . This set is called the . We say A is

if del_ 4 (A) = A.

Obviously, dcl 4 (A) C acl 4(A) for all £-structures .# and A C M.

= Example 5.3 Our quantifier-elimination results allow us to easily compute the algebraic closure
in several structures:
1. Let X be an infinite set considered as .Zp-structure. It follows easily from Proposition 4.0.2
that acly ({a}) = {a} foralla € X.
2. Let # = Tys(K) and let A C M. Then it can be deduced from Theorem 4.2.7 that dcl(A) =
acl(A) is equal to the K-linear span of A.
3. Let # = ACF and A C K. By Theorem 4.3.2, a € acl » (A) if and only if a is algebraic over
A.

Exercise 5.3 Let .# be an expansion of a linear order (M, <). Show that acl 4 (A) = dcl 4 (A)
forall A C M.

Exercise 5.4 Let .# |=RCF, let A C M and let a € M. Show that a € dcl 4(A) if only if a is
algebraic over A.

Proposition 5.3.1 Let .# be an .Z-structure and let A,B C M and a € M. Then
1. ACacl 4(A) and acl 4 (acl 4(A)) = acl 4(A),
2. if A C B, then acl 4(A) C acl 4 (B),
3. ifa € acl 4(A), then there is a finite set F C A such that a € acl 4 (F).

Proof. Statements 2. and 3. are immediate from the definition of the algebraic closure. Note that for
allae M,wehave {a} ={beM : # = (x=y)(a,b)}. Soifa € A, then a € acl(A).
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Let a € acl(acl(A)). Then there is .Z-formula @(x,y1,...,y,) and by,...,b, € acl(A) such that
M= (a,by,....by)and {ceM : A = ¢(c,by,...,b,)} is finite. Let N be the cardinality of this
set. Let O(yy,...,y,) be an .Z-formula such that for all e, ...,e, € M

H{ceM : A = o@(cer,...,en)}| <Nifand only if # |= O(ey,...,ey). (5.1

For each i € {1,...,n}, there is an .Z-formulas W;(y,zi1,...,Zim) and di,...,d;im € A such that
M ): W(biydi,l gens 7di,1111) and

{ceM : A E=vy(cdy,... din)}is finite. (5.2)

Now let & (x,z1.1,...,2nm,) be the Z-formula

Elylayn e(ylv'"7yn>/\(p(xayla"'7yn)/\/\Wi(yazi,lw-'azi,mi)
i=1
Note that # =& (a,dy 1, ...,dnm,). By (5.1)and (5.2) theset {c e M : A =wy(c,d1,....dnm,)}
is finite. [ |

Lemma 5.3.2 Let .# be a Z-structure and let A C M and b € M. Then b € dcl (A) if and only
if there is f : X C M" — M definable without parameters in .# and a € A" such that f(a) = b.

Proof. The backward implication is immediate. For the other direction, suppose that b € dcl 4 (A).
Then there is an 0-definable set Z C M" x M and a € M" such that (a,b) € Zand b =1’ forall ¥’ € B
with (a,b") € Z. Set

X:={ceM:|{deM : (c,d)eZ}| =1}

Note that X is @-definable in .#, since Z is. Let f : X — M be the function that maps ¢ € X to the
unique d € M such that (c,d) € Z. Clearly, f(a) = b, and f is 0-definable, since Z is. |

Since the set of @-definable functions is closed under compositions, we easily obtain the analog of
Proposition 5.3.1 for dcl.

Corollary 5.3.3 Let .# be an .Z-structure and let A,B C M and a € M. Then
1. ACdcl 4(A) and dcl_(dcl 4 (A)) =dcl 4 (A),
2. if A C B, then dcl 4(A) C dcl 4(B),
3. ifa € dcl 4(A), then there is a finite set F/ C A such that a € dcl 4 (F).

Proposition 5.3.4 Let T be a universal model complete theory, let .# =T, and let A C M. Then
(A). 4 =dcl 4 (A).

Proof. Ttis clear that (A) , C dcl 4(A). Since T is universal theory, (A) 4 is a model of T. Since
T is model complete, (A) , < .# . Thus for every function f : M" — M that is @-definable in .Z,
f((A)",) € (A).». Hence by Lemma 5.3.2,

del 4(A) € del4((4).4) € (A).r
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Pregeometries
Definition 5.3.3 Let X be a set and let ¢l : (X)) — £?(X). The pair (X,cl) is a
(or: , Or: )yif forall A,B C X and for all a,b € X
1. ACcl(A) and cl(cl(A)) = cl(A),
2. if A C B, then cl(A) C cl(B),
3. if a € cl(A), then there is a finite set F C A such that a € cl(F),
4. ifbecl(AU{a})\cl(A), then a € cl(AU{b}).

A pregeometry (X,cl) is a if cl(0) =0 and cl({a}) = {a} forall a € X.
Definition 5.3.4 Let (X,cl) be a pregeometry, and let A,B C X. We say A is (or:
Yif a ¢ cl(A\ {a}) for every a € A. We say A is a (or: ) of B if

A C B, A is independent, and B C cl(A).

Lemma 5.3.5 Let (X,cl) be a pregeometry and A is independent. If b € X \ cl(A), then AU {b}
is independent.

Proof. Let a € A and suppose towards a contradiction that a € cl((A\ {a}) U {b}). Since A is
independent and a & cl(A \ {a}), we have b € cl(A). A contradiction. [ |

Theorem 5.3.6 Let (X,cl) be a pregeometry and A,B,Y C X. If both A and B are a basis of Y,
then |A| = |B|.

Proof. Let B be a basis of Y. We show that whenever A C cl(B) is independent, then |A| < |B|.

Suppose B is finite. Let n € N be such that |B| = n. Towards a contradiction, suppose that there are
distinct ay,...,a,+1 € A. Note that a; ¢ cl({ay,...,an+1}), and hence cl({ay,...,an,+1}) #Y. Since
B is a basis and by property 2 of pregeometries, there is b; € B such that by ¢ cl({az,...,as+1}). By
property of pregeometries,

Cl({bl,az, ce ,an+1}) D) cl({al,. .. ,an+1}) =Y.

Furthermore, {b;,as,...,a,+1} is independent by Lemma 5.3.5. Inductively, we can replace
az,...,a, by by,...,b, € Bsuch that {by,...,b,,a,+} is independent. However, B = {by,...,b,}
and cl(B) =Y. Hence a1 € cl({b1,...,b,}), contradicting independence.

Suppose that B is infinite. We show that |A| < |B|. Note that for every finite subset By C B the set
AnNcl(By) is finite by the above argument. Since B is infinite, we have

Al<l U Anc) =Bl
By CB finite

The of Y with respect to cl (written: dimg(Y) or just dim(Y)) is the cardinality of a basis
of Y.
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Definition 5.3.5 Let (X,cl) be a pregeometry, and let A C X. We call cly : Z(X) — Z(X)
mapping B C X to cl(AUB) the

It is easy to check that if (X,cl) is a pregeometry, then every localization is a pregeometry as well.
For A,B C X, the (written: dimgj(B/A), or just: dim(B/A))) is just dim, (B).
Sometimes we will use the following abbreviation: if b = (by,...,b,) € X", then we write dim(b/A)
for dim({by,...,b,}/A).

Theorem 5.3.7 Let .# be a minimal .Z-structure. Then acl_, is a pregeometry.

Proof. We just need to show that property 4 of a pregeometry is satisfied. Let A C M and let
a,b € M. Suppose that b € acl ,(AU{a})\acl 4(A). Let @(x,y,z1,...,2m) be an .Z-formula and
letc = (ci,...,cm) € A" be such that # = @(a,b,c) and {d e M : A |= ¢(a,d,c)} is finite. Let
n be the cardinality of this set, and let y(x,zy,...,2,) be the Z-formula such that for all u € M and
veM”

A = y(u,v)ifandonlyif [{deM : A = ¢(u,d,v)}| =n.
We now show that a € acly (AU {b}). If
{ueM : A = @(ub,c) \y(u,c)}

is finite, we are done. Towards a contradiction, assume that this set is infinite, and hence cofinite.
Let ¢ € N be such that

t=|M\{ueM : A oub,c) Nyu.c)}
Let x(y,z1,---,2m) be an .Z-formula such that for all v € .#Z™ and w € .# ,
A = x(w,v)ifand only if  M\{ueM : A = ou,w,v) \y(u,v)}| =~.

Note that . = x(b,c). Since b ¢ acl ,(A), the set {w € M : .# |= x(w,c)} has to be infinite. Let
bi,...,byy1 € M be distinct such that .# = x(b;,c) fori=1,...,n+1. Fori=1,...,n, set

Bi:={weM : A = o(wb;ic)Ny(wc)}.

Since .# = x(bi,c), we know that B; is cofinite. Thus the intersection ﬂl'-‘jl] B; is non-empty. Let e
be in this intersection. Then .# |= ¢(e,b;,c) fori=1,...,n+ 1 and thus

HdeM: . # =o(dec)}t >n.
This contradicts .Z |= y(e,c). [ |

I Corollary 5.3.8 Let T be strongly minimal. Then acl 4 is a pregeometry for every .# |=T.

» Example 5.4 Let T be a strongly minimal theory, let .# =T and let A C M. Then
1. If T = ACEF, then the acl _,-dimension is the transcendence degree of A.
2. If T = Tys(K) for some field K, then the acl ,-dimension is the K-linear dimension of A.
3. If T =T, then the acl ,-dimension of A is the cardinality of A.
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Exercise 5.5 Recall from Exercise 4.11 that the theory of (Z,s), where s(x) = x+ 1, is strongly
minimal. Let .# be a model of the theory and A C M. Describe acl 4 (A) and dim_ (A).

Exercise 5.6 Let .# |=DLO. Show that acl , is a pregeometry.

Exercise 5.7 Consider the structure .# := (R?, f), where f : R> — R? maps (m,n) to (m,0).
Show that acl_ is not a pregeometry.

Proposition 5.3.9 Let T be a strongly minimal theory, and let .#, .47, .4 |= T such that .# <
M and A < N, Let ACM and let b = (by,...,b,) € Nj and ¢ = (cy,...,¢,) € Nj. If
{b1,...,b,} is acl y-independent over A and {cy,...,c,} is acl y-independent over A, then
tp”1 (b]A) = tp 2 (c|A).

Proof. We proceed by induction on n. First consider the case that n = 1. Let ¢(x;) be an .Z(A)-
formula such that .47 = @(b). Since b ¢ acl 4 (A), we have that ¢(.47) is infinite. Since T is
strongly minimal, N; \ ¢(.47) is finite. Since both .#] and .45 are elementary extensions of .#, we
get that N> \ ¢(42) is finite as well. Because ¢ ¢ acl 4 (A), we have that .45 = ¢(c).

Let n > 1. By induction, we have
7" (b2, ba1) = (2, s €0m). (5.3)

Let @(xi,...,x,) be an .Z(A)-formula such that .41 = @(b). Since by ¢ acl 4 (AU{b2,...,b,}), the
set 9(M,by,...,by,) is infinite. Thus, since T is strongly minimal, Ny \ ¢(.A41,b2,...,b,) is finite.
By (5.3), N2\ @(A3,¢2,...,cy) is finite. Since ¢1 ¢ acl 45 (AU{c2,...,cn}), we get S5 = @(c). R

Exercise 5.8 Let T be a countable strongly minimal .#-theory, let .# |= T and let A C M be
countable. Show that S;” (A) is countable.

Morley rank

We introduce a new notation that will be convenient for this section. If .# is an .Z-structure and
Q(x1,...,x,) is a £ (M)-formula, then we set

(M) ={acM" : A = ¢a)}.

Definition 5.4.1 Let .# be an .#-structure, let @(x) be a £ (M)-formula and let o be an ordinal.
We define RM*/ (@) > o recursively as follows:
1. RM“(¢) > 0 if and only if ¢(.#) is non-empty.
2. if oo = B + 1 for some ordinal B:RM-# (@) > « if and only if there is family (y;(x));cn of
Z (M)-formulas such that for all i, j € N
() RM“ (y;) > B,
(b) yi(A )N yi(A) =0 whenever i # j,
©) yi(A) C o(A).
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3. if o is a limit ordinal:
RM“ (@) > a if and only if RM-“ (¢) > B for all ordinals 8 < c.

If ¢(.#) is non-empty, then we define the (written: RM* (¢)) is the
maximal ordinal o such that RM*/ (@) > a, if such exists, and co otherwise. If ¢(.#) is empty,
we set RM# (¢) to be —1.

Lemma 5.4.1 Let .# be an Yy-saturated .Z-structure, let a,b € M", and let ¢(x,y) be .Z-
formula where x = (x1,...,%x,) and y = (y1,...,y,). If tp# (a) = tp# (b), then

RM“ (¢(x,a)) = RM“ (¢(x,b)).

Proof. Let « be an ordinal. We show by induction on « that for all a,b € M" with tp# (a) = tp” (b)
RM“ (¢(x,a)) > o if and only if RM" (¢ (x,b)) > a.

Observe that if a,b € M" with tp” (a) = tp# (b), then @(.# ,a) is non-empty if and only @(.#,b)
is non-empty. Thus the desired statement holds for @ = 0.

Now let o be a limit ordinal and suppose that the statement holds for all ordinals f < «. Let
a,b € M" be such that tp# (a) = tp” (b). Then

RM“ (@(x,a)) > o if and only if RM-? (¢(x,a)) > Bfor all ordinals B < o
if and only if RM# (¢ (x,b)) > Bfor all ordinals B < &
if and only if RM“ (¢(x,b)) > a.

Let o be a successor ordinal and  be an ordinal such that o = 8 + 1. Let a,b € M" be such
that tp# (a) = tp# (b). Suppose that RM“ (¢ (x,a)) > a. By symmetry, it is enough to show
that RM7 (@(x,b)) > a. Let (yi(x));en be a family of .#(M)-formulas of Morley rank at least
B in . that witness RM (¢(x,a)) > a. Let (a;)icn be a family of tuples of elements of M and
(6;(x,y))ien be a family of .Z-formulas such that y;(x) is 6;(x,a;). Thus y;(.#) = 6,(.# ,a;) for
each i € N. Since .Z is X-saturated, there is a family (b;);en of tuples of elements of M such that
foreachi e N

tpt%(aaala'“aai):tp//[(bvblv"'abi)' (*)
By our induction hypothesis and (x), we have for each i € N that RM(6;(.#),b;) > . Since
b.

(Wi(x))ien that witness RM (@(x,a)) > a, it follows easily from () that ((6;(.#),b;))ien Wit-
nesses RM“ (¢ (x,b)) > a. [ |

Lemma 5.4.2 Let T be a complete .Z-theory with infinite models, let .#Z, 4/ =T be Ny-
saturated with . < .4, and let @(xy,...,x,) be an £ (M)-formula. Then

RM“ (¢) =RM" (¢).
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Proof. Let o be an ordinal. We show by induction on ¢ that for all ¢ € M" and all .Z-formulas
o(x,y)

RM-“ (¢(x,a)) > o if and only if RM” (@ (x,a)) > a.

First consider the case @ = 0. Since .# < ./, we know that ¢(.# ,a) is non-empty if and only if
@(A ,a). Thus RM“ (¢(x,a)) > 0 if and only if RM”" (¢ (x,a)) > 0.

When « is a limit ordinal, the statement follows by induction as in the proof of Lemma 5.4.1. So
now let & be a successor ordinal such that @ = 8 + 1 and the desired statement holds for 3. Let
a € A" and let ¢(x,y) be an .£-formula.

Suppose that RM*7 (¢ (x,a)) > . Then there is a family (;(x))icxy of £ (M)-formulas of Morley
rank at least 8 in .# that witness RM# (¢(x,a)) > a. By the induction hypothesis for B, we have
that RM*" (y;i(x,a)) > B for i € N. Since . < ./, it follows easily that (y;(x));cn Witnesses
RM~ (¢(x,a)) > c.

Suppose that RM”" (¢(x,a)) > a. Then there is a family (;(x));en of .2 (M)-formulas of Morley
rank at least 3 in .# that witness RM# (¢(x,a)) > a. Let (a;);cy be a family of tuples of elements of
N and (6;(x,y;));en be a family of .Z-formulas such that y;(x) is 6;(x,qa;). Thus y;(A") = 6;(A", a;)
for each i € N. Since . is Xy-saturated, there is a family of tuples of elements of M such that for
every i € N

tp/V(aaala"wai):tp{//[(a7bl7"‘7bi)‘ (54)

By Lemma 5.4.1, we know that RM* (6;(x, b;)) > B. By our induction hypothesis, RM# (6;(x, b;)) >
B. It follows from (5.4) that the (6;(x,b));cy Witnesses RMM (¢(x,a)) > a. [ |

Corollary 5.4.3 Let .# be an .Z-structure, let 4,41 be Xo-saturated elementary extensions
of A, and let ¢(x; ...,x,) be an £ (M)-formula. Then

RM7% () =RM"1(9).

Proof. Let .4 be a elementary expansion of both .4j and .47. Set .45 be an X-saturated elementary
extensions of .#5. Then by Lemma 5.4.2,

RM7(@) =RM~"(p) = RM"(¢).

Definition 5.4.2 Let .# be an . -structure and let @ be an . (M )-formula. The

(written: RM(¢)) is RM*" (), where .4 is some @-saturated elementary extension of ..
Let T be an complete theory with .# =T, and let X C M" be definable by some .Z’(M)-formula
¢. The (written: RM(X)) is RM(o).

Proposition 5.4.4 Let .# be an £ -structure, and let X,Y C M" be definable in .# . Then
1. If X C Y, then RM(X) < RM(Y).
2. RM(XUY) = max{RM(X),RM(Y)}.
3. If X # 0, then RM(X) = 0 if and only if X is finite.
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Proof. Statement 1. follows directly from the definition of Morley rank. Now consider Statement 2.
First note by 1. that RM(X) < RM(X UY) and RM(Y) < RM(X UY). Thus it is only left to show
that RM(X UY) < max{RM(X),RM(Y)}. We now prove by induction that for every ordinal & for
all set X,Y C M" definable in .#

if RM(XUY) > o, then RM(X) > ot or RM(Y) > .

The case of a = 0 can be checked easily. Now suppose that &« = 8 + 1 and that the induction
hypothesis holds for f. Assume that RM(X UY) > a. Then there is a family (¢;(x));cn of £ (M)-
formulas of Morley rank at least 3 in .# that witness RM/ (X UY) > a. Note that

(@i(A)NX)U(pi(A)NY) = @i( M)

Thus either RM(¢;(.#) NX) > B or RM(¢;(.#)NY ). Hence there is an infinite subset I C N such
that either

* RM(¢i(.#)NX)> B foreveryieclor

* RM(gi(#)NY) > B foreveryi€l.
It follows that either RM(X) > o or RM(Y) > «. The case when « is a limit ordinal can be handled
similarly.

Now consider Statement 3. Suppose that X # 0. Let ¢(x) be an . (M)-formula such that X = @ (.#).
If RM(X) > 1, then there is an elementary extensions .#” of .# such that ¢(.4") is infinite. Since
A <N, we also get that ¢(.#) is infinite. Now assume that X is infinite. Let (a;);cn be an infinite
family of distinct elements of X and let y(x,y) be the .Z-formula x = y. Let .4/ be elementary
extension of ./ . Then (y(x,a;));cy is a family of .Z’(N)-formulas of Morley rank at least 0 in .#*
that witnesses RM~" (¢ (x)) > 1. Thus RM(X) > 1. [ ]

I Corollary 5.4.5 Let T be strongly minimal and let .# |=T. Then RM(M) = 1.

Proof. Since ./ is infinite, we have by Proposition 5.4.4(3) that RM(M) > 1. Now suppose there
two infinite subsets X,Y of M definable in .# . Since . is strongly minimal, they can not be disjoint.
Thus, using again Proposition 5.4.4(3), we obtain RM(M) < 1. |

Exercise 5.9 Let T.. » be the theory defined in Exercise 4.5, and let .# |= T..,. What is RM(M)?

Exercise 5.10 Let .Z be the language consisting of all single binary relation symbol E. Let
Tequiv,=, De the -Z-theory stating that E is an equivalence relation with infinitely many classes
each of which is infinite. Let .# = Tequiy,co.c0. Show that RM(M) = 2.

Definition 5.4.3 Let T be a complete .Z-theory. We say T is if RM(p) <
oo for every .# =T and every .£(M)-formula ¢.
= Example 5.5 DLO is not totally transcendental. "

m Example 5.6 Let DCF, be the model companion of the theory of differential fields of characteristic
0. This theory is totally transcendental, but not strongly minimal. "
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Definition 5.4.4 Let .# be an .Z-structure, and let p(x) € S;#(A). The
(written: RM(p(x))) is defined as inf{RM(¢(x)) : ¢ € p}. Fora € M", we set RM(a/A) to be
RM(tp (alA)).

Exercise 5.11 Let .# be an Xy-saturated -Z-structure and let .4 be an |M|*-saturated elemen-
tary extension of .Z, let A C M" and let X C M" be definable using the . (A)-formula ¢. Show
that

RM(X) = sup{RM(a/A) : a e N", NV = ¢(a)}

Lemma 5.4.6 Let .# be an .Z-structure, let A C M, leta € M" and letb € M. If b € acl 4 (AU
{ai,...,a,}), then RM(a,b/A) = RM(a/A).

Proof. Without loss of generality, we can assume that .# is |A|-saturated. We show by induction on
o suppose b € acl 4(AU{ai,...,a,}). Then:

if RM(a,b/A) > a, then RM(a/A) > a.

It is easy to check RM(a/A) > 0. Thus the statement holds for @ = 0. When « is a limit ordinal,
then statement follows immediately from the induction hypothesis and the definition of Morley rank.
So let o« = B+ 1 and suppose the statement holds for . Assume that RM(a,b/A) > a. By
induction, RM(a/A) > B. Towards a contradiction, suppose that RM(a/A) = . Then we can find a
Z(A)-formula @(xp,...,x,) such that

LA = p(a),

2. RM(¢) =, and

3. there is no .Z’(A)-formula y(xy,...,x,) such that RM(¢ A y) = RM(p A—y) = B.
Since b € acl 4(AU{ay,...,a,}), there is a Z(A)-formula 6 (xi,...,x,,y) and £ € N such that
A = 0(a,b) and

{ceM : # =6(a,c)}|=".

Let &(xp,...,%,,y) be the £ (A)-formula such that for all d € M" e € M, .# = &(c,d) if and only if
» M E=o(d)NB(d,e), and
s {ceM : #=0(d.c)} =t
Since A4 = &(a,b) and RM(a,b) > B, we have that RM () > B. Let (Xi)ien be family of £ (M)-
formulas of Morley rank at least § that witness that RM(&) > a. Now let 4; be the .£’(M)-formula

WK
We now show that fori € N
RM()Ll/\/\A,) Zﬁ (5.5

Because RM(y;) > a, there is d € M" and e € M such that .# |= y;(d,e) and RM(d,e) > a. By
induction, RM(d) > B. Because .# = A;(d), we have that RM(A;) > B.. Towards a contradiction,
suppose that there is i € N such that (5.5) fails. Let i be the minimal such element of N. Then
i—1
RM(A A+ A1) =RM (BA=( A\ &) ) = B.

j=1
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This contradicts property 3. of ¢.

Because . is |A|-saturated, there is d € M" such that .# |= A;(d) foralli € N. Fori € N, lete; € M
be such that .# = &;(d,e;). Since x;i(.4 )N x;j(.#) =0 for i # j, we have that ¢; # e; whenever
i# j. Thustheset {c e M : .# |= 0(d,c} is infinite. This contradicts .Z |= £(d,e;).

|

Theorem 5.4.7 Let T be strongly minimal, let # |=T,let A C M and a € M". Then dim(a/A) =
RM(a/A).

Proof. Let a = (ay,...,a;) be such that dim({ay,...,ax}/A) = k. Let .4/ be an |M|"-saturated
elementary extension of .#Z . Let di,...,d; € N be acl_y-independent over M. By Proposition 5.3.9,
tp”" (alA) = tp””' (d|A). Thus it is enough to show for all B C M that RM(d/B) = k. We do by
induction on k.

Suppose k = 1 and let ¢(x) € tp”" (d|B). Since d; ¢ acl 4 (B), we have to ¢(.4#") is infinite. Thus
by Proposition 5.4.4(3), RM(¢(x)) > 1. Since T is strongly minimal, we can deduce RM(¢(x)) < 1
from Corollary 5.4.5 and Proposition 5.4.4(1).

Let k > 1. We first show that RM(d|B) > k. Let ¢(x) € tp”" (d|B) be such that RM(¢(x)) =
RM(tp” (d|B)). Let (b;)icy be a family distinct elements in M \ acl_y (B), let (y;(x));en be the
family of .#'(M)-formula such that y;(x) is ¢(x) Ax; = b;. Clearly, y;(A") N y;(A") = 0 for all
i,j € Nwithi## j. ForeachieN,letc; = (ci1,...,cix—1) € N 1 such that {ci1, .. cik—1} is
acl_y-independent over BU {b;}. By Proposition 5.3.9

" ((bi,ci)|B) = ™ (d|B).

Hence .# = ¢(b;,c;) and thus .# = y;(b;,c;) for each i € N. Then by induction
RM(y1) > RM((b;,ci)/B) > RM(c;/B) = k— 1.

Thus the family (y;(x));en witnesses that RM(¢(x)) > k.

We show that RM(d|B) < k. It is enough to show for all £ (M)-formula 0 (x) that if 4" = —0(d),
then RM(0(x)) < k. Let e = (ey,...,e;) € N* be such that 4" |= 6(e). Since .4 is |M|-saturated,
then can take e such that RM(e|M) = RM(6(x)). Thus tp* (d) # tp” (e). By Proposition 5.3.9,
ey,...,e; have to be acl 4 -dependent over M. Without loss of generality, we can assume that
ex € acl y(MU{ey,...,ex—1}). Thus by Lemma 5.4.6

RM(6(x)) =RM(e/M) =RM(ey,...,ex_1 /M) <k—1.

I Corollary 5.4.8 Let T be strongly minimal. Then T is totally transcendental.

Proof. Let .# |=T. Then RM(M") = n by Theorem 5.4.7 and Exercise 5.11. The corollary follows
from Proposition 5.4.4(1). |
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An application to algebraic geometry
Definition 5.4.5 Let 7 |= Thelgs- Let V C K" be an irreducible variety, and let

I(V):={peK[Xi,...,Xy] : pla)=0forallaecV}.

The is the maximal m € N such that there are prime ideals po,...,pm of
K[Xi,...,X,] such that

I(V)=po Cp; C-- Cpm CK[X,...,X,].

We will use the fact that the Krull dimension of V is the transcendence degree of the fraction
field K[Xi,...,X,]/p over K.

Theorem 5.4.9 Let K be an algebraically closed field, and let V C K" be an irreducible variety.
Then the Krull dimension of V' is equal to RM(V).

Proof. Let % be an elementary extensions of K that is |A|-saturated. Let L be the field generated by
A. Let p be the prime ideal (V). Then the Krull dimension of V is the transcendence degree of the
fraction field L[Xj,...,X,]/p over L. By Theorem 5.4.7 we have that RM (V') = maxdim,, (a/A).
Note that dimy, (a/A) is just the transcendence degree of the field generated a and L over L. Note
that L[Xy,...,X,]/p can be embedded into . such that the image of (X; +p,..., X, +p)isin V.
Thus RM(V) is at least the transcendence degree of the fraction field L[X,...,X,]|/p. Hence RM(V)
is at least the Krull dimension of V. Let a € V. There is a surjective L-algebra homomorphism
L[Xy,...,X,]/pto L(ay,...,a,) such that

Xi+p,.... X +p) —a.

Then the transcendence degree of L(a) over L is less than or equal to the transcendence degree of
L[X1,...,Xu]/p over L. [ |
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(6. Tameness and geometric model theory

6.1 O-minimality

Let ./ be an expansion of (M, <) = DLO. Recall that .# is o-minimal if every set X C M definable
in M is finite union of intervals and points. If we allow the intervals to be open, closed, and half-open,
then the finitely points can be taken to be isolated.

Lemma 6.1.1 Let X C M be definable. Then
1. If X is bounded, then both inf(X) and sup(X) exist.
2. The boundary of X is finite.

Proof. 1. By o-minimality, X is a finite union of intervals and points. Let A be the finite set consisting
of the endpoints of these intervals and the finite many isolated points. Take & to be the maximum of
A (which exists, since A is finite). Now one can easily check that b is the supremum of X.

2. The boundary of a set has empty interior. Thus by o-minimality the boundary of a subset of M
has to be finite. |

= Remark 6.1 1. Itis easy to see that .# is o-minimal if and only every set X C M definable in
M either has interior or is finite.
2. If M =R, the conclusion of Statement 1 of Lemma 6.1.1 holds even without the assumption
of o-minimality, because R is a complete topological space.
3. Let 2:= ({0,1} x Qx, <jex ), Where <j¢ is the usual lexicographic order. Note that 2 |=
DLO and hence is o-minimal. However, {0} x Q does not have supremum. Thus the universe
of an o-minimal structure does not need to be complete with respect to the order topology.

Definition 6.1.1 Let X C M". We say X is if there are no disjoint definable
open sets Uy,U, C M" such that X CU UU,, U NX #0 and U, NX # 0.
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Lemma 6.1.2 Suppose that .# is o-minimal. Let / C M be an interval. Then [ is definably
connected.

Proof. Let Uy, U, be open definable sets such that I C Uy UU,, Uy NX # @ and U, NX # 0. Tt is left
to show that U; NU, # 0. Since both U; and U, are open, both U; N1 and U, NI have nonempty
interior. Thus there is a maximal open interval J C U; such that JNU; # 0. Let a,b € M be such
that J = (a,b). Suppose that b € I. Then b € I'\ U; and hence has to be in U,. But U, is open. Thus
there is open interval J' C U, containing b. Thus this interval J' has nonempty intersection with J.
Similarly, we can show that if a € I, then U; N"U, # 0. Now we only need to consider the case that
both a and b are not in /. But then I C J. Hence U, NJ, # 0 and thus U; N U, # 0. |

Lemma 6.1.3 Let f: X — M" be definable and continuous and let X C M™ be definably con-
nected. Then f(X) is definably connected.

Proof. Let V,V, C M" be definable open sets such that f(X) CV, UV, ViN f(X) # 0 and Vo, N
f(X)#£0. Set Uy = f~1(V}) and Us = f~1(V,). Since U; and U, are definable, a € U; NU,. Thus
f((,l) eViNnw,. [ |

Corollary 6.1.4 — Intermediate Value Theorem for o-minimail structures. Suppose that .#Z
is o-minimal. Let f : [a,b] — M be definable continuous. Then for every ¢ € [f(a), f(D)] there is
d € [a,b] such that f(d) = c.

Proof. By Lemma 6.1.2, the interval [a, b] is definably connected. Thus by Lemma 6.1.3, f([a,b]) is
definably connected. Thus the disjoint open sets

{dela,b] : f(d)<c}u{de€la,b] f(d)>c}

can not cover [a, b]. [ |

Exercise 6.1 Suppose that ./ satisfies the Statement 1 of Lemma 6.1.1 (but is not necessarily
o-minimal). Show that the conclusion of Corollary 6.1.4 holds for .Z .

Exercise 6.2 Let # = (R, <,+,0) be a densely ordered group; that is (R, <,+,0) is an ordered
group and (R, <) = DLO. Assume that % is o-minimal.
(a) Let X C R be definable in % such that (X, +) is a subgroup of (R,+). Show that either
X = {0} or X = R. (Hint: First show that X is convex)
(b) Conclude that Z is abelian.

The monotonicity theorem
Throughout this subsection, assume that .# is o-minimal.

Theorem 6.1.5 — Monotonicity Theorem. Let f: (a,b) — M be definable. Then are ay,...,a; €
(a,b) such that for each j = 0,...,k the restriction of f to (a;,a;+ 1) is continuous and either
constant or strictly monotone, where ag := a and ay| :=b.
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Lemma 6.1.6 Let f: I — M be definable function and let / C M be an interval. Then there is a
subinterval J C [ such that f is either constant or injective on J.

Proof. Let y € M. Suppose that f~!(y) is infinite. Then by o-minimality, there is an interval
J C f~!(y). On this interval J, f is constant. So we may reduce to the case that f~!(y) is finite for
each y € M. Since I is infinite, we get that f(I) has to be infinite as well. Thus by o-minimality,
there is an interval Jy C f(I). Define g : Jo — I by

x—min{xel : f(x) =y}

This follows directly from the definition that g is injective. Thus g(Jo) is infinite. By o-minimality,
there is an interval J C g(Jy). On this interval f is injective. |

Lemma 6.1.7 Let f: I — M be a definable function and let / C M be an interval. If f is injective,
then there is a subinterval J C [ such that f is strictly monotone on J.

Proof. Leta,b € M such that I = (a,b). We define

Xip:={x€l : Jei,ca €IVy € (c1,x) f(y) > f(x)AVy € (x,¢2) f(y) > f(x)}
Xi_:={x€el : Jer,cp €IVy € (c1,x) f(y) > fF(X)AVy € (x,¢2) f(y) < f(x)}
X_y:={xe€l: Jer,ca€lVye (c1,x) f(y) < f(x)AVy € (x,c2) f(y) > f(x)}
X__:={x€el : 3ci,cp €IVy€(c1,x) f(y) < f(x)AVy € (x,¢2) f(y) < f(x)}.

It follows from injective of f and o-minimality of .# that I =X, , UX,_ UX , UX__. Thus there
is a subinterval J of I that is contained in of these four sets. Without loss of generality, we can
assume that / itself is contained in of these sets.

First consider the case that / C X . For x € I, set

s(x) :=sup{s € (x,b) : f(y)> f(x) forally € (x,s]}.

Let x € I. Suppose towards a contradiction that s(x) < b. Then s(x) ¢ X__. This contradicts our
assumption. Thus s(x) = b for all x € I. Hence f is strictly increasing on 1.

Now suppose that ] C X ;. Let B:={x€l:VyeI(y>x— f(y) > f(x))}. If B is infinite, then
B contains an interval J. It is clear that f is strictly increasing on J. So we can reduce to the
case that B is finite. Suppose B is non-empty. Let ¢ € B be maximal. After replacing I by (c,b),
we can even assume that B is empty. Thus for all x € I there is a y € I such that x <y and f(y) < f(x).

Let ¢ € I. We now show that there is d € I such that f(y) < f(c) for all y € I..4. Suppose note. Then
there is d € I such that f(y) > f(c) for all y € I 4. Take d to be minimal with this property. Note
that d € X, . Thus f(d) < f(c), because of minimality of d. However, we know there must be
ane € [ suchthatd < eand f(e) < f(d). Butthen f(e) < f(d) < f(c), contradicting our choice of d.
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Note define g : I — I to map c¢ € I to the minimal element g(c) of [c,b) such that f(y) < f(c) for
all y € I with g(c¢) <y < b. Since ¢ and g(c) are in X, we have ¢ < g(c) and f(g(c)) < f(c).
Moreover, by minimality of g(c), we obtain that g(c) is in the set

Yi_={x€l: Jci,cp€lc) <x<eVdy,da(cy <dy <x<dy<dy— f(dy) > f(da))}.

Since this is true for every ¢ € I, we get that Y _ contains an interval. Shrinking /, we can assume
that / C Y, _. Now define

Y, ={x€l: Jci,cp€lc) <x<cVdy,da(c) <dy <x<dy<dy— f(d)) < f(dn))}.

We can use the same argument to show that Y_ | contains an interval. This is a contradiction, as
Y_+ N Y +—- = @ .

Lemma 6.1.8 Let f : I — M be a definable function and let / C M be an interval. If f is strictly
monotone, then there is a subinterval J C [ such that f is continuous on J.

Proof. We consider the case that f is strictly increasing. Since f () is infinite, there is an interval
Jo C f(I) by o-minimality. Let c¢,d € J such that ¢ < d. Leta,b € I such that f(a) = c and f(b) =d.
Note that the restriction of f to interval (a,b) is an order-preservering bijection. The continuity of f
follows. ]

Corollary 6.1.9 Let f: I — M be a definable function and let / C M be an interval. If f is strictly
monotone, then there is finite set Z C I such that for every interval J C I\ Z the restriction of f to
J is continuous.

Proof. Let X C I be set of all points x € I such that f is continuous on an interval around x. Since f
is definable, it is easy to see that X is definable. It is enough to show that 7\ X is finite. Suppose not.
Then by o-mnimality there is an interval J C I\ X. Since f is strictly monotone on J, there is an
interval J' C J such that the restriction of f to J’ is continuous by Lemma 6.1.8. But then J' C X, a
contradiction. |

Proof of Theorem 6.1.5. Let f: (a,b) — M be definable. Consider the set

X, :={x € (a,b) : fis constant on interval around around x}
Xy :={x € (a,b) : fis strictly increasing on interval around around x}

X3 :={x € (a,b) : fis decreasing increasing on interval around around x}.

By Lemma 6.1.6 and Lemma 6.1.7, I\ (X; UX, U X3) has empty interior, and hence is finite by
o-minimality of .. In particular, I\ (X; UX, UX3) is a subset of union of the boundaries of X;, X,
and X3. Let Y be this union of boundaries. Note that 7\ Y is finite disjoint union of open interval.
Let J be one of these interval. Since J C X; UX, U X3 but doesn’t intersect the boundary of the X;’s,
there is i € {1,2,3} such that J C X;.

Suppose that J C X;. We now prove that f is constant on J. Let x € J. We show that f(x) = f(y) for
all y € J. We just handle the case that f(x) = f(y) for all y € Y with x < y. The case when y < x
follows similarly. Consider the

Zy:={z€J : z>2xNf(y) # f(x)}.
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Suppose towards a contradiction, that Z; # 0. Let y € J be infZ,. Since x € X1, y > x. However, since
y € X as well, there is z € J such that x < z <y and f(y) = f(z). This contradicts the minimality of y.

Suppose J C X,. We establish that f is strictly increasing on J. Let x € J. We show that f(x) < f(y)
forally € J.

Zy:={zelJ : z>xNf(y) > f(x)}.

Suppose towards a contradiction, that Z, # 0. Let y € J be infZ,. Since x € X», y > x. However, since
y € X; as well, there is z € J such that x < z < y and f(z) < f(y). This contradicts the minimality of y.

Finally consider the case that J C X3. Arguing as in the case of J C X5, we can show that f is strictly
decreasing on J. |

Exercise 6.3 Let A C M and let f : (a,b) — M be a function definable just with parameters
from A. Show that we can pick ay,...,a, in the conclusion of Theorem 6.1.5 such that the set
{ai,...,a,} is definable with parameters from A.

Exercise 6.4 Let f : (a,b) — M be definable and let ¢ € (a,b). Show that the limits lim. f(x)
and limy . f(x) exist in M U {eo}.

I Corollary 6.1.10 dcl , is pregeometry.

Proof. Let AC M, and a,b € M. Let b € dcl 4(AU{a})\dcl 4(A). By Lemma ... there is
function f: X C M™+1 — M definable without parameters in .# and ¢ = (cy,...,c,) € A™ such that
f(c,a)=b. Letg:Z C M — M be the function mapping x to f(c,x). Without loss generality, we can
assume that Z is an interval (do,dy+) such that dy,dy; € dcl 4(A) and a € Z. By Theorem 6.1.5
there are dy, ... ,dj € Z such that for each j =0, ...,k the restriction of g to (d;,d; + 1) is continuous
and either constant or strictly monotone. By Exercise 6.3, we can assume that {dj,...,d; }dcl ,(A).
Since a ¢ dcl 4 (A), we can assume that a # d; for all i € {0,...,k+1}. So let j € {0,...,k} be
such that d; < a < dj;. If g is constant on (d;j,dj41), then b = f(a) € dcl(A). Thus g has to strictly
monotone on this interval. Without loss of generality assume that g is strictly increasing. Then g is
injective and g~! is a A-definable function mapping b to a. Thus b € dcl 4 (AU {a}). [ |

6.1.2 Cell decomposition
Definition 6.1.2 A subset X of M is a if it is of the form {a} for some a € M. A subset X
of M is a if it is an interval (a,b) for some a,b € MU_ .
A subset X of M"*!is a if there is a k-cell C C M" and one of the following holds:
1. there are definable, continuous functions f,g : C — M such that f(x) < g(x) for all x € C,

X={(x,a) eCxM : f(x)<a<gx)},

2. there is definable continuous function f : C — M such that one of the following holds:
(@ X ={(x,a) eCxM : f(x)<a},
(b) X={(x,a) eCxM : a< f(x)},
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A subset X of M"t! is a if there is a k-cell C C M" and definable continuous function
f:C — M such that

X={(x,a) eCxM : f(x)=a}.

Exercise 6.5 Show that a cell C C M" open if and only if it is a n-cell. Show that if k£ < n, then a
k-cell C C M" has empty interior and is nowhere dense in M".

Exercise 6.6 Let C C M" be a k-cell. Then there is a coordinate projection 7 : M" — M such
that the restriction of 7 to C is a homeomorphism.

Definition 6.1.3 A of M is a collection of sets of the form
{(=e0,a1),(a1,a2),. .., (ar,+0),{ar},....{a}},
wherea; < ---<agareinM. A of M"*! is a finite partition of M"*! into cells

{Cy,...,C} such that {7(Cy),...,m(Cy)} is a cell decomposition of M", where 7; M"+! — M"
is the coordinate projection onto the first n-coordinates.

Let X C M". We say a cell decomposition & XifXNC=0orC CX for every cell
Ceg.

Note that X is partitioned by some cell decomposition Z, then X is a finite union of cells in Z.

Theorem 6.1.11 — Cell decomposition theorem. Let Xi,...,X,, C M" be definable and let
f: X1 — M be a definable function. Then
1. there is a cell decomposition & of M" such that & partitions each Xi, ..., X,,,
2. there is a cell decomposition & of M" such that & partitions X; and for every C € & with
C C X the restriction of f to C is continuous.

Definition 6.1.4 Let X C M" be definable. The of X (written: dim(X)) is
the largest k € N such that X contains a k-cell.

Proposition 6.1.12 Let X C M" be definable and let d € N. Then the following are equivalent:
1. dim(X) >d,
2. there is a coordinate projection 7 : M" — M such that 7(X) has interior.

Proof. By Exercise 6.6, Statement 1 implies Statement 2. Now suppose that Statement 2 holds.
Let 7w : M" — M be a coordinate projection such that 77(X) has interior. By Theorem 6.1.11 and
Exercise 6.5 there is a cell C C X such that 7(C) has interior. It is an easy exercise to check that C
has to be a k-cell for some k& > d. [ ]
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