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Description of the course

Those are the notes of a course given by the author at the Nesin Matematik Köyü in
September 2025. This course is centered on the restricted Burnside Problem (RBP)
for groups of prime exponents, which is the following question: for fixed r ∈ N and
prime p, are there only finitely many finite r-generated groups of exponent p? Unlike
the other classical Burnside problems, the answer to the RBP is positive. This course
does not include a full proof of the positive answer to the RBP for groups of prime
exponent, which is due to Kostrikin in 1958-1959, nor of the general solution of the
RBP, which is due to Zelmanov in 1991 and for which he was awarded the Fields
medal in 1994. In this course, we will present the method for reducing the RBP for
groups of prime exponent to the question of nilpotency of finitely generated n-Engel
Lie algebras over a field of characteristic p with p > n. We will then look at solutions
for particular values of the pair (n, p) before diving into the proof of Zelmanov’s
characterictic 0 Theorem: every n-Engel Lie algebra over a field of characteristic
0 is nilpotent. This theorem yields an asymptotic solution to the RBP: for each n
there exists N such that n-Engel Lie algebras over a field of characteristic p > N
are nilpotent. The prerequisites for the course are a fair level in group theory and
basic knowledge in universal algebra, linear and multilinear algebra.
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Introduction

In 1902, William Burnside raised his famous problems [4].

In other words:

The General Burnside Problem. Is every finitely generated group where each element has finite order
necessarily finite?

The Burnside Problem. Is every finitely generated group of bounded exponent necessarily finite?

In 1964, Golod and Shafarevich [6] constructed a counterexample to the general Burnside problem.
As for the Burnside problem, it was settled negatively a few years later in 1968 by Novikov and Adian
[17, 18, 19]. For r, n ∈ N, we let B(r, n) denote the quotient of the free group on r generators by the
normal closure of the set of n-th powers (see Subsection 1.3), B(r, n) is known as the (free) Burnside
group of rank r and exponent n. As every r-generated group of exponent n is a homomorphic image of
B(r, n), the Burnside problem is the question whether B(r, n) is always finite. As there are values of
(r, n) for which B(r, n) is finite, the problem since then consist in describing those. For instance, B(r, n)
are known to be finite for n ≤ 6, n ̸= 5, whereas B(r, n) are all infinite for r ≥ 2 and n ≥ 8000 [14, 2].
A recent result from Atkarskaya, Rips and Tent [3] is that B(r, n) is infinite for n odd and greater than
557. Note that it is still open whether 2-generated group of exponent 5 can be infinite (!).

In the 1930s, mathematicians started asking a more reasonable variant of the Burnside problem.

The Restricted Burnside Problem. For fixed r, n ∈ N, are there only finitely many finite r-generated
groups of exponent n?

In other words, the restricted Burnside problem asks whether B(r, n) has only finitely many finite
quotients. Using a result of Hall and Higman [8] (and the classification of finite simple groups), the re-
stricted Burnside problem reduces to the case of B(r, pk) which was solved positively in 1959 by Kostrikin
[11, 12, 13] (announced in 1958 in [12]) for B(r, p) and by Zelmanov [27, 28] in 1991 for the general case.
For that work, Zelmanov was awarded a Fields Medal at the International Congress of Mathematicians
in Zürich in 1994.

Both Kostrikin and Zelmanov’s result are in fact theorems about Lie algebras. The solution of the
RBP is a perfect illustration of a beautiful method of reduction of group-theoretic questions to Lie algebra
questions, usually called Lie methods in group theory.

The basic idea is that, given a group G, we may consider the lower central series G = γ1 ⊵ γ2 ⊵ . . .
whose consecutive quotients γi/γi+1 are abelian groups. The direct sum

L(G) =
⊕
i∈N

γi/γi+1
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;

can be equipped with a bracket [., .] defined in terms of the group commutator and, as a result, (L(G),+, [., .])
has the structure of a Lie ring. This will be studied in details in Subsection 1.2 for the case of groups of
exponent p, for which the Lie ring is in fact a Lie algebra over a the prime field Fp. Then the connection
with the RBP will be made apparent in Subsection 1.4, where it is proved that the RBP holds for a
finitely generated group of prime exponent if and only if its associated Lie algebra is nilpotent. Then the
turning point is given by Theorem 1.21: the associated Lie algebra of a group of exponent p satisfies the
(p− 1)-Engel identity, which is the following:

[. . . [x, y], y], . . . , y︸ ︷︷ ︸
(p−1) times

] = 0.

Therefore, to solve the RBP for groups of exponent p, it suffices to prove that finitely generated (p−1)-
Engel Lie algebras are nilpotent. We then carry out the computing that 2-Engel Lie algebras and 3-Engel
Lie algebras of characteristic different from 2 and 5 are nilpotent, which are due to Higgins [9]. In fact,
in those cases, the finitely generated assumption is superfluous.

We then turn to the main focus of this course, Zelmanov’s characteristic 0 theorem [26].

Theorem (Zelmanov, 1988). Every n-Engel Lie algebra over a field of characteristic 0 is nilpotent.

This result yields an asymptotic solution to the RBP: for every n ∈ N there exists N ∈ N such that
every n-Engel Lie algebra of characteristic p > N is nilpotent, see Section 3.

Before reaching the very technical proof of Zelmanov’s Theorem (Subsection 3), we will dig a little
deeper in the theory of n-Engel Lie algebras and introduce the main ingredients for the proof. Free Lie
algebras will be defined in Subsection 2.2, then Subsection 2.3 will establish a classical result of Higgins
[9]: a (p− 1)-Engel Lie algebra is nilpotent if and only if it is solvable. Finally, as it constitute one of the
main subtlety of Zelmanov’s proof, the beautiful theory of representations of the symmetric group will be
described (without proof) in Subsection 2.5, with an application to 4-Engel Lie algebras of characteristic
p > 5 due to Traustason, see Subsection 2.6.

The last key ingredient for the proof of Zelmanov’s Theorem will also be assumed, as it is extremely
technical. It is an early result of Kostrikin [13].

Theorem (Kostrikin, 1959). Let L be an n-Engel Lie algebra of characteristic 0 (or of characteristic
p > n), then L contains an abelian ideal.

The proof of Kostrikin Theorem, using his famous method of sandwiches might be even harder than
the proof of Zelmanov’s characteristic zero result and in fact implies the RBP for groups of prime ex-
ponents. There is another proof by Adian and Rasborov [1] but it is still vastly technical. Therefore,
Kostrikin Theorem is a costly assumption and the philosophy of this course is somehow backwards: we
assume a theorem which is stronger than the RBP to deduce a weak solution to the RBP, but Zelmanov
characteristic 0 is a beautiful theorem of its own, with unique technics coming into play.

Acknowledgement. I am very grateful to Michael Vaughan-Lee for sharing with me an early draft (now
available as a preprint [25]) of a very clean exposition of the proof of Zelmanov’s Theorem that is the
main inspiration for our presentation in Section 3. I am very grateful to the organisation of the Nesin
Matematic Köyü, for maintaining such a special place. Finally, I want to give a special thanks to Bulut
Uygun and Doğan Turhan for their very enjoyable company and for their immense bravery in staying
until the end of the course.

1. Preparation

1.1. Prerequisites on groups and Lie algebras. We will assume that the reader is familiar with the
notion of a group G, a subgroup H ⊆ G. The group of endomorphisms will be denoted End(G), the
group of automorphisms Aut(G). Recall that inner automorphisms are of the form x 7→ xg := g−1xg,
and a subgroup H ⊆ G is normal if it is closed under inner automorphisms of G, in which case we will
write H ⊴ G. The group generated by a set S is denoted ⟨S⟩, and a group G is r-generated if there exists
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g1, . . . , gr ∈ G such that G = ⟨g1, . . . , gr⟩. The normal closure of a set S ⊆ G is the smallest normal
subgroup of G contining S, and it is the group generated by all conjugates of elements of S. For a given
set S we denote by S(S) the group of permutations of S. We will also use the notation S(n) or Sn for
the group of permutations of {1, . . . , n}. We now turn to Lie algebras, which we define more formally.

• A Lie algebra over a field F (or a Lie F-algebra) is an F-vector space equipped with a bilinear
map [., .] which satisfies

– (alternative) [a, a] = 0,
– (Jacobi) [[a, b], c] + [[b, c], a] + [[c, a], b] = 0.

A Lie algebra always satisfy the property antisymmetry [a, b] = −[b, a] but that property is weaker
than alternativity (in characteristic 2). A Lie subalgebra M ⊆ L is a Lie algebra which is a vector
subspace such that for all a, b ∈ M we have [a, b] ∈ M . A Lie algebra L is abelian if [a, b] = 0 for
all a, b ∈ L.

• An ideal I of a Lie algebra is a Lie subalgebra such that for all a ∈ I and b ∈ L we have
[a, b] ∈ I. If L is a Lie algebra with an ideal I ⊴ L, the group quotient L/I is again a Lie algebra
for the bracket [a + L, b + L] = [a, b] + L and the quotient map π : L → L/I is a Lie algebra
homomorphism. The three isomorphism theorems hold for Lie algebras.

• A monomial (or commutator) in x1, . . . , xn is a term obtained using iteration of the bracket, for
instance [[x1, [x3, x2]], x4] or [x1, [x2, [x4, x3]]]]. A distinguished kind of monomials is given by
left-normed commutators which are inductively defined as [x1, . . . , xn] = [[x1, . . . , xn−1], xn]. We
also use the notation:

[. . . [x, y], y], . . . , y︸ ︷︷ ︸
n times

] = [x, y(n)].

• Given a subset S ⊆ L, the Lie F-algebra generated by S is the smallest Lie subalgebra of L
containing S. It is the F-span of all possible commutators in elements of S. According to
Exercise 1.1, it is the span of all left-normed commutators evaluated in elements of S.

• For each a in a Lie F-algebra L, we will denote by ada the map x 7→ [x, a], it is an element of
End(L), the associative algebra of linear endomorphisms of L. In this course, we will use the
right-sided notation for the application of functions, for instance (a) adb = [a, b]. It might
seems a bit odd at first but it is very consistent with our convention of left-normed bracketing.
The composition adb1 ◦ . . . ◦ adbs applied at an element a ∈ L gives

(a)(adb1 ◦ . . . ◦ adbs) = ([a, b1]) adb2 ◦ . . . ◦ adbs = [a, b1, . . . , bs]

Most of the time we will use juxtaposition instead of the symbols ◦ for the composition of maps.
The notation [a, b(n)] corresponds to evaluating adnb ∈ End(L) at a. The Jacobi identity yields

[a, [b, c]] = [a, b, c]− [a, c, b]

so that ad[b,c] = adb adc − adc adb.
• Any element of End(L) of the form ada is called a Lie element of End(L). Any algebraic relation
true for Lie elements will yield a relation in the Lie algebra. For instance, (x+ y)2 = x2 + xy +
yx + y2 is true in End(L), so in particular for Lie elements x = adb, y = adc and hence in any
Lie algebra:

[a, (b+ c)(2)] = [a, b(2)] + [a, b, c] + [a, c, b] + [a, c(2)].

Exercise 1.1. Any commutator in x1, . . . , xn can be written as a sum of left-normed commutators in
x1, . . . , xn.

Exercise 1.2. Prove that in a non-abelian Lie algebra L, there is no element 1 such that [a, 1] = a.

Definition 1.3. A Lie algebra is n-Engel if it satisfies the identity

0 = [x, y, y, . . . , y︸ ︷︷ ︸
n times

] = [x, y(n)].

Lemma 1.4. Let L be a Lie algebra over any field F. If L is n-Engel then L satisfies the identity∑
σ∈Sn

[x, y1σ, . . . , ynσ] = 0

Furthermore, the converse holds if F has characteristic 0 or p > n.

Proof. The main point is the following claim.
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Claim 1. ∑
σ∈Sn

[x, y1σ, . . . , ynσ] =
∑

∅̸=S⊆{1,...,n}

(−1)n−|S|[x, (
∑
i∈S

yi)
(n)]

=
∑

1≤s≤n
1≤i1<...<is≤n

(−1)n−s[x, (yi1 + . . .+ yis)
(n)]

Proof of the claim. It suffices to develop the right hand side. To convince yourself, observe that in any
associative algebra, we have for n = 3:

(y1 + y2 + y3)
3 =

∑
σ∈S3

y1σy2σy3σ + (y1 + y2)
3 + (y1 + y3)

3 + (y2 + y3)
3 − y31 − y32 − y33

hence

[x, (y1 + y2 + y3)
(3)] =

∑
σ∈S3

[x, y1σ, y2σ, y3σ] + [x, (y1 + y2)
(3)] + [x, (y1 + y3)

(3)] + [x, (y2 + y3)
(3)]

− [x, y
(3)
1 ]− [x, y

(3)
2 ]− [x, y

(3)
3 ]

□

If L is n-Engel, each term on the right of the expression in Claim 1 vanishes, so we are done. Conversely,
if the identity ∑

σ∈Sn

[x, y1, . . . , yn] = 0

is satisfied by L, then by putting yi = yj = y we get n![x, y(n)] = 0. Then if F has characteristic 0 or

p > n, we conclude [x, y(n)] = 0. □

1.2. Associated Lie Fp-algebra of a group of exponent p. The exposition draws mainly from [22].
Given a group G, the commutator of two elements is [g, h] = g−1h−1gh. Given two sets S, T ⊆ G, we
write [S, T ] for the group spanned by all elements [s, t] with s ∈ S, t ∈ T . Then the lower central series
(LCS) is the series

γ1 ⊵ γ2 ⊵ . . .

defined inductively as γ1 = γ1(G) = G and

γi+1 = [γi, G].

Using that [g, h]k = [gk, hk], each γi is a normal subgroup of G (see Exercise 1.5). As gh = hg[gh], we
see that G/γ2 is abelian and more generally, each quotient γi/γi+1 is abelian. (See Exercise 1.5).

Exercise 1.5. Let G be a group and (γi)i∈N its LCS.

(1) Prove that γi is a normal subgroup of G.
(2) Prove that γi/γi+1 is a subgroup of Z(G/γi+1), in particular, γi/γi+1 is abelian.

Exercise 1.6. Let G be a group and g, h, k ∈ G. Prove the following equations.

(1) [g, h] = [h, g]−1

(2) [g, h]k = [gk, hk].
(3) [gh, k] = [g, k]h[h, k].
(4) [g, hk] = [g, k][g, h]k.
(5) [g, h−1, k]h[h, k−1, g]k[k, g−1, h]g = 1.

Definition 1.7. A group is nilpotent if there exists k ∈ N such that γk = 1. In this case, the smallest c
such that γc+1 = 1 is called the nilpotency class of G.

It is a classical fact that finite p-groups are nilpotent, see Exercise 1.24.
For g ∈ G, we let g∗ denote a conjugate of g, where the element by which g is conjugated is not

explicit. Similarly, g−∗ denotes a conjugate of g−1, which is the inverse of a conjugate of g. Revisiting
the classical identities from Exercise 1.6 (using that gh = h∗g), we have the following:

[gh, k] = [g, k]∗[h, k]∗ (1)

[g, hk] = [g, h]∗[g, k]∗ (2)

[g−1, h] = [g, h]−∗ (3)

[g, h−1] = [g, h]−∗ (4)

[g, h, k] = [k, g−1, h−1]−∗[h−1, k−1, g]−∗ (5)
5



Lemma 1.8. Let G be a group and (γi)i∈N be the LCS. For all i, j, [γi, γj ] ⊆ γi+j.

Proof. We prove it by induction on j, the case j = 1 is by definition, so assume by induction that j > 1
and for all k and for all j0 < j we have [γk, γj0 ] ⊆ γk+j0 . Let a ∈ γi, b ∈ γj . Then b is a product of
commutators [c, d] and their inverse with c ∈ γj−1, d ∈ G, so using (2) and (4) above, [a, b] is in the
normal closure of elements of the form [a, [c, d]] with c ∈ γj−1, d ∈ G. Now, γi+j is normal, so it suffices
to prove that [a, [c, d]] ∈ γi+j . By Exercise 1.6(1), we have [a, [c, d]] = [c, d, a]−1 and by (5), we have

[c, d, a]−1 = ([a, c−1, d−1]−∗[d−1, a−1, c]−∗)−1 = [d−1, a−1, c]∗[a, c−1, d−1]∗

As a ∈ γi, d ∈ γ1 we have [d−1, a−1] = [a−1, d−1]−1 ∈ γi+1. As c ∈ γj−1 the induction hypothesis yields
that [d−1, a−1, c] ∈ γi+j . Similarly, we deduce [a, c−1, d−1] ∈ γi+j and we conclude the proof of the
lemma. □

Lemma 1.9. Let G be a group, let S ⊆ G such that G = ⟨S⟩. For each n ∈ N, define Sn =
{[s1, . . . , sn] | s1, . . . , sn ∈ S}. Then

(1) γn is the normal closure of Sn,
(2) If π : γi → γi/γi+1, then γn/γn+1 is generated by Snπ.

Proof. We prove it by induction on n. For n = 1, S1 = G so (1) and (2) are trivial. Assume n > 1 and
let h ∈ γn, g ∈ G. By induction h can be expressed as a product of elements of the form [s1, . . . , sn]

k

and their inverses with k ∈ G, si ∈ S. Using (1) and (3), [h, g] is in the normal closure of elements of the

form [[s1, . . . , sn]
k, g]. By Exercise 1.6, we have [[s1, . . . , sn]

k, g] = [[s1, . . . , sn], g
k−1

]k. As G = ⟨S⟩, gk−1

is a product of elements of S and their inverses, hence by (2) and (4), [[s1, . . . , sn], g
k−1

]k is in the normal
closure of elements of the form [[s1, . . . , sn], s], with s ∈ S, and so does [h, g]. As γn+1 is generated by
such [h, g] and γn+1 is normal, we conclude (1). For (2), observe that

ag = [g, a−1]a = [a−1, g]−1a

with a = [s1, . . . , sn+1] to conclude that [s1, . . . , sn+1]
g = [s1, . . . , sn+1] modulo γn+2. □

Let G be a group of exponent p with LCS (γi)i∈N. We define Li = γi/γi+1. Each Li is an abelian
group of exponent p, otherwise known as an elementary abelian group or an Fp-vector space, and we will
use the additive notation for the group law. We may define the group L(G) as the direct sum of those
Fp-vector spaces:

L(G) :=
⊕
i∈N

Li =
⊕
i∈N

γi/γi+1.

The group law in L(G) will also be denoted additively. In L(G), we call an element of Li a homogeneous
element. Every element of L(G) can be uniquely written as a sum of homogeneous elements. Given two
homogeneous elements gγi+1 ∈ Li and hγj+1 ∈ Lj we know by Lemma 1.8 that [g, h] ∈ γi+j and we
define the bracket on gγi+1 and hγj+1 as follows

[gγi+1, hγj+1] = [g, h]γi+j+1.

• The binary function [., .] is well-defined on homogeneous elements. Assume that gγi+1 = kγi+1

so that g = hu with u ∈ γi+1. Using (1) we have [g, h] = [k, h]∗[u, h]∗ and by Lemma 1.8 and
Exercise 1.5 (1) we have [u, h]∗ ∈ γi+j+1 so [g, h]γi+j+1 = [k, h]γi+j+1. Similarly, if hγj+1 = kγj+1

we have [g, h]γi+j+1 = [g, k]γi+j+1, so the bracket is well-defined.
• The bracket is alternative and antisymmetric on homogeneous elements. By definition [gγi+1, gγi+1] =

[g, g]γ2i+1 = 0. By Exercise 1.6, [gγi+1, hγj+1] = [g, h]γi+j+1 = [h, g]−1γi+j+1. In Li+j , the el-
ement [h, g]−1γi+j+1 is the inverse of [h, g]γi+j+1 = [hγj+1, gγi+1] so, according to our additive
notation, we conclude [gγi+1, hγj+1] = −[hγj+1, gγi+1].

• The bracket [., .] is bilinear on homogeneous elements. Assume that gγi+1, hγi+1 ∈ Li and
kγj+1 ∈ Lj . The group law in Li is denoted + so that by definition gγi+1+hγi+1 = ghγi+j . Now
we prove that [gγi+1+hγi+1, kγj+1] = [gγi+1, kγj+1]+[kγi+1, kγj+1], where the sum in the second
term corresponds to the sum in Li+j . By definition [gγi+1 + hγi+1, kγj+1] = [ghγi+1, kγj+1] =
[gh, k]γi+j+1. By (1), the latter term equals [g, k]∗[h, k]∗γi+j+1 = [g, k]∗γi+j+1 + [h, k]∗γi+j+1

and as γi+j+1 is normal, the latter equals [g, k]γi+j+1 + [h, k]γi+j+1, which by definition, is
[gγi+1, kγj+1] + [hγi+1, kγj+1]. The argument on the right input of [., .] is similar.
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The latter point implies that we may now extend the definition of the bracket to the whole of L(G)
by linearity, since L(G) is spanned by the homogeneous elements. For each

∑
i ai,

∑
j bj ∈ L(G) where

ai, bj are homogeneous elements, we define

[
∑
i

ai,
∑
j

bj ] =
∑
i,j

[ai, bj ].

Basic linear algebra gives that this yields a well-defined bilinear function on L(G).

Lemma 1.10. The structure (L(G),+, [., .]) is a Lie algebra over Fp.

Proof. We already know that [., .] is a bilinear map on L(G), so it remains to check antisymmetry and
the Jacobi identity. Let a =

∑
i ai ∈ L(G) where ai are homogeneous elements. Then by definition

[a, a] =
∑

i,j [ai, aj ] =
∑

i[ai, ai] +
∑

i<j([ai, aj ] + [aj , ai]). This vanishes by the second point above. We
now turn to the Jacobi identity. The function

(x, y, z) 7→ [x, y, z] + [y, z, x] + [z, x, y]

is multilinear, hence to check the Jacobi identity for L(G) it is enough to check it on homogeneous
elements. Let a = fγi+1 ∈ Li, b = gγj+1 ∈ Lj , c = hγk+1 ∈ Lk. Note that by Lemma 1.8, we have
[f, g, h][g, h, f ][h, f, g] ∈ γi+j+k hence, it is enough to prove that

[f, g, h][g, h, f ][h, f, g] ∈ γi+j+k+1.

By Exercise 1.6 (5) we have [f, g−1, h]g[g, h−1, f ]h[h, f−1, g]f = 1. We consider [f, g−1, h]g. By (4) we have
[f, g−1] = [f, g]−s, for some s ∈ G. By Lemma 1.8, we have [f, g] ∈ γi+j and hence [f, g]−1 ∈ γi+j . For
u = [[f, g]−1, s] ∈ γi+j+1, we have [f, g]−s = [f, g]−1u. It follows that [f, g−1, h]g = [[f, g]−1u, h]g which,
by (1) equals [[f, g]−1, h]∗[u, h]∗. By (3), we have [[f, g]−1, h]∗ = [f, g, h]−∗ and as above [f, g, h]−∗ =
[f, g, h]−1 modulo γi+j+k+1. As [u, h]∗ ∈ γi+j+k+1 we conclude that

[f, g−1, h]g = [f, g, h]−1 mod γi+j+k+1.

Similarly, [g, h−1, f ]h = [g, h, f ]−1 mod γi+j+k+1 and [h, f−1, g]f = [h, f, g]−1 mod γi+j+k+1, so we
conclude using the equality above. □

1.3. Varieties of groups, free Burnside group. Given variables x1, . . . , xn a word in x1, . . . , xn (or
simply a word) a string of characters xϵ1

i1
. . . xϵk

ik
with exponents ϵi ∈ {1,−1}, 1 ≤ i1, . . . , ik ≤ n, k ∈ N,

which is subjects to the reduction

. . . x
ϵin−1

in−1
xϵ
inx

−ϵ
in

x
ϵin+1

in+1
. . . = . . . x

ϵin−1

in−1
x
ϵin+1

in+1
. . .

Equivalently it is an equivalence class of strings of characters xϵ1
i1
. . . xϵk

ik
for the relations that relates two

strings if one can be obtained from the other by removing or adding strings of the form x1
ix

−1
i in between

the letters. We denote the empty word by 1. The set W (n) = W (x1, . . . , xn) of words in x1, . . . , xn can
be given the structure of a group via concatenation, i.e. by setting

(xϵ1
i1
. . . xϵk

ik
) · (xι1

j1
. . . xιl

jk
) = xϵ1

i1
. . . xϵk

ik
xι1
j1
. . . xιl

jk

and xix
−1
i = 1. This group is called the free group in n generators. Similarly, by taking words in variables

(xi)i∈N, one constructs the group W (ω), which can also be seen as the group
⋃

n∈N W (x1, . . . , xn) for the
natural group embedding of W (x1, . . . , xn) in W (x1, . . . , xn+1) given by mapping xi ∈ W (x1, . . . , xn) to
xi ∈ W (x1, . . . , xn+1).

Evaluation of words in a group. For any element w ∈ W (ω), we write w(xi1 , . . . , xin) if the variables
appearing in the word w are among xi1 , . . . , xin . We may simply write w(x1, . . . , xn). Given g1, . . . , gn
in a group G and a word w(x1, . . . , xn) we can consider w(g1, . . . , gn) the element of G given by setting
xi 7→ gi and interpreting the word in G. If w = x−1

1 x−1
2 x1x2, then for g, h ∈ G we have w(g, h) =

g−1h−1gh = [g, h] ∈ G.

Definition 1.11 (Variety of groups). Let V be a set of words in (xi)i∈N. The variety of groups generated
by V is the collection of all groups G such that for all w(x1, . . . , xn) ∈ V and for all g1, . . . , gn ∈ G we
have w(g1, . . . , gn) = 1. A variety of group is a variety defined by some set of words.

Exercise 1.12. Check that the following classes of groups are varieties: all groups, abelian groups, nilpo-
tent groups. Note that the set V in the previous definition might be infinite: prove that the class of
group of exponent dividing n is a variety, for all n.
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Definition 1.13 (Free groups). Given a variety of groups V and a set S of variable. A free group for V
generated by S (or a group freely generated by S) is an element F (S) of V generated by S and such that
for any group G ∈ V , any mapping S → G extends uniquely to a group homomorphism F (S) → G.

S G

F (S)

⊂

Free objects always exists in a variety.

Theorem 1.14. Every variety of groups admits a free group in any given set of generators.

Exercise 1.15. Let V be a variety of p-groups. prove that there exists n such that every groups in V has
exponent pn.

It does not take long to see that the group of words W (S) is a free group in S for the variety of all
groups. Then free groups in other varieties can be constructed from W (S), as we will see in the next
lemma. It is generally admitted that only the free groups W (S) for the variety of all groups are called
free groups, whereas for any strictly smaller variety, free groups are usually called relatively free group.
In fact, those are given by quotient of W (S).

A subgroup H of W (ω) is called fully invariant if for all endomorphism θ of W we have Hθ ⊆ H.

Lemma 1.16. Let H be a fully invariant ideal of the free group W = W (ω). Then W/H is a free group
for some variety V .

Proof. We set V be the variety of groups defined by the following subset of W (ω):

{w ∈ W (ω) | w(xi1 , . . . , xik) ∈ H for some distinct i1, . . . , ik ∈ N}.
Note that because H is fully invariant, W/H is an element of V . We prove that W/H is a free group
relatively to V , freely generated by (xiH)i∈N. Let G be any group in V , and assume we are given a
mapping f : {xiH | i ∈ N} → G say xiH 7→ gi ∈ G. By freeness of W , we know that the mapping xi 7→ gi
extends to a homomorphism θ : F → G. As G ∈ V , we have that H ⊆ ker θ hence θH : F/H → G is well
defined and is a group homomorphism extending f , as required. □

As was mentioned above (see Exercise 1.12), given a fixed n ∈ N, the groups of exponent dividing n
form a variety.

Definition 1.17. The free Burnside group B(r, n) is the free group in r generators for the variety of
groups of exponent dividing n.

In fact, by Lemma 1.16, the Burnside group B(r, n) is precisely the quotient of the free group F (r) in
r-generators by the normal closure of the set {wn | w ∈ F (r)}.

1.4. The restricted Burnside problem. For this subsection, we draw mainly from [22] and [15] for
Theorem 1.21.

Theorem 1.18. Let r ∈ N and p be a prime number. Let B(r, p) be the Burnside group and (γi)i∈N the
LCS. The following are equivalent.

(1) There exists a finite number of finite r-generated groups of exponent p (up to isomorphism).
(2) There exists a bound on the order of finite r-generated groups of exponent p.
(3) There exists i0 ∈ N such that γi0 = γj for all j ≥ i0.
(4) The associated Lie algebra L(B(r, p)) is finite.
(5) There exists i0 such that B(r, p)/γi0 is the largest finite r-generator group of exponent p and every

other finite r-generated group of exponent p is isomorphic to a quotient of B(r, p)/γi0 .

Proof. Set B = B(r, p) and consider the associated Lie algebra L(B) =
⊕

i∈N γi/γi+1. By Lemma 1.9,
each quotient γi/γi+1 is again finitely generated, hence as they are abelian, each quotient is finite. Using
iteratively the third isomorphism theorem, we have that |B/γi| = |B/γ2||γ2/γ3| . . . |γi−1/γi| so G/γi is
finite. (1) =⇒ (2) is trivial. For (2) =⇒ (3) assume that (3) does not hold. Then γi+1 ⊊ γi for
each i, hence B/γi ⊊ B/γi+1 ⊊ . . . is an infinite increasing chain of finite r-generated groups of exponent
p, contradicting (2). (3) =⇒ (4) is immediate since γi/γi+1 is finite for j < i0 and γj/γj+1 = 0 for
j ≥ i0. (4) =⇒ (3) If there were no such i0, then by the above, we would have an infinite decreasing
chain γ1 ⊋ γ2 ⊋ . . ., hence the sum

⊕
i∈N γi/γi+1 would be infinite. (3) =⇒ (5). Let G be any finite

r-generated group of exponent p. Then there exists a normal subgroup N ⊴ B such that B/N ∼= G. As
8



finite groups of exponent p are nilpotent, B/N is nilpotent, hence there exists i such that γi ⊆ N , so also
γi0 ⊆ N and hence B/N is a subgroup of B/γi0 . As G was arbitrary, we have the first part of (5). The
second part is merely G ∼= B/N ∼= (B/γi0)/(N/γi0). (5) =⇒ (1) is trivial since B/γi0 is finite, hence
has only a finite number of subgroups. □

We will use the following classical formula, see e.g. [16, Theorem 12.3.1]

Fact 1.19 (Hall-Petrescu formula). In any group, we have modulo γp+1(⟨a, b⟩):

apbp = (ab)p[a, b(p−1)] · C
where C is a product of commutators in a, b of weight p and where a appears twice.

Lemma 1.20. Let G = ⟨x, y1, . . . , ys⟩ be a group of exponent p. Then

[x, (y1 · · · ys)p−1]

is equal modulo γp+1 to a product of commutators in x, y1, . . . , ys of length p and where x appears twice.

Proof. Using the Hall-Petrescu formula on a = x and b = y1 · · · ys, one obtains, since G has exponent p
and using (3) above

[x, (y1 · · · ys)p] = C

modulo γp+1(⟨a, b⟩), where C is a product of commutators in x, y1 · · · ys of weight p and where x appears
twice. Note that the inverse of a commutator is again a commutator since [g, h]−1 = [h, g]. Let c be such
a commutator. Using [x, yz] = [x, z][x, y][x, y, z] we immediately see that c is equal modulo γp+1 to a
product of commutators of length p in x, y1, . . . , ys where x still apears twice. □

Theorem 1.21. Let r ∈ N and p be a prime number. Then L(B(r, p)) satisfies the (p−1)-Engel identity:

0 = [x, y(p−1)].

Proof. We work inB = B(p, p), the relatively free Burnside group of exponent p generated by x, y1, . . . , yp−1.
Let a = xγ2, bi = yiγ2. From Claim 1, we have the following equality in L(B)∑

σ∈Sp−1

[a, b1σ, . . . , b(p−1)σ] =
∑

∅⊊S⊂{1,...,p−1}

(−1)p−1−|S|[a, (
∑
i∈S

bi)
(p−1)]

= [a, (b1 + . . .+ bp−1)
(p−1)] +

∑
∅⊊S⊊{1,...,p−1}

(−1)p−1−|S|[a, (
∑
i∈S

bi)
(p−1)]

= [a, (b1 + . . .+ bp−1)
(p−1)]

+
∑

∅⊊S⊊{1,...,p−1},
i1,...,ip−1∈S

(−1)p−1−|S|[a, bi1 , . . . , bip−1
]

As yi are in γ1, bi belong to L1 = γ1/γ2 hence each sum of the form
∑

i∈S bi translate in B as the product∏
i∈S yi. Similarly, by Lemma 1.8, commutators of weight p in x, yi belongs to γp hence they commute

modulo γp+1, hence the equality above translates readily to the following equation in B, modulo γp+1:∏
σ∈Sp−1

[x, y1σ, . . . , y(p−1)σ] = [x, (y1 · · · yp−1)
(p−1)] ·

∏
∅⊊S⊊{1,...,p−1},

i1,...,ip−1∈S

[x, yi1 , . . . , yip ]
(−1)p−1−|S|

Using Lemma 1.20, we know that the term [x, (y1 · · · yp−1)
(p−1)] of the right hand side can be written

modulo γp+1 as product of commutators in x, yi of weight p where x appears twice. In turn we have∏
σ∈Sp−1

[x, y1σ, . . . , y(p−1)σ] = c1 · · · cs (mod γp+1) (†)

where each ci is a commutator of weight p involving either x or some yi twice. Note that all of them
involve x at least once.

Let θ1 be an endomorphism of B mapping y1 to 1 and fixing x, yi pointwise for each i > 1. Applying θ1
on (†), the left hand side yields 1 while on the right hand side only commutators not involving y1 remain.
As γp+1 is stable under θ1, we conclude that the product of all commutators among c1, . . . , cs which do
not involve y1 are zero modulo γp+1. Each of the ci are in γp and commute modulo γp+1 hence we may
regroup them and as any of their product is in γp+1, we may assume that all ci in (†) involve at least
one y1. Using an endomorphism θ2 of B mapping y2 to 1 and fixing x, y1, y3, . . . , yp+1, we may similarly
assume that all ci involve y2. Iterating the argument, we see that each ci involve all of x, y1, . . . , yp−1
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and either x or yi appears twice in cj for each j. This contradicts that the cj ’s are of weight p, unless
they are all 1, which proves that

∏
σ∈Sp−1

[x, y1σ, . . . , y(p−1)σ] ∈ γp+1. In particular, there exists a word

f(x, y1, . . . , yp−1) consisting of product of commutators of weight at least p + 1 such that we have the
following equality in B: ∏

σ∈Sp−1

[x, y1σ, . . . , y(p−1)σ] = f(x, y1, . . . , yp+1)

Let u ∈ γi0 , v1 ∈ γi1 , . . . , vp−1 ∈ γip−1
. Then, using an endomorphism of B sending x to u and yi to vi,

we have ∏
σ∈Sp−1

[u, v1σ, . . . , v(p−1)σ] = f(u, v1, . . . , vp+1).

By Lemma 1.8, we know that
∏

σ∈Sp−1
[u, v1σ, . . . , v(p−1)σ] ∈ γi0+...+ip−1

. As f(u, v1, . . . , vp−1) is a

product of elements each belonging to γi0+...+2ik+...+ip−1+1 for some k (again by Lemma 1.8), in particular
f(u, v1, . . . , vp−1) ∈ γi0+...+ip−1+1 and so

∏
σ∈Sp−1

[u, v1σ, . . . , v(p−1)σ] ∈ γi0+i1+...,ip−1+1. In L(B), this

translates as ∑
σ∈Sp−1

[c, d1σ, . . . , d(p−1)σ] = 0 (‡)

for all homogeneous elements c, d1, . . . , dp−1. Because the map

(x, y1, . . . , yp−1) 7→
∑

σ∈Sp−1

[x, y1σ, . . . , y(p−1)σ]

is multilinear, the equality (‡) holds for all elements of L(B). By Lemma 1.4 we conclude the theorem
for r = p. To conclude for all r ∈ N, if r < p, embed B(r, p) in B(p, p) and if r > p, this is immediate. □

Remark 1.22. It is a longstanding open question whether the Lie algebra L(B(r, p)) is itself a free Lie
algebra. The more general question whether L(F ) is itself a relatively free Lie algebra when F is a
relatively free group was open for a long time and solved negatively by Daniel Groves in the 1999 [7].

Corollary 1.23. The restricted Burnside problem for groups of exponent p holds if every finitely generated
(p− 1)-Engel Lie Fp-algebras are nilpotent.

Proof. Using Theorem 1.18, the restricted Burnside problem for groups of exponent p holds provided
for each r ∈ N and prime p, L(B(r, p)) is finite. By definition, as B(r, p) is finitely generated as a
group, L(B(r, p)) is finitely generated as a Lie algebra (see Exercise 1.25). By Theorem 1.21, L(B(r, p))
is (p − 1)-Engel hence under our assumption, L(B(r, p)) is nilpotent. It is immediate that a finitely
generated nilpotent Lie algebra over Fp is finite, since it is spanned by all monomials of length at most
the nilpotency class evaluated in the generators. □

Exercise 1.24. In this exercise, we prove that finite p-groups are nilpotent. Let G be a finite p-group.

(1) The class equation gives that the action of G on itself has non-central representent x1, . . . , xs and
that

|G| = |Z(G)|+
∑
i

|G/CG(xi)|.

Prove that Z(G) ̸= 1.
(2) Prove that if G/Z(G) is nilpotent then G is nilpotent.
(3) Prove by induction on |G| that a finite p-group is nilpotent.

Exercise 1.25. Prove that if G is generated as a group by g1, . . . , gr then L(G) is generated as a Lie
algebra by g1γ2, . . . , grγ2.

Exercise 1.26. (1) Prove that for any exponent p group G, we have Li+1 = [Li, L1] in L(G).
(2) Prove that γi(L) =

⊕
j≥i Lj .

(3) Prove that one can also add the following statement as an equivalent condition in Theorem 1.18:

The associated Lie algebra L(B(r, p)) is nilpotent.
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2. A first study of n-Engel Lie algebra

2.1. n-Engel Lie algebras for n = 2, 3. We now look at particular case of nilpotency of n-Engel Lie
algebras. This section draws from Higgins [9] and Traustason [20].

Example 2.1 (2-Engel Lie Fp-algebras are nilpotent). Let L be a 2-Engel Lie Fp-algebra. For conve-

nience, we will write A,B,C, . . . for ada, adb, adc, . . .. As L is 2-Engel, we have [c, a(2)] = [c, b(2)] = 0, so
that, in End(L) we have A2 = B2 = 0. Because A+B is also a Lie element (it is ada+b) we also have:

0 = (A+B)2 = AB +BA. (⋆)

The case p ̸= 3. In particular, for all c ∈ L we have (c)AB + (c)BA = 0 hence using antisymmetry and
Jacobi:

0 = [c, a, b] + [c, b, a] = −[a, c, b]− [a, [c, b]]

= −[a, c, b]− ([a, c, b]− [a, b, c])

= [a, b, c]− 2[a, c, b].

As a, b, c are arbitrary, it follows that

BC − 2CB = 0 (⋆⋆)

Together, (⋆) and (⋆⋆) yield 3BC = 0 so that as p ̸= 3 we have [a, b, c] = 0 for all a, b, c ∈ L, i.e. L3 = 0.
The case p = 3. As equation (⋆) hold for any Lie element of L, it also holds for [B,C] in place of B, so
that

0 = A[B,C] + [B,C]A = ABC −ACB +BCA− CBA

Using (⋆) we have CB = −BC so ACB = −ABC and similarly BCA = ABC and CBA = −CAB =
ACB = −ABC so that the above yields 4ABC = 0 hence if p = 3 we have L4 = 0.

Example 2.2 (3-Engel Lie Fp-algebras are nilpotent for p ̸= 2, 5). Again, we writeA,B, . . . for ada, adb, . . ..
Linearization. We developp the 3-Engel equation 0 = (A+ λB)3 for a, b ∈ L and λ ∈ Fp:

λ(A2B +ABA+AB2) + λ2(AB2 +BAB +B2A) = 0 ( (λ))

This equation holds for all values of λ. As p ̸= 2, there exists λ ∈ Fp such that λ2 ̸= λ. By substracting
λ times (1) from (λ) and dividing the result by λ− λ2, we obtain

AB2 +BAB +B2A = 0 ( )

Applying ( ) to an arbitrary c ∈ L and using antisymmetry, we have

0 = [c, a, b(2)] + [c, b, a, b] + [c, b(2), a]

= −([a, c, b(2)] + [a, [c, b], b] + [a, [c, b(2)]])

whence CB2 + [C,B]B+ [C,B,B] = 0. By developping using [X,Y ] = XY − Y X we obtain the identity

3CB2 − 3BCB +B2C = 0 ( )

The case F3. In that case, ( ) yields the identity B2C = 0. Consider the vector space

I = SpanF3
([a, b(2)] | a, b ∈ L)

As B2C = 0 we have [[a, b(2)], c] = [c, [a, b(2)]] = 0 hence I is in fact an ideal of L. Now L/I is a 2-Engel
Lie F3-algebra hence by Example (L/I)4 = 0. It follows that the product of every 4 elements in L can

be written as
∑

i[ai, b
(2)
i ], so by B2C = 0 we conclude L5 = 0.

The case p ̸= 2, 3, 5. From ( ) and ( ) we deduce

AB2 = 2BAB B2A = −3BAB

In particular, we have

3AB2 = −2B2A. ( )

From AB2 = 2BAB we may multiply on the left by A to deduce A2B2 = 2ABAB. Further, we may
exchange A and B in B2A = −3BAB to get A2B = −3ABA then multiply by B on the right the latter
to get A2B2 = −3ABAB. We conclude that 5ABAB = 0. As we assume p ̸= 5, we have

ABAB = A2B2 = 0.

As above, let

J = SpanFp
([a, b(2)] | a, b ∈ L).
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From ( ), we have that for all a, b, c, [a, b(2), c] ∈ J so [d, c] ∈ J for any d ∈ J and so J is an ideal. The
Lie algebras L/J is 2-Engel of characteristic 3 hence by Example 2.2 it is nilpotent of class at most 2
hence [a, b, c] ∈ J for all a, b, c ∈ L. It follows from A2B2 = 0 that [a, b, c, d2] = 0 hence L satisfies the
identity

ABC2 = 0.

Using ( ) we have that

0 = ABC2 =
−2

3
AC2B =

4

9
C2AB

Again, as [a, b, c] ∈ J for all a, b, c ∈ L we conclude using C2AB that [a, b, c, d, e] = 0 for all a, b, c, d, e ∈ L.
We conclude that L5 = 0.

2.2. Varieties of Lie algebras, free Lie algebras. We fix a field F, and we consider the set Lie(x1, . . . , xn)
consisting of F-linear combination of (formal) Lie monomials in x1, . . . , xn. Those are called (formal) Lie
polynomials over F in x1, . . . , xn. For a Lie algebra L and a1, . . . , an ∈ L, we may again evaluate any
element p(x1, . . . , xn) from Lie(x1, . . . , xn) by interpreting the expression p(a1, . . . , an) in L. For instance
if p(x1, x2, x3) = [x1, x2, x3] + [x2, x3, x1] + [x3, x1, x2], then p(a1, a2, a3) = 0. Note that there is no
structure on Lie(x1, . . . , xn), for instance, [x1, x1] and [x2, x2] are formally two different objects (both
evaluated as 0 in any Lie algebra).

Definition 2.3 (Varieties of Lie F-algebras). Let V be a set of Lie polynomials in Lie(xi | i ∈ N). The
variety generated by V is the collection of all Lie algebras L such that for all p(x1, . . . , xn) ∈ V and for
all a1, . . . , an ∈ L we have p(a1, . . . , an) = 0. A variety of Lie algebras is a variety defined by some set of
words.

Exercise 2.4. Check that the class of n-Engel Lie F-algebras is a variety.

Definition 2.5 (Free Lie algebras). Given a variety of Lie F-algebras V and a set S of variable, a free
Lie F-algebra for V generated by S is an element F (S) of V containing S and such that for any Lie
F-algebra L ∈ V , any mapping S → L extends uniquely to a Lie F-algebra homomorphism F (S) → L.

S L

F (S)

⊂

Theorem 2.6. Every variety of Lie F-algebra admits a free Lie algebra in any given set of generators.

The existence of a free Lie F-algebra (for the class of all Lie F-algebras) can be defined via the free
associative F-algebra A = A(xi | i ∈ N). Before defining A, observe that the subset W+(ω) of W (ω) of
positive words (i.e. that do not involve x−1

i ) is a monoid for the multiplication. Now let A(ω) be the
associative algebra of F-linear combination of words in W+(ω) (which is an F-vector space) and where
multiplication in A(ω) is defined as such(∑

i

λivi

)
·

(∑
i

µiwi

)
=
∑
i,j

λiµjviwj

for λi, µj ∈ F, vi, wj ∈ W+(ω). Then the bracket [a, b] = ab − ba in A(ω) turns (A,+, [., .]) into a Lie
algebra. Then the Lie subalgebra L(ω) of A(ω) generated by (xi)i∈N is a free Lie F-algebra. One should
think of L(ω) as the Lie algebra of Lie polynomials in (xi)i∈N, just as the usual polynomials F[(Xi)i∈N] are
in fact the free object in the variety of all commutative F-associative algebras. We conflate monomials
in L(ω) with formal Lie monomials in variables (xi)i∈N. The free Lie algebra L(ω) is multigraded, in
the sense that it comes equipped with a well-defined notion of multiweight which associated to each
nonzero monomial in variables (x1, . . . , xn) the tuple (i1, . . . , in) where each ij is the number of times xi

appears in the monomial. For a given (i1, . . . , in) we define V(i1,...,in) to be the vector space spanned by
elements of multiweight (i1, . . . , in). One key fact about multiweight is that for two different multiweight
(i1, . . . , in), (j1, . . . , jn) we have

V(i1,...,in) ∩ V(j1,...,jn) = {0}.
We also have that

[V(i1,...,in), V(j1,...,jn)] ⊆ V(i1+j1,...,in+jn).

Note that by allowing the multiweight to The weight of the monomial is the sum i1 + . . . + in. For
instance, [x, y(3)] has multiweight (1, 3) and weight 4. If [x, y(3)] can be written as a linear combination
λ1m1 + . . . + λkmk then by the above, we may assume that each mi is again of multiweight (1, 3) in
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(x, y). Another important fact that will be used later is the following: assume that J = ϕ(L(ω)) is an
ideal which is given by the image of a multilinear map ϕ : Lk → L, then L(ω)/J is again multigraded.

Again, we might sometimes call relatively free a free Lie algebra for a variety strictly smaller than the
variety of all Lie F-algebras. An ideal I of F = L(ω) is called fully invariant if for all endomorphism θ
of F we have Iθ ⊆ I.

Lemma 2.7. Let I be a fully invariant ideal of the free Lie F-algebra F = L(ω). Then F/I is a free Lie
F-algebra for some variety V .

Proof. We set V be the variety of Lie F-algebras defined by the following subset of Lie((xi)i∈N):

{q ∈ Lie((xi)i∈N) | q(xi1 , . . . , xik) ∈ I for some distinct i1, . . . , ik ∈ N}.
We prove that L/I is a free Lie algebra relatively to V , freely generated by (xi + I)i∈N. Note that L/I
belongs to V since I is fully invariant. Let L be any Lie algebra in V , and assume we are given a mapping
f : {xi + I | i ∈ N} → L say xi + I 7→ ai ∈ L. By freeness of F , we know that the mapping xi 7→ ai
extends to a homomorphism θ : F → L. As L ∈ V , we have that I ⊆ ker θ hence θI : F/I → L is well
defined and is a Lie algebra homomorphism extending f , as required. □

A relatively free Lie algebra of characteristic 0 is always multigraded.

Exercise 2.8. Let V be a variety of Lie F-algebra with free group F = F (x1, . . . , xn). Assume that
[x1, . . . , xn] = 1.

(1) Prove that F is nilpotent of class < n.
(2) Prove that every element of V is nilpotent.

Exercise 2.9. Let V be a variety of Lie F-algebras such that every element of V is n-Engel for some
n ∈ N. Prove that there exists N ∈ N such that every element of V is N -Engel.

Exercise 2.10. Prove that if the free n-Engel Lie Q-algebra in countably generators F is nilpotent, then
so are any n-Engel Lie algebra over a field of characteristic 0.

Exercise 2.11. (1) Prove that for each n ∈ N, the vector space

SpanF(
∑

σ∈Sn

[a, b1σ, b2σ, . . . , bnσ] | a, bi ∈ L)

is an ideal.
(2) Deduce that if F is of characteristic p with p > n, then the free n-Engel Lie algebra is multigraded.

2.3. Higgins Theorem. Given a Lie algebra L, the derived series is defined as follows: L(0) = L1 = L,
and L(i+1) = [L(i), L(i)]. A Lie algebra is solvable if there exists k ∈ N such that L(k) = 0. Every
nilpotent Lie algebra is solvable, but the converse does not hold in general. However, for (p − 1)-Engel
Lie algebras, it holds. This is a classical result of Higgins and the proof here is the one of the original
paper [9].

Theorem 2.12. Let L be a n-Engel Lie algebra over a field of characteristic 0 or over Fp with n < p. If

L(d) = 0 then Lk = 0 where k = nd−1
n−1 + 1.

Proof. Let M = L2 = [L,L]. We first establish by induction that for all i ∈ N we have

Lni+2 ⊆ M i+1. (⋆)

It is trivial for i = 0, so assume i > 0. By Lemma 1.4, we have that
∑

σ∈Sn
[a, b1σ, . . . , bnσ] = 0. Using

the Jacobi identity, we have

[c, d1, . . . , di−1, di, di+1, di+2, . . . , dn] =[c, d1, . . . , di−1, di+1, di, di+2, . . . , dn]

+ [c, d1, . . . , di−1, [di, di+1], di+2, . . . , dn]

Using this, each term [a, b1σ, . . . , bnσ] can be written as the sum of [a, b1, . . . , bn] and a sum of commutators
of the form Z(f, k) = [a, bf1 , . . . , [bfk , bfk+1

], bfk+2
, . . . , bfn ]. Therefor, we have

0 =
∑

σ∈Sn

[a, b1σ, . . . , bnσ] = n![a, b1, . . . , bn] + Z

where Z is a sum of Z(f, k). It follows that

n![M i, b1, . . . , bn] =
∑
f,k

[Mi, bf1 , . . . , [bfk , bfk+1
], bfk+2

, . . . , bfn ]
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As M i is an ideal, we have

[Mi, bf1 , . . . , [bfk , bfk+1
], bfk+2

, . . . , bfn ] ⊆ [Mi, [bfk , bfk+1
], bfk+2

, . . . , bfn ]

Now as [bfk , bfk+1
] ∈ M and M i+1 is an ideal we conclude

[Mi, [bfk , bfk+1
], bfk+2

, . . . , bfn ] ⊆ M i+1.

In turn, we have proved that [M i, b1, . . . , bn] ⊆ M i+1. Now by induction hypothesis, we have that

Ln(i−1)+2 ⊆ M i.

A generic element of Lni+2 = [Ln(i−1)+2, L, . . . , L︸ ︷︷ ︸
n times

] will belong to [M i, b1, . . . , bn] ⊆ M i+1, so we conclude

that (⋆) holds.
Suppose that L(d) = 0, we prove the lemma by induction on d. If d = 1, this is clear as L(1) = L2 = 0.

Assume that d > 1 and L(d) = 0. Then, for M = L2, we easily check that M (d−1) = 0 and that

M is n-Engel, so that the induction hypothesis applies and Mk = 0 for k = nd−1−1
n−1 + 1. By (⋆),

Ln(k−1)+2 ⊆ Mk = 0 and n(k − 1) + 2 = nd−1
n−1 + 1, so we conclude. □

We immediately get:

Corollary 2.13. Let L be a (p − 1)-Engel Lie algebra over Fp. Then L is nilpotent if and only if L is
solvable.

2.4. Z2-gradings on Engel Lie algebras.

Lemma 2.14. Let L be an n-Engel Lie algebra over a field of characteristic p > n. Then for all m ≥ n
and x, y1, . . . , ym, the term [x, y1, . . . , ym] can be written as a linear combination of monomials of the
form [x, u1, . . . , un−1] where each ui is a monomial in y1, . . . , ym.

Proof. Using yiyj = yjyi + [yi, yj ], we obtain that for each σ ∈ S(n), the monomial [x, y1σ, . . . , ynσ] can
be written as the sum of [x, y1, . . . , yn] and a sum of monomials of the form

[x, yi1 , . . . , yis−1
, [yis , yis+1

], yis+2
, . . . , yin ].

Doing this for all σ ∈ S(n) and summing up, we obtain:

n![x, y1, . . . , yn] =
∑

σ∈S(n)

[x, y1σ, . . . , ynσ] + P

where P is a sum of terms of the form [x, yi1 , . . . , yis−1
, [yis , yis+1

], yis+2
, . . . , yin ], hence monomials

of the form [x, u1, . . . , un−1] where each ui is a monomial in y1, . . . , yn. By Lemma 1.4, the term∑
σ∈S(n)[x, y1σ, . . . , ynσ] vanishes and as p > n we may divide by n! so that the statement of the

lemma holds for m = n. By induction, assume that the statement holds for m ≥ n and consider
[x, y1, . . . , ym, ym+1]. As [x, y1, . . . , ym] can be written as a linear combination of terms [x, u1, . . . , un−1]
where the ui’s are monomials in y1, . . . , ym, the term [x, y1, . . . , ym+1] can be written as a linear com-
bination of monomials of the form [x, u1, . . . , un−1, ym+1]. By previously, each [x, u1, . . . , un−1, ym+1]
can be written as the sum of terms of the form [x, v1, . . . , vn−1], where each vi are monomials in
u1, . . . , un−1, ym+1 hence in fact monomials in y1, . . . , ym+1, so we conclude the lemma. □

Definition 2.15. A Z2-grading on a Lie algebra L is a decomposition L = L0 ⊕ L1 into vector spaces
such that [L0, L0] ⊆ L0, [L0, L1] ⊆ L1, [L1, L1] ⊆ L0. In order words: [Li, Lj ] ⊆ Li+j where the addition
happens in Z2.

Example 2.16. Let L be a relatively free Lie algebra with free generators x1, . . . , xK . Let S ⊆
{1, . . . ,K}, we define a Z2-grading L = L0 + L1 with

xi ∈ L0 ⇐⇒ i ∈ S

xi ∈ L1 ⇐⇒ i /∈ S.

To do so, consider the set U of all left-normed commutators in x1, . . . , xK and split U in two subsets
U = U0 ∪ U1 where U0 is the set of commutators where an even number of elements from {xj | j /∈ S}
occurs and U1 = U \ U0. Define L0 = Span(U0) and L1 = Span(U1). As every monomial is a linear
combination of left-normed commutators, we have L = L0 ⊕ L1. The number of such gradings on L is
2K .
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Lemma 2.17. Let L = L0 ⊕ L1 be an n-Engel Lie algebra with a Z2-grading and suppose that L0 is
nilpotent of class at most m− 1. Then L is nilpotent of class bounded by

n(n−1)(m−1)+m+1 − 1

n− 1
.

Proof. Recall that the derived series of L is defined by L(0) = L and L(i+1) = [L(i), L(i)]. Then L(1) ⊆
L0 + [L1, L0], L

(2) ⊆ L0 + [L1, L0, L0] and more generally

L(k) ⊆ L0 + [L1, L0, . . . , L0︸ ︷︷ ︸
k times

]. (⋆)

First, we prove that [L1, L0, . . . , L0] = 0 for k = (m − 1)(n − 1) + 1. For any b, a1, . . . , ak with k ≥ n,
by Lemma 2.14, [b, a1, . . . , ak] is a linear combination of monomials of the form [b, c1, . . . , cn−1] where
c1, . . . , cn−1 are commutators in a1, . . . , ak whose weight add up to k. Assume now that b ∈ L1, ai ∈ L0

and that c is the nilpotency class of L0, then for k = (m − 1)(n − 1) + 1 one of the commutator ci
has weight m hence vanishes. Now by (⋆), we have L(k) ⊆ L0 hence L(k+m) = 0. By Higgins theorem

(Theorem 2.12), L is nilpotent of class nk+m−1
n−1 . □

2.5. Group algebra, Young tableau and representation theory of the symmetric group. Ref-
erences for this section are [5] and [10]. Given a field F and a finite group G, we may consider the group
algebra FG which is the set of all formal linear combination

∑
g∈G λgg with λ ∈ F where addition is

defined naturally:

(
∑
g

λgg) + (
∑
g

µgg) =
∑
g

(λg + µg)g

and multiplication is defined as follows:

(
∑
g

λgg) · (
∑
g

µgg) =
∑
g,h

λgµhgh.

A representation of G (over F) is the data of a right-action of G on an F-vector space V which is linear,
in the sense that (λv+µw)g = λvg+µwg. A representation V of G (with a given right-action of G on V )
is the same thing as equipping V with the action of a FG-module in the standard sense. Note that FG
itself is already a FG-module (and of course a representation of G over F), which is called the standard
representation. Given any action of G on a subset X of a vector space over F, this action extends linearly
to V = SpanF(X) which gives a representation of G.

An FG-module V which does not admit nontrivial FG submodule is called simple. The equivalent
notion for a representation is called irreducible, that is, a representation V of G such that no nontrivial
vector subspace of V is closed under the action of G. The algebra FG is called semisimple if can be
written as a direct sum of simple submodule, equivalently, the representation V can be written as a
direct sum of irreducible representations. As G is finite, the condition for semisimplicity is given by the
celebrated Maschke’s theorem: FG is semisimple if and only if the characteristic of F does not divide |G|.

We are now interested in the representation theory of symmetric groups Sd. The irreducible repre-
sentations of Sd are classified and are given using the notion of Young tableau, which we define now. We
fix d ∈ N. Given a partition δ = (δ1 ≥ . . . ≥ δs) of d (i.e. such that d = δ1 + . . .+ δs), a Young diagram
is the following diagram

δ1 . . . . . . . . .

δ2 . . . . . .

δ3 . . .
...

δs

with δi boxes at the i-th row. For instance the Young diagrams associated to the five partitions 4 = 4 ,
4 = 3 + 1, 4 = 2 + 2, 4 = 2 + 1 + 1, 4 = 1 + 1 + 1 + 1 are given as follows respectively
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Given a Young diagram, one defines a Young tableau by filling in the boxes of a Young diagram with
the numbers in {1, . . . , d}. Canonical examples are given by numbering the boxes in the (descending)
lexicographical order:

1 2 3 4 1 2 3

4

1 2

3 4

1 2

3

4

1

2

3

4

One crucial property of a Young tableau for d is that it has either a first row of length at least (the

smallest integers greater than or equal to)
√
d.

For each Young tableau T , let V = VT be the subgroup of Sd which permutes elements within each
column and H = HT the subgroup of Sd which permutes elements within each row. The representation
theory of the symmetric group is given by the following.

Theorem 2.18. Let F be either Q of Fp, for p > d. For each Young tableau T there exists s = s(T ) ∈ N
such that s divides d! and such that the element e = e(T ) defined by

e =
1

s

∑
π∈V,ρ∈H

sgn(π)πρ ∈ FSd

is idempotent, i.e. satisfies e2 = e. We call it a primitive idempotent. Let W = W (T ) be the image
of FSd by right-multiplication by e, then W is an irreducible representation of Sd and every irreducible
representation of Sd occurs this way. Let T1, . . . , Tk be all Young tableau (up to permutation of the
numbering of the boxes). Let e1, . . . , ek be the corresponding primitive idempotent and Wi = FSdei for
i = 1, . . . , k. Then the map x 7→ xe1 + . . .+ xek defines an isomorphism FSd

∼= W1 ⊕ . . .⊕Wk.

Of course, FSd
∼= V1 ⊕ . . . ⊕ Vk provides the decomposition of the algebra FSd as a sum of simple

modules mentioned above. The main fact we will use from the above theorems is the following equivalent:
1 ∈ FSd can be written as a sum of primitive idempotent.

2.6. A theorem of Traustason on 4-Engel Lie algebras. In this subsection we will illustrate the
use of representation theory of the symmetric group to give the strategy of the proof of Traustason’s
theorem below [20, Section 3.1, 3.2, 4.2]. We will not give a complete proof. We follow a presentation
which draws more from Vaughan-Lee’s approach in [24, 25].

Theorem 2.19 (Traustason, 2011). Let L be a 4-Engel Lie algebra of characteristic p > 5, the L is
nilpotent of class at most 7.

Let L be a free 4-Engel Lie algebra over Fp with p > 5, freely generated by x1, . . . , x8. By freeness,
the theorem follows if we are able to prove that

[x1, . . . , x8] = 0. (†)
Goal. By putting together Claims 2, 3 and 4 below we will conclude the following statement.

The equality
[x1, x2, x3, x4, x5, x6, x7, x8] = 0

in free 8-generated 4-Engel Lie algebra of characteristic p > 5 follows from
all the equalities

M(x1, x2, x3, x4, x5, x6) = 0

for all monomial M of multiweight (3, 1, 1, 1, 1, 1) in a free 6-generated
4-Engel Lie algebra of characteristic p > 5 and in a free 6-
generated Lie superalgebra of characteristic p > 5 which satisfies∑

σ∈S(4)[X,Y1σ, Y2σ, Y3σ, Y4σ] = 0.

It might not be completely evident why this reduction is a reduction at all, in fact for some aspect it
seems we have reduced the question to an even harder thing to prove! But the main point comes from
the fact that the number of generators required has been reduced from 8 to 6. The number of generators
is a huge problem when it comes to computational algebra and a reduction of the number of generators
might be the only way to reduce the computing times drastically. In fact, Gunnar Traustason goes even
further than that reduction above and goes down to 4 generators and the uses a computer program to
check the identities. The strategy laid down in this section is a very good illustration of the methods
that will be involved in the proof of Zelmanov’s theorem.
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Le M be the vector subspace of L generated by all multilinear monomials in x1, . . . , x8 of weight 8.
Note that

M = SpanFp
([xi1 , . . . , xi8 ] | {i1, . . . , i8} = {1, . . . , 8}).

We let S(8) act naturally on x1, . . . , x8 via xiσ = xiσ. This action extends to every monomial:

[xi1 , . . . , xi8 ]σ = [xi1σ, . . . , xi8σ]

Then this action extends linearly by∑
j

λj [xi1(j), . . . , xi8(j)]

σ =
∑
j

λj [xi1(j), . . . , xi8(j)]σ

so thatM is given the structure of an FpS(8)-module. We also seeS(5) ⊆ S(8) acting onM by the action
on x1, . . . , x5 (with x6σ = x6, x7σ = x7, x8σ = x8) so that we may consider M as an FpS(5)-module.

By Subsection 2.5, the identity in FpS(5) may be written as a sum of primitive idempotent e1+. . .+es.
It follows that (†) holds if we can prove that for all primitive idempotent e of FpS(5), we have

[x1, . . . , x8]e = 0 (‡)
We fix a primitive idempotent e corresponding to a Young tableau T and write

e =
1

s

∑
π∈V,ρ∈H

sgn(π)πρ

for V the subgroup of S(5) which permutes the columns of T and H the subgroup of S(5) which permutes
the rows of T . The tableau T has either the first row of length at least 3, or the first column of length
at least 3, respectively type 1 or type 2.
Case 1: e has type 1. Assume first that T has type 1 and let i1, i2, i3 be the first three elements of the
first row. This corresponds to the following four Young diagrams.

i1 i2 i3 i1 i2 i3 i1 i2 i3 i1 i2 i3

Let S be the subgroup of H which permutes the entries i1, i2, i3 in T , so that S ∼= S(3). Let C be a
left transversal for S in H, i.e. such that H =

⊔
c∈C cS and let f =

∑
σ∈S σ. Then

[x1, . . . , x8]e = [x1, . . . , x8]

1

s

∑
π∈V,ρ∈H

sgn(π)πρ


=

1

s

∑
π∈V,,c∈C,σ∈S

sgn(π)[x1, . . . , x8]πcσ

=
1

s

∑
π∈V,,c∈C

sgn(π)[x1, . . . , x8]πc(
∑
σ∈S

σ)

=
1

s

∑
π∈V,c∈C

sgn(π)[x1, . . . , x8]πcf

In order to establish (‡), it is enough to prove that each summand vanishes. Fix π ∈ V, c ∈ C and Let
1 ≤ j1, j2, j3 ≤ 5 be such that {i1, i2, i3} = {j1 < j2 < j3}πc. It suffices to prove that∑

σ∈S

[x1πc, . . . , (xj1πc)σ, . . . , (xj2πc)σ, . . . , (xj3πc)σ, . . . , x5πc, x6, x7, x8] = 0

By renaming the variables, we have that for e of type 1, (‡) follows by establishing all the following
equalities, for all 1 ≤ i1 < i2 < i3 ≤ 5∑

σ∈S(3)

[x1, . . . , xi1σ , . . . , xi2σ , . . . , xi3σ , . . . , x5, x6, x7, x8]

Case 2: e has type 2. Now we assume that e has type 2, hence the first column has length at least 3
and let i1, i2, i3 be the first three elements. This corresponds to the following four diagrams.

Let S ∼= S(3) be the subgroup of V which permutes {i1, i2, i3}. Let C be a right transversal for S in
V , i.e. such that V =

⊔
c∈C Sc and let f =

∑
σ∈S sgn(σ)σ. Then
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i1

i2

i3

i1

i2

i3

i1

i2

i3

i1

i2

i3

[x1, . . . , x8]e = [x1, . . . , x8]

1

s

∑
π∈V,ρ∈H

sgn(π)πρ


=

1

s

∑
σ∈S,c∈C,ρ∈H

[x1, . . . , x8] sgn(σc)σcρ

=
1

s

∑
c∈C,ρ∈H

sgn(c)[x1, . . . , x8](
∑
σ∈S

sgn(σ)σ)cρ

=
1

s

∑
c∈C,ρ∈H

sgn(c)[x1, . . . , x8]fcρ

Again, to establish (‡), it is enough to prove that each summand is zero and hence we obtain that it
suffices to prove that for all 1 ≤ i1 < i2 < i3 ≤ 5, we have∑

σ∈S(3)

sgn(σ)[x1, . . . , xi1σ , . . . , xi2σ , . . . , xi3σ , . . . , x5, x6, x7, x8]

We have established the following claim.

Claim 2. Equation (†) follows if we can establish the two following equations for all 1 ≤ i1 < i2 < i3 ≤ 5:∑
σ∈S(3)

[x1, . . . , xi1σ , . . . , xi2σ , . . . , xi3σ , . . . , x5, x6, x7, x8] (Esym)

∑
σ∈S(3)

sgn(σ)[x1, . . . , xi1σ , . . . , xi2σ , . . . , xi3σ , . . . , x5, x6, x7, x8] (Eskew)

Let E be the associative algebra generated by three elements e1, e2, e3 and relations e2i = 0 and
eiej = ejei. Then consider the tensor product of algebras

L̃ = L⊗ E.

Then L is a Lie algebra, and by Lemma 1.4, it is 4-Engel.

Exercise 2.20. Prove that L̃ is a 4-Engel Lie algebra.

Consider X234 = x2 ⊗ e1 + x3 ⊗ e2 + x4 ⊗ e3 and set Xi = xi ⊗ 1. On has that

[X1, X
(3)
234, X5, X6, X7, X8] =

 ∑
σ∈S(2,3,4)

[x1, x2σ, x3σ, x4σ, x5, x6, x7, x8]

⊗ e1e2e3

Similarly, for X134 = x1 ⊗ e1 + x3 ⊗ e2 + x4 ⊗ e3, we have that

[X134, X2, X
(2)
134, X5, X6, X7, X8] =

 ∑
σ∈S(1,3,4)

[x1σ, x2, x3σ, x4σ, x5, x6, x7, x8]

⊗ e1e2e3.

By mimicking the above, we have that every sum in (Esym) can be realized as a product in L̃ where
Xi1i2i3 appears 3 times and the Xi once, for each i /∈ {i1, i2, i3}. We have proved the following claim.

Claim 3. In order to establish (Esym), it is enough to prove that every 6 generated 4-Engel Lie Fp-algebra
satisfy P (X1, . . . , X6) = 0 for every monomial P of multiweight (3, 1, 1, 1, 1, 1).

We now turn to (Eskew). Let U be the associative algebra generated by three elements u1, u2, u3 and
submitted to the relations u2

i = 0, uiuj = −ujui and consider

Lsuper = L⊗ U.
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Let L0 = L⊗ Span(uiuj | 1 ≤ i, j, k ≤ 3) and L1 = L⊗ Span(ui, uiujuk | 1 ≤ i, j, k ≤ 3). Then one easily
checks that Lsuper is a Lie superalgebra, and by Lemma 1.4, it satisfies the identity

∑
σ∈S(4)[X,Y1σ, Y2σ, Y3σ, Y4σ] =

0,

Exercise 2.21. Prove that Lsuper is a Lie superalgebra.

Let ι : 1 7→ 2, 2 7→ 3, 3 7→ 4, observe that for any σ ∈ S(2, 3, 4) we have

u1ισu2ισu3ισ = sgn(σ)u1u2u3,

hence for X234 = x2 ⊗ u1 + x3 ⊗ u2 + x4 ⊗ u3 and Xi = xi ⊗ 1, similarly as above we obtain,

[X1, X
(3)
234, X5, X6, X7, X8] =

∑
σ∈S(2,3,4)

([x1, x2σ, x3σ, x4σ, x5, x6, x7, x8]⊗ u1σu2σu3σ)

=

 ∑
σ∈S(2,3,4)

sgn(σ)[x1, x2σ, x3σ, x4σ, x5, x6, x7, x8]

⊗ u1u2u3

and we recognise an instance of Eskew. It follows that, as above, we may conclude the following claim.

Claim 4. In order to establish (Eskew), it is enough to prove that every 6-generated Lie superalgebra
algebra over Fp which satisfies

∑
σ∈S(4)[X,Y1σ, Y2σ, Y3σ, Y4σ] = 0 also satisfies P (X1, . . . , X6) = 0 for

every monomial P of multiweight (3, 1, 1, 1, 1, 1).

This establishes our result above. As mentioned above, Traustason goes even further than this reduc-
tion and reduces the question to 4-generated stuctures. Once he reaches Step 2 and the reduction to
equations of type: ∑

σ∈S(3)

[x1, . . . , xi1σ , . . . , xi2σ , . . . , xi3σ , . . . , x5, x6, x7, x8]

∑
σ∈S(3)

sgn(σ)[x1, . . . , xi1σ , . . . , xi2σ , . . . , xi3σ , . . . , x5, x6, x7, x8]

for all 1 ≤ i1 < i2 < i3 ≤ 5, one immediately sees that for a fixed i1, i2, i3, say (i1, i2, i3) = (2, 3, 4), there
are still 5 variables left unchanged in the sum∑

σ∈S(2,3,4)

[x1, x2σ, x3σ, x4σ, x5, x6, x7, x8]

One may therefore consider the action of S({1, 5, 6, 7, 8}) on M and use another round of the same
argument layed down above. That way, Traustason were able to reduce the equality [x1, . . . , x8] = 0 to
equations in 4-generated structures, Lie algebras, Lie superalgebras, and colour algebras. Then he
used computer algebra and nilpotent quotient algorithm in order to check those identities and prove his
theorem.

3. Zelmanov Characteristic 0 Theorem

The goal of this section is to prove Zelmanov’s characteristic 0 theorem.

Theorem. Every n-Engel Lie algebra over a field of characteristic 0 is nilpotent.

We now explain how to deduce the asymptotic solution to the RPB from Zelmanov’s characteristic 0
Theorem. Let ∆ be the two-sorted theory of n-Engel Lie algebras over a field of characteristic 0, i.e. the
field sort is axiomatised by the theory of fields and all sentences

θp := 1 + 1 + . . .+ 1︸ ︷︷ ︸
p times

̸= 0

whereas the Lie algebra sort is axiomatised by the theory of Lie algebra with the extra sentence

∀x, y [x, y(n)] = 0.

Being nilpotent of class ≤ c is expressible by a single sentence ϕc, and Zelmanov theorem can be stated
as follows:

∆ ⊨
∨
c∈N

ϕc
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Compactness implies that a finite fragment of ∆ implies a finite fragment of the right hand side. In
particular, only finitely many of the θp’s are necessary to imply finitely many of the ϕc’s hence we may
conclude the following1.

Theorem (Asymptotic nilpotency for n-Engel Lie algebras). For each n ∈ N, there exists N, c ∈ N such
that every n-Engel Lie algebra over a field of characteristic p > N is nilpotent of class ≤ c.

3.1. Step 1: Establishing the induction scheme. In order to prove the theorem, it is enough to
prove that the relatively free n-Engel Lie algebra over Q in countably generators is nilpotent.

We will use the following well-known result of Kostrikin mentioned in the introduction.

Theorem (Kostrikin, 1958). Let L be an n-Engel Lie algebra of characteristic 0 (or of characteristic
p > n), then L contains an abelian ideal.

During the rest of this section, n ∈ N is fixed and let L be the relatively free n-Engel Lie algebra over
Q in countably many generators {xi | i ∈ N}.

We construct a chain of ideals (Iα)α<γ in the following way:

• if α = 0 start with I0 = {0},
• if α is a successor ordinal hence Iα−1 has been constructed, consider π : L → L/Iα−1 and let Iα
to be the sum of all abelian ideals of L/Iα−1 and define Iα := π−1(Iα),

• if α is a limit ordinal, set Iα =
⋃

λ<α Iλ.

As the homomorphic image of any n-Engel Lie algebra stays n-Engel, Kostrikin Theorem ensure that
L/Iα−1 always contains a nontrivial ideal, as soon as Iα−1 ̸= L. By a cardinality argument there is a
(countable) ordinal γ such that L = Iγ .

Claim 5. For each α ≤ γ, Iα is fully invariant. In particular L/Iα is relatively free.

Proof. We prove it by induction. If α = 0 or α is limit, the result is clear, so we assume that α is
successor and that Iα−1 is fully invariant. As L/Iα−1 is relatively free, every relation that holds in
L/Iα−1 is an identical relation. Using the isomorphism: (L/Iα−1)/(Iα/Iα−1) ∼= L/Iα, it suffices to prove
that I := Iα/Iα−1 is a fully invariant ideal of M := L/Iα−1. Let θ be any endomorphism of M and let
a be an element generating an abelian ideal. As I is the sum of all abelian ideals of M , it is enough to
show that aθ generates an abelian ideal. Let (yi)i<ω be the free generators of M . Assume that a lives in
the Lie subalgebra of L generated by y1, . . . , yr. Because a generates an abelian ideal in M , we have

[a, yr+1, . . . , yr+k, a] = 0

for any k ≥ 1. Now for arbitrary elements a1, . . . , ak of M , the tuple (y1, . . . , yr, yr+1, . . . , yr+k) can be
mapped to the tuple (y1θ, . . . , yrθ, a1, . . . , ak) by an endomorphism ϕ of M . Observe now that aϕ = aθ
so that

[aθ, a1, . . . , ak, aθ] = 0.

As this holds for all a1, . . . , ak ∈ M and k ≥ 1, the ideal generated by aθ is abelian. □

We prove that for all 0 < β ≤ γ there exists α < β such that L/Iα is nilpotent. By basic properties of
ordinals, this implies that L/I0 = L is nilpotent.

Claim 6. If β is a limit ordinal and L/Iβ is nilpotent, then there is α < β such that Iα is nilpotent.

Proof. Assume that Iβ =
⋃

α<β Iα. As L/Iβ is nilpotent, then [x1, . . . , xm] ∈ Iα for some m ∈ N and

α < β. Then L/Iα is a relatively free Lie algebra (by Claim 5) and because [x1, . . . , xm] = 0, the latter
is an identity, which means that L/Iα is nilpotent. □

It remains to prove that if β is a successor ordinal and L/Iβ is nilpotent then L/Iβ−1 is also nilpotent.
This is the core of the proof, and will occupy the rest of this section.

Remark 3.1. Another equivalent way of stating the strategy is to consider β to be the minimal element
of the set {α ≤ γ | L/Iα is nilpotent}, which is nonzero since it contains γ. Then Claim 6 yields that β
must be either zero or a successor cardinal. Assuming that β is a successor ordinal, we prove that L/Iβ−1

is also nilpotent which forces β to be 0 and L to be nilpotent.

1See also [23] for a quick argument for the same result which does not use any logic. Traustason wrote a constructive

account of Zelmanov’s proof, yielding explicit bounds for N, c, depending on n [21].
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3.2. Step 2: First footstep in the induction step. We let M = L/Iβ−1 and I = Iβ/Iβ−1. Then
M/I ∼= L/Iβ hence M/I is nilpotent and we want to prove that M is nilpotent. Of course, I is the
sum of all abelian ideals of M . Recall also that M is relatively free and of charactericstic 0 hence it is
multigraded. By abuse of notation, we reuse the variables (xi)i<ω to denote a set of generators of the
relatively free Lie algebra M . We also consider another set of generators of M , this time indexed by
N × N, which we denote (x(i,j))(i,j)∈N×N. We will prove that for some K,N ∈ N we have that (x(i,j))i,j
satisfy the following identity.

[[x(1,1), x(1,2), . . . , x(1,K)], [x(2,1), x(2,2), . . . , x(2,K)], . . . , [x(N,1), . . . , x(N,K)]] = 0. (1)

As M is realively free, this implies that the above is an identity in M and hence that M is solvable. Then
using Higgins Theorem (Corollary 2.13), we conclude that M is nilpotent.

3.3. Step 3: Linearization. Let m be such that (M/I)m = 0, so that [x1, . . . , xm] ∈ I hence there
exists a1, . . . , ak−1 ∈ I with

[x1, . . . , xm] = a1 + . . .+ ak−1

where each ai generates an abelian ideal. This is a general fact, if a Lie algebra is generated by elements
which generates abelian ideals, then the product of two elements that generates an abelian ideal also
generates an abelian ideal so that every element can be written as a sum of elements that generates
an abelian ideal. In particular, in any monomial where [x1, . . . , xm] appears k-times, by developing the
sums, one of the ai appears at least twice in each summand hence vanishes, so the ideal generated by
[x1, . . . , xm] is nilpotent of class < k. It follows that we have the identities:

[[x1, . . . , xm], . . . , [x1, . . . , xm], . . . , [x1, . . . , xm]] = 0

where any number and any element can appear in between the monomials [x1, . . . , xm], which appear k
times.

Claim 7 (Linearization). M satisfies the following identity:∑
σ1∈S(k),...,σm∈S(k)

[[x(1σ1,1), . . . , x(1σm,m)], . . . , [x(2σ1,1), . . . , x(2σm,m)], . . . , [x(kσ1,1), . . . , x(kσm,m)]] = 0

(Λ)

In the above, we omit that any number of elements can be put in between the commutators [x(iσ1,1), . . . , x(iσm,m)].

Proof. It is an easy exercise of linearization by setting xi to be
∑k

j=1 λj,ix(j,i) for λ1,i, . . . , λk,i ∈ F. To
convince yourself, do it with k = 3 and m = 2. Write

x1 =

3∑
j=1

λjx(j,1), x2 =

3∑
j=1

µjx(j,2),

then

[[x1, x2], . . . , [x1, x2], . . . , [x1, x2]] = [
∑

1≤i,j≤3

[λix(i,1), µjx(j,2)], . . . ,
∑

1≤i,j≤3

[λix(i,1), µjx(j,2)], . . . ,
∑

1≤i,j≤3

[λix(i,1), µjx(j,2)]]

=
∑

1≤i,j,k,l,s,t≤3

[[λix(i,1), µjx(j,2)], . . . , [λkx(k,1), µlx(l,2)], . . . , [λsx(s,1), µtx(t,2)]]

Now by evaluation (λ1, λ2, λ3, µ1, µ2, µ3) = (0, 1, 1, 1, 1, 1), one sees that in the sum above, the sum of
all monomials where x(1,1) does not occur vanishes, hence we may assume that the sum only involves
monomials where x(1,1) occurs. Iterating the argument above, we may assume that all monomials in the
sum above involve each x(i,j) at least (and by the degree at most) once. In turn, the sum above equals:∑

1≤i,j,k,l,s,t≤3
i,j,k,l,s,t all distinct

[[x(i,1), x(j,2)], . . . , [x(k,1), x(l,2)], . . . , [x(s,1), x(t,2)]]

which is easily seens to equal∑
σ1,σ2∈S(3)

[[x(1σ1,1), x(1σ2,2)], . . . , [x(2σ1,1), x(2σ2,2)], . . . , [x(3σ1,1), x(3σ2,2)]].

□
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3.4. Step 4: Reduction to symmetric/skew-symmetric sums. We prove that the equation

[[x(1,1), x(1,2), . . . , x(1,K)], [x(2,1), x(2,2), . . . , x(2,K)], . . . , [x(N,1), . . . , x(N,K)]] = 0 (1)

is a consequence of the equations

ϵ1∑
σ1∈S1

ϵ2∑
σ2∈S2

. . .

ϵK∑
σK∈SK

[. . . , [xσ1

(1,1), . . . , x
σK

(1,K)], . . . , [x
σ1

(2,1), . . . , x
σK

(2,K)] . . . , [x
σ1

(R,1), . . . , x
σK

(R,K)], . . .] = 0 (2)

where each Si is a copy of S(R) which acts by permutation on the generators {x(1,i), . . . , x(R,i)} (and

leaves the other generators invariant) and where R2K = N and ϵi ∈ {+,−}, and by definition

+∑
σ∈S(R)

tσ :=
∑

σ∈S(R)

tσ and

−∑
σ∈S(R)

tσ :=
∑

σ∈S(R)

sgn(σ)tσ.

Action on the first coordinates. We start by acting on the “first coordinates” of the monomials

t1 :=[x(1,1), x(1,2), . . . , x(1,K)]

...

tN :=[x(N,1), x(N,2), . . . , x(N,K)]

The group S(N) act on the set (on the right) {x(1,1), . . . , x(N,1)} by x(i,1)σ = x(iσ,1) and extends to all
x(i,j) by x(i,j)σ = x(i,j) if j ̸= 1. Then this action extends to all monomials by

[x(i1,j1), x(i2,j2), . . . , x(is,js)]σ = [x(i1,j1)σ, x(i2,j2)σ, . . . , x(is,js)σ]

and finally the group algebra QS(N) acts on the Q-vector span of those monomials (i.e. M) in the
natural way.

By Subsection 2.5, in order to obtain equation (1) it is enough to prove that for all primitive idempotent
e ∈ QS(N), we have

[[x(1,1), x(1,2), . . . , x(1,K)], [x(2,1), x(2,2), . . . , x(2,K)], . . . , [x(N,1), . . . , x(1,K)]]e = 0. (3)

Indeed, the identity Id of QS(N) can be written as a sum of primitive idempotents Id = e1 + . . .+ es
and for any linear combination u of monomials in x(i,j) we have u = Id(u) =

∑s
i=1 uei.

Any primitive idempotent corresponds to a Young diagram which has either a first row of length at
least N1/2 or the first column of length at least N1/2. The first case will be called the “symmetric” case
and the second case will be called the “skew-symmetric” case. The idempotent e can be written as

e =
1

s

∑
π∈V,ρ∈H

sgn(π)πρ

for some s dividing N ! and where V is the subgroup of S(N) that permutes the entries within each
columns and H is the subgroup which permutes the entries of the rows.

Symmetric case. We assume here that the first row of the Young diagram associated to e has length
at least N1/2, and we denote i1, . . . , iN1/2 the first N1/2 elements of the associated Young tableau of e.

N1/2︷ ︸︸ ︷
i1 i2 . . . ij . . .

. . .
...

. . .

As H is the subgroup of S(N) which permutes all the entries within each rows, the group of all
permutations of the set {i1, . . . , iN1/2} can be seen as the subgroup S of H which fixes elements of
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{1 . . . , N} \ {i1, . . . , iN1/2}. Let C be a left transversal for S in H, i.e. with H =
⊔

c∈C cS. We set
f :=

∑
σ∈S σ. Then

[t1, . . . , tN ]e = [t1, . . . , tN ]
1

s

∑
π∈V,c∈C,σ∈S

sgn(π)πcσ

=
1

s

∑
π∈V,c∈C

sgn(π)[t1, . . . , tN ]πc
∑
σ∈S

σ

=
1

s

∑
π∈V,c∈C

sgn(π)[t1, . . . , tN ]πcf

It is enough to show that for each π ∈ V, c ∈ C, [t1, . . . , tN ]πcf = 0, so fix π ∈ V, c ∈ C and let
j1 < . . . < jN1/2 be such that

{j1πc, . . . , jN1/2πc} = {i1, . . . , iN1/2}.
Then, because S only acts on {i1, . . . , iN1/2},

[t1, . . . , tN ]πcf =
∑
σ∈S

[t1πcσ, . . . , tj1πcσ, . . . , tjN1/2
πcσ, . . . , tNπcσ]

=
∑
σ∈S

[t1πc, . . . , tj1πcσ, . . . , tjN1/2
πcσ . . . tNπc]

For j ∈ {j1, . . . , jN1/2} we have

tjπcσ = [x(jπcσ,1), x(j,2), . . . , x(j,K)]

and as σ runs over S, (j1πcσ, . . . , jN1/2πcσ) runs over all permutations of (i1, . . . , iN1/2). So in order to
prove equation (3) for that idempotent e, it is enough to establish each equation of the form∑

σ∈S

[. . . , tj1πcσ, . . . , tjN1/2
πcσ, . . .] = 0

for each π ∈ V, c ∈ C. Note that the left hand side of the previous equation is a commutator of
multiweight NK which is multilinear because we started with the equation (3) which is multilinear, and
we are applying permutations of the generators. We may now re-label the generators so that proving
equation (3) reduces to proving:

∑
σ∈S(N1/2)

[. . . , tσ1 , . . . , t
σ
2 , . . . , t

σ
N1/2 , . . .] = 0 (4)

Recall that extra entries are to be inserted between the entries tσ1 , . . . , t
σ
N1/2 , and those are fixed

throughout the sum (and the expression is still multilinear). But those extra entries also varies when
considering two different sums of the above form.

Skew-symmetric case. In this case, the sum will be twisted because the permutation subgroup of N1/2

elements will be a subgroup of V instead of H.

N1/2


i1 . . .

i2
. . .

...
. . .

ij
...

Although the argument is similar, we will repeat it in details. Let i1, . . . , iN1/2 be the first N1/2

entries in the first column of the Young tableau, and let S be the subgroup of V which fixes {1, . . . , N} \
{i1, . . . , iN1/2} and let C be a right transversal for S in V , that is

V =
⊔
c∈C

Sc.

Let f =
∑

σ∈S sgn(σ)σ. For c ∈ C and σ ∈ S we have sgn(σc) = sgn(σ) sgn(c) hence
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[t1, . . . , tN ]e = [t1, . . . , tN ]
1

s

∑
σ∈S,c∈C,ρ∈H

sgn(σc)σcρ

=
1

s

∑
c∈C,ρ∈H

sgn(c)[t1, . . . , tN ](
∑
σ∈S

sgn(σ)σ)cρ

=
1

s

∑
c∈C,ρ∈H

sgn(c)[t1, . . . , tN ]fcρ

Now we may re-label ij so that i1 < . . . < iN1/2 and for each c ∈ C, ρ ∈ H :

[t1, . . . , tN ]fcρ =
∑
σ∈S

sgn(σ)[t1σ, . . . , ti1σ, . . . , tiN1/2
σ, . . . , tNσ]cρ

=
∑
σ∈S

sgn(σ)[t1, . . . , ti1σ, . . . , tiN1/2
σ, . . . , tN ]cρ

since tiσ = ti if i /∈ {i1, . . . , iN1/2} and tiσ = [x(iσ,1), x(i,2) . . . , x(i,K)] for i ∈ {i1, . . . , iN1/2}. As above, in
order to obtain equation (3) it is enough to prove that∑

σ∈S(N1/2)

sgn(σ)[. . . , tσ1 , . . . , t
σ
2 , . . . , t

σ
N1/2 , . . .] = 0 (5)

Putting together (4) and (5), we conclude that in order to establish equation (1), it is enough to prove
that for ϵ ∈ {+,−} we have:

ϵ∑
σ∈S(N1/2)

[. . . , tσ1 , . . . , t
σ
2 , . . . , t

σ
N1/2 , . . .] = 0. (6)

Action on the second coordinates. According to equation (6), we now no longer need to consider
monomials t1, . . . , tN but only subsets of size N1/2 of those. We fixed one such subset and re-labeled it
t1, . . . , tN1/2 . We continue by acting on the second coordinates of the monomials

t1 = [x(1,1),x(1,2), . . . , x(1,K)]

...

tN1/2 = [x(N1/2,1),x(N1/2,2), . . . , x(N1/2,K)].

We let S(N1/2) acts on {x(1,2), . . . , x(N1/2,2)}, leaving all other generators invariant, we extend the action

on all monomials coordinatewise. Then QS(N1/2) acts on the span of all those monomials, i.e. on all
M . In order to establish (6), it is enough to prove that for every primitive idempotent e ∈ QS(N1/2) we
have  ϵ∑

σ∈S(N1/2)

[. . . , tσ1 , . . . , t
σ
2 , . . . , t

σ
N1/2 , . . .]

 e = 0. (7)

We write

e =
1

s

∑
π∈V,ρ∈H

sgn(π)πρ

where V is the group that permutes the values in the column of the Young tableau and H is the group
that permutes the values inside each row. The Young tableau associated to e will again have either a row
of length at least N1/4 or a column of length at least N1/4, which leads us again to two cases.

Symmetric case. If e corresponds to a Young tableau with the first row of length at least N1/4 let
i1, . . . , iN1/4 be the first entries and let S be the subgroup of H that fixes {1, . . . , N1/2} \ {i1, . . . , iN1/4}.

Let C be a left transversal of S in H, so that H =
⊔

c∈C cS and f =
∑

σ∈S σ. Then

ϵ∑
σ∈S(N1/2)

[. . . , tσ1 , . . . , t
σ
2 , . . . , t

σ
N1/2 , . . .]e
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N1/4︷ ︸︸ ︷
i1 i2 . . . ij . . .

. . .
...

. . .

is a linear combination of terms of the form
ϵ∑

σ∈S(N1/2)

[. . . , tσ1 , . . . , t
σ
2 , . . . , t

σ
N1/2 , . . .]πcf

for π ∈ V, c ∈ C. For a fixed π ∈ V, c ∈ C, there exists j1 < . . . < jN1/4 with

{j1πc, . . . , jN1/4πc} = {i1, . . . , iN1/4}

and hence
ϵ∑

σ∈S(N1/2)

[. . . , tσ1 , . . . ,t
σ
2 , . . . , t

σ
N1/2 , . . .]πcf =

ϵ∑
σ∈S(N1/2)

∑
τ∈S

[. . . , tσ1 , . . . , t
σ
2 , . . . , t

σ
N1/2 , . . .]πcτ

=

ϵ∑
σ∈S(N1/2)

∑
τ∈S

[. . . , tσ1πc, . . . , t
σ
j1πcτ, . . . , t

σ
j
N1/4

πcτ, . . . , tσN1/2πc, . . .]

since τ ∈ S fixes tjπc unless j ∈ {j1, . . . , jN1/4}, (for which it acts on the second coordinate). As τ runs

over S, (j1πcτ, . . . , jN1/4πcτ) runs over all permutations of (i1, . . . , iN1/4). As σ ranges over S(N1/2),
(j1σ, . . . , jN1/4σ) ranges over all possible permutations of N1/4 element subsets X of {1, . . . , N1/2}. We
fix one particular N1/4 element subset X of {1, . . . , N1/2}. Let A = S(X) and B = S({1, . . . , N1/2}\X).
Both A and B are here seen as subgroups of S(N1/2) = S({1, . . . , N1/2}), which fix pointwise the set
{1, . . . , N1/2} \X (respectively the set X).

Claim 8. Assume that σ0 ∈ S(N1/2) = S({1, . . . , N1/2}) is such that {j1σ0, . . . , jN1/4σ0} = X. Then
any permutation σ ∈ S(N1/2) with {j1σ, . . . , jN1/4σ} = X can be written uniquely in the form σ = σ0ab
for a ∈ A and b ∈ B.

Proof. First, the restriction σ0↾{j1,...,jN1/4} : {j1, . . . , jN1/4} → X can be corrected by an element a ∈ A

so that σ0 ↾ {j1, . . . , jN1/4}a = σ ↾ {j1, . . . , jN1/4}. Similarly, there exists b ∈ B such that

σ↾({1,...,N1/2}\{j1,...,jN1/4}) : ({1, . . . , N
1/2} \ {j1, . . . , jN1/4}) → {1, . . . , N1/2} \X

is equal to σ0↾({1,...,N1/2}\{j1,...,jN1/4})b. Now because the domains and the ranges of σ ↾ {j1, . . . , jN1/4} and
σ↾({1,...,N1/2}\{j1,...,jN1/4}) are disjoint, the union of the graphs gives an element of S(N1/2) which equals

σ. For the same reason the union of the graphs of σ0 ↾ {j1, . . . , jN1/4}a and σ0↾({1,...,N1/2}\{j1,...,jN1/4})b

gives σ0ab (note that a and b commute since they have disjoint support). □

Now, for the fixed X as above, in the sum
ϵ∑

σ∈S(N1/2)

∑
τ∈S

[. . . , tσ1πc, . . . , t
σ
i1πcτ, . . . , t

σ
i
N1/4

πcτ, . . . , tσN1/2πc, . . .]

we pick out the terms where σ satisfies {j1σ, . . . , jN1/4σ} = X, and by the claim this is equal to

±
ϵ∑

a∈A

ϵ∑
b∈B

∑
τ∈S

[. . . , tσ0b
1 πc, . . . , tσ0a

j1
πcτ, . . . , tσ0a

j
N1/4

πcτ, . . . , tσ0b
N1/2πc, . . .]

since tσ0ab
i either equals tσ0a

i if i ∈ {j1, . . . , jN1/4} or equals tσ0b
i otherwise. For a fixed b ∈ B, the latter

is a sum of elements of the form

±
ϵ∑

a∈A

∑
τ∈S

[. . . , tσ0b
1 πc, . . . , tσ0a

j1
πcτ, . . . , tσ0a

j
N1/4

πcτ, . . . , tσ0b
N1/2πc, . . .].
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In order to show that (7) holds, it is enough to prove that all the sums of the latter form vanish. By
re-writting the above, re-labelling the generators x(i,j), we need to show that sums of the following form
vanish

ϵ∑
σ∈S(N1/4)

∑
τ∈S(N1/4)

[. . . , t
(σ,τ)
1 . . . , t

(σ,τ)
2 , . . . , t

(σ,τ)

N1/4 , . . .]

where

t
(σ,τ)
i = [x(iσ,1), x(iτ,2), x(i,3), . . . , x(i,K)]

for i = 1, . . . , N1/4.

Skew-symmetric case. If e is an idempotent corresponding to a Young tableau with first column of
length at least N1/4, then the situation can be carried out in a very similar manner, (with the same
changes from left-transversal to right transversal, etc) so that (7) follows from proving the equality

ϵ∑
σ∈S(N1/4)

−∑
τ∈S(N1/4)

[. . . , t
(σ,τ)
1 . . . , t

(σ,τ)
2 , . . . , t

(σ,τ)

N1/4 , . . .] = 0.

N1/4


i1 . . .

i2
. . .

...
. . .

ij
...

Iteration and conclusion. In turn, (7) follows from proving equalities of the form

ϵ∑
σ∈S(N1/4)

ν∑
τ∈S(N1/4)

[. . . , t
(σ,τ)
1 . . . , t

(σ,τ)
2 , . . . , t

(σ,τ)

N1/4 , . . .] = 0

with t
(σ,τ)
i = [x(iσ,1), x(iτ,2), x(i,3), . . . , x(i,K)], and ϵ, ν ∈ {+,−}.

Now we let QS(N1/4) act on M by permuting the free generators {x(1,3), x(2,3), . . . , x(N1/4,3)} and we

can carry out similar reductions. We iterate this process for K steps so that for R satisfying R2K = N
we establish that equation (1) follows from proving that all the following equations hold

ϵ1∑
σ1∈S(R)

· · ·
ϵK∑

σK∈S(R)

[. . . , t
(σ1,...,σK)
1 , . . . , t

(σ1,...,σK)
2 , . . . , t

(σ1,...,σK)
R , . . .] = 0

with for each i = 1, . . . , R:

t
(σ1,...,σK)
i = [x(1σ1,i), . . . , x(KσK ,i)].

3.5. Remark: An escape route. We can already conclude the theorem in a very particular case. By
Step 3, there exists k,m ∈ N such that the ideal generated by [x1, . . . , xm] in M is k-nilpotent, and by
Claim 7, M satisfies the identity (Λ):∑

σ1∈S(k),...,σm∈S(k)

[[x(1σ1,1), . . . , x(1σm,m)], . . . , [x(2σ1,1), . . . , x(2σm,m)], . . . , [x(kσ1,1), . . . , x(kσm,m)] = 0

where any number of elements can be put in between terms of the form [x(iσ1,1), . . . , x(iσm,m)]. Let

N = k2
m

, and K = m then, assuming ϵi = 1 for all i = 1, . . . ,K we have the identity

ϵ1∑
σ1∈S(R)

· · ·
ϵK∑

σK∈S(R)

[. . . , t
(σ1,...,σK)
1 , . . . , t

(σ1,...,σK)
2 , . . . , t

(σ1,...,σK)
R , . . .] = 0

Hence, assuming that Id ∈ QS(k), Id ∈ QS(k2), Id ∈ QS(k2
2

), . . ., Id ∈ QS(N) can all be written as
a linear combination of primitive idempotent only with first row of length at least ()1/2, then we would
conclude the theorem.
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3.6. Step 5: Symmetrization using Z2-gradings. Recall from Step 4 that we want to prove that for
some R,K ∈ N we have

ϵ1∑
σ1∈S(R)

· · ·
ϵK∑

σK∈S(R)

[. . . , t
(σ1,...,σK)
1 , . . . , t

(σ1,...,σK)
2 , . . . , t

(σ1,...,σK)
R , . . .] = 0.

We now define the constants R and K. Recall that k is the number from Step 3 such that the ideal
generated by [x1, . . . xm] is < k-nilpotent. We are already given n and m, and we define

K :=
n(n−1)(m−1)+m+1 − 1

n− 1
+ 1.

Let F be the subalgebra of M generated by x1, . . . , xK . It is a relatively free n-Engel Lie algebra with
free generators x1, . . . , xK . Assume that we are given a Z2-grading F = F0 ⊕ F1 according to Example
2.16 with some xi ∈ F0 and the others in F1. We have U the set of left-normed commutators in the
x1, . . . , xK and U = U0 ∪U1 with U0 ⊆ F0 and U1 ⊆ F1. Recall that we are given m as in Step 1. Define
I to be the ideal generated by elements of the form [c1, . . . , cm] with ci ∈ U0. Then F/I satisfies the
hypotheses of Lemma 2.17, and by the choice of K as defined above, we have [x1/I, . . . , xK/I] = 0 in F/I
hence [x1, . . . , xK ] ∈ I. This means that [x1, . . . , xK ] is a finite linear combination of elements of the form
[c1, . . . , cm, a1, . . . , at], for ci ∈ U0 and ai ∈ {x1, . . . , xK}. Note that because [x1, . . . , xK ] is multilinear
and F is relatively free and multigraded, we may assume that each element [c1, . . . , cm, a1, . . . , at] is
multilinear and of weight K.

For any of those 2K gradings on F = ⟨x1, . . . , xK⟩ we obtain such a linear combination, hence there
is a maximal number T such that for a given such Z2-grading U0, U1 on L = ⟨x1, . . . , xK⟩, the element
[x1, . . . , xK ] is a linear combination of at most T many monomials of the form [c1, . . . , cm, a1, . . . , at] with
ci ∈ U0.

We set

R := kT.

We want to prove

ϵ1∑
σ1∈S1

· · ·
ϵK∑

σK∈SK

[. . . , t1, . . . , t2, . . . , tR, . . .]σ1 . . . σK = 0 (8)

where Sj is a copy of S(R) which acts on the set {x(1,j), . . . , x(R,j)} by permutation of the first index,
and leaves the other generators invariant. Note that each groups is acting with support on disjoint sets
of generators, hence we are really considering the action of the direct product S1 × . . .×SK .

We now fix a choice of ϵ1, . . . , ϵK , and we define a Z2-grading on F := ⟨x1, . . . , xK⟩ = F0 ⊕ F1 by
setting

xi ∈ F0 ⇐⇒ ϵi = +,

xi ∈ F1 ⇐⇒ ϵi = −.

By the above argument, using Lemma 2.17, there exists a number s ≤ T such that

[x1, . . . , xK ] =

s∑
i=1

λiui

where ui are multilinear terms of weight K of the form

ui = [c1, . . . , cm, a1, . . . , aq]

with ci ∈ U0 and ai ∈ {x1, . . . , xK}.
Let θ1, . . . , θR be endomorphisms of M with x1θi = x(i,1), . . . , xKθi = x(i,K) for i = 1, . . . , R. Then

ti = [x(i,1), . . . , x(i,K)] = [x1, . . . , xK ]θi =

s∑
r=1

urθi.

We substitute ti in (8) and expand to get a linear combination of terms of the form

ϵ1∑
σ1∈S1

· · ·
ϵK∑

σK∈SK

[. . . , ur1θ1, . . . , ur2θ2, . . . , urRθR, . . .]σ1 . . . σK
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for all 1 ≤ r1, . . . , rR ≤ s. As R = kT ≥ ks there is some index r which appears at least k times among
r1, . . . , rR, say r = ri for i = i1, . . . , ik. Then

ϵ1∑
σ1∈S1

· · ·
ϵK∑

σK∈SK

[. . . , ur1θ1, . . . , ur2θi, . . . , urRθR, . . .]σ1 . . . σK

=

ϵ1∑
σ1∈S1

· · ·
ϵK∑

σK∈SK

[. . . , urθi1 , . . . , urθi2 , . . . , urθik , . . .]σ1 . . . σK

Now ur = [c1, . . . , cm, a1, . . . , aq] = [[c1, . . . , cm], a1, . . . , aq] and for i ̸= j we have that

{c1θi, . . . , cmθi, a1θi, . . . , aqθi} ∩ {c1θj , . . . , cmθj , a1θj , . . . , aqθj} = ∅

so that

[. . . , urθi1 , . . . , urθi2 , . . . , urθik , . . .]

= [. . . , [c1, . . . , cm]θi1 , . . . , [c1, . . . , cm]θi2 , . . . , [c1, . . . , cm]θik , . . .]

is a multilinear commutator. It follows that in order to prove (8), it is enough to prove that

ϵ1∑
σ1∈S1

· · ·
ϵK∑

σK∈SK

[. . . , [c1, . . . , cm]θi1 , . . . , [c1, . . . , cm]θi2 , . . . , [c1, . . . , cm]θik , . . .]σ1 . . . σK = 0 (9)

where Sj is a copy of S(R) which acts on the set {x(1,j), . . . , x(R,j)} and leaves the other generators
invariant. Again, those groups are acting with support on disjoint sets hence we are really considering
the action of the direct product S1 × . . .×SK , so we may re-write (9) as∑

σ∈S1×...×SK

˜sgn(σ)[. . . , [c1, . . . , cm]θi1 , . . . , [c1, . . . , cm]θi2 , . . . , [c1, . . . , cm]θik , . . .]σ = 0

where if σ = σ1 · · ·σK we define ˜sgn(σ) to be the product of the signatures sgn(σi) for ϵi = −, in other
words ˜sgn(σ) =

∏
{i|ϵi=−} sgn(σi). It should be clear that in order to establish the above identities, it

is sufficient to prove the same identity without the extra hidden terms on the right “. . .]” and without
the extra hidden terms on the left “[. . . ,” (for the latter, observe that any commutator [. . . , x] is a linear
combination of commutators of the form [x, . . .]). So, proving the above identity is equivalent to proving
the following: ∑

σ∈S1×...×SK

˜sgn(σ)[[c1, . . . , cm]θi1 , . . . , [c1, . . . , cm]θi2 , . . . , [c1, . . . , cm]θik ]σ = 0 (10)

3.7. Step 6: Conclusion. To conclude, it is enough to prove that the left hand side of (10) consists of
instances of the linearized identity (Λ) from Claim 7.

Fix σ1 ∈ S1, . . . , σK ∈ SK and let σ = σ1 . . . σK . We take a closer look to a summand from (10),
which is of the form

[[c1, . . . , cm]θi1 , . . . , [c1, . . . , cm]θi2 , . . . , [c1, . . . , cm]θik ]σ.

For i, j ∈ {i1, . . . , ik} with i < j, the action of σ on [c1, . . . , cm]θi and [c1, . . . , cm]θj is given by

[c1, . . . , cm]θiσ = [c1θiσ, . . . , cmθiσ],

[c1, . . . , cm]θjσ = [c1θjσ, . . . , cmθjσ]

and if c1 = [xk1 , . . . , xkq ], then

c1θiσ = [x(i,k1), . . . , x(i,kq)]σ = [x(i,k1)σk1
, . . . , x(i,kq)σkq

]

c1θjσ = [x(j,k1), . . . , x(j,kq)]σ = [x(j,k1)σk1
, . . . , x(j,kq)σkq

]

since σk only permutes the set {x(1,k), . . . , x(R,k)} and leaves the other x(i,j) invariant.
Let τ1 be the transposition which swaps x(i,k1)σk1

and x(j,k1)σk1
, let τ2 be the transposition which swaps

x(i,k2)σk2 and x(j,k2)σk2 and so on until τq which permutes x(i,kq)σkq and x(j,kq)σkq . Let τ = τ1 · · · τq.
Now recall that the term

[[c1, . . . , cm]θi1 , . . . , [c1, . . . , cm]θi2 , . . . , [c1, . . . , cm]θik ] (∆)
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is multilinear in (x(i,j)), i.e. each variable x(i,j) appears at most once. So the action by a permutation of
generators gives another multilinear term. By looking on how στ acts on [c1, . . . , cm]θi and [c1, . . . , cm]θj
within (∆) we obtain

[. . . ,[c1, . . . , cm]θi, . . . , [c1, . . . , cm]θj , . . .]στ

= [. . . , [c1θiστ, . . . , cmθiστ ], . . . , [c1θjστ, . . . , cmθjστ ], . . .]

= [. . . , [c1θiστ, c2θiσ, . . . , cmθiσ], . . . , [c1θjστ, c2θjσ, . . . , cmθjσ], . . .],

the last line being justified by the fact that, as the term is multilinear, among the whole (∆), the
generators x(i,j) which are in the support of τ only appear in c1θiσ and c1θjσ, so that τ leaves invariant
the other terms of the form ciθjσ. By choice of τ , we have, of course, c1θiστ = c1θjσ and c1θjστ = c1θiσ,
so

[. . . ,[c1, . . . , cm]θi, . . . , [c1, . . . , cm]θj , . . .]στ

= [. . . , [c1θjσ, c2θiσ, . . . , cmθiσ], . . . , [c1θiσ, c2θjσ, . . . , cmθjσ], . . .].

Since c1 = [xk1
, . . . , xkq

] ∈ F0, the number of elements of {xk1
, . . . , xkq

} which lie in F1 is even. We
have that q ≤ K and τ can be seen as an element of S1 × . . . × SK (putting identity elements in
between) hence appears as a permutation involved in the sum (10). We argue that ˜sgn(τ) = 1. Indeed,
the transposition τl will appear with sgn(τl) in the sum if and only if ϵkl

= −. This holds because, τl
permutes x(i,kl)σkl

and x(j,kl)σkl
which are elements of {x(1,kl), . . . , x(R,kl)} and hence are acted on by

permutations from Skl
, which corresponds to a sum twisted by ϵkl

. Hence sgn(τl) appears in the sum (9)
if and only if xl ∈ F1. The number of times this happens when considering τ is even, hence, according
to this choice of ϵi, we have ˜sgn(τ) = 1. This implies that ˜sgn(στ) = ˜sgn(σ), i.e.

[. . . , [c1θiσ, . . . , cmθiσ], . . . , [c1θjσ, . . . , cmθjσ], . . .]

and

[. . . , [c1θj , c2θi, . . . , cmθi], . . . , [c1θiσ, c2θjσ, . . . , cmθjσ], . . .]

are two summands from (10) with the same sign. We can re-write the left hand side of (10) as

∑
σ∈S1×...×SK

˜sgn(σ)[[c1θi1σ, . . . , cmθi1σ], . . . , [c1θi2σ, . . . , cmθi2σ], . . . , [c1θikσ, . . . , cmθikσ]] (11)

Fix σ ∈ S1 × . . .×SK , and set y(u,v) = cvθiuσ. Then

[[c1θi1σ, . . . , cmθi1σ], . . . , [c1θi2σ, . . . , cmθi2σ], . . . , [c1θikσ, . . . , cmθikσ]]

equals

[[y(1,1), y(1,2), . . . , y(1,m)], . . . , [y(2,1), y(2,2), . . . , y(2,m)], . . . , [y(k,1), . . . , y(k,m)]]

By the above argument,

[[y(2,1), y(1,2), . . . , y(1,m)], . . . , [y(1,1), y(2,2) . . . , y(2,m)], . . . , [y(k,1), . . . , y(k,m)]]

appear as a summand in (11) with the same sign as the previously display term. Iterating the argument,
for all permutation ν ∈ S(k), the terms

[[y(1ν,1), . . . , y(1,m)], . . . , [y(2ν,1), . . . , y(2,m)], . . . , [y(kν,1), . . . , y(k,m)]]

all appear in (11) with the same sign. Similarly for ν1, . . . , νm ∈ S(k) the following terms all share the
same sign in (11)

[[y(1ν1,1), y(1,2), . . . , y(1,m)], . . . , [y(2ν1,1), y(2,2), . . . , y(2,m)], . . . , [y(kν1,1), y(k,2) . . . , y(k,m)]]

[[y(1ν1,1), y(1ν2,2) . . . , y(1,m)], . . . , [y(2ν1,1), y(2ν2,2) . . . , y(2,m)], . . . , [y(kν1,1), y(kν2,2) . . . , y(k,m)]]

...

[[y(1ν1,1), . . . , y(1νm,m)], . . . , [y(2ν1,1), . . . , y(2νm,m)], . . . , [y(kν1,1), . . . , y(kνm,m)]]

hence, gathering the sub-sum of (11) consisting of all the latter terms as ν1, . . . , νm range in S(k), we
find an instance of identity (Λ)∑

σ1∈S(k),...,σm∈S(k)

[[x(1σ1,1), . . . , x(1σm,m)], . . . , [x(2σ1,1), . . . , x(2σm,m)], . . . , [x(kσ1,1), . . . , x(kσm,m)]] = 0.

Doing this for each σ ∈ S1 × . . . ×SK , we establish that the expression in (11) vanishes, which proves
the theorem.
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