Dp-Minimal Domains Joint work with Yatir Halevi

Christian d'Elbée

June 22, 2021

Motivations

How does a model-theoretic constraint on a structure (group, field, graph...) translate into an algebraic property of the structure?

- \bullet Stable structure "does not interpret an infinite half graph"
- **2** NIP structure "does not code $\mathcal{P}(\mathbb{N})$ "
- **1** Stable Fields Conjecture: Every infinite stable field is separably closed;
- **2** NIP Fields Conjecture: Every infinite NIP field is either real closed, separably closed or admits a non-trivial henselian valuation.

Fact 1

These conjectures are hard to prove.

Motivations

Definition 2

- **1** Let T be a theory and $n \in \mathbb{N}$. An inp-pattern of depth n is a collection of formulae $(\phi_i(x, y))_{i \leq n}$, parameters $(b_{i,i})_{i \leq n, i \leq \omega}$ and integers $(k_i)_{i \le n}$ such that
	- for every $i < n$, $\{\phi_i(x, b_{i,j}) \mid j < \omega\}$ is k_i -inconsistent;
	- $\bullet\,$ for every function $\eta: n \to \omega,\ \big\{\phi_i(\mathsf{x},b_{i,\eta(i)}) \mid i < n \big\}$ is consistent.
- **2** T is of burden n if there are no inp-patterns of depth $n + 1$, and if there is an inp-pattern of depth n . T is inp-minimal if it is of burden 1.
- **3** T is NIP if there is no formula $\phi(x, y)$ and parameters $(a_i)_{i<\omega}$, $(b_I)_{I\subseteq\omega}$ such that $\phi(a_i,b_I)\iff i\in I.$
- **4** If T is NIP and of burden n, then we say that T has dp-rank n. If T is NIP and inp-minimal, then we say that T is dp-minimal.

Motivations

Fact 3

[\[Joh18\]](#page-31-0) Let F be a dp-minimal field, then F is algebraically closed, real closed, or admits a non trivial definable henselian valuation. (This was recently extended by Johnson to finite dp-rank.)

What about dp-minimal integral domains?

Conventions

A domain means an integral domain, i.e. a subring of a field. Given a domain R and $a \in R$, we set $\langle a \rangle = Ra$. For an ideal I of $R, \sqrt{I} = \{a \in R \mid a^n \in I, n \in \mathbb{N}\}$ is the *radical* of *I*. An ideal *I* is R , $\sqrt{I} = \{d \in R \mid d \in I, u \in \mathbb{N}\}$ is the *radical* of *I*. An ideal *I* radical if $\sqrt{I} = I$. A domain is *local* if it has only one maximal ideal.

A valuation ring is an integral domain whose principal ideals are linearly ordered by inclusion.

If R is a valuation ring and $K = Frac(R)$, then R induces a valuation map $v: K^\times \to \mathsf{\Gamma}$ to some ordered abelian group (a group homomorphism satisfying $v(x + y) \ge \min\{v(a), v(b)\}\$.

Examples of dp-minimal domains

- Every definable subring of a dp-minimal ring is dp-minimal.
- Thus \mathbb{Z}_p (which is definable in $(\mathbb{Q}_p, v, +, \cdot, 0, 1)$) is a dp-minimal ring.
- $\bullet \ \mathbb{F}_p^{alg}((t^{\mathbb{Q}}))$ is the algebraically closed field whose elements are formal series

$$
\sum_{r\in\mathbb{Q}}a_rt^r,
$$

with well-ordered support, i.e. $\{r \in \mathbb{Q} : a_r \neq 0\}$ is well-ordered. We may define a valuation $\mathsf{v} : \mathbb{F}_p^{alg}((t^{\mathbb{Q}})) \to \mathbb{Q}$ by

$$
v\left(\sum_{r\in\mathbb{Q}}a_rt^r\right)=\min\{r\in\mathbb{Q}:a_r\neq 0\}.
$$

A question

Dp-minimal domains: are they all valuation rings?

No.

Example in positive characteristic

Consider $K = \mathbb{F}_p^{alg}((t^{\mathbb{Q}})),$ the Hahn series over \mathbb{F}_p^{alg} with value group $\mathbb Q$, together with the natural valuation v .

Consider $\mathbb{F}_p + \{x \mid v(x) \geq 1\}$, it is a definable subring of K and hence dp-minimal.

It is a local ring of equicharacteristic $p > 0$, it is *not* a valuation ring.

To see this directly, the ideals $\mathbb{F}_{p}t + \{x \in K \mid v(x) \ge 2\}$ and $\{x \in K \mid v(x) > 1\}$ are incomparable.

Example in mixed characteristic

Let (\mathbb{Q}_p, v) be the p-adic numbers for $p \neq 2$, it is dp-minimal by [\[DGL11,](#page-30-0) Theorem 6.13]. Let $K := \mathbb{Q}_p(\sqrt{p})$ be the totally ramified finite extension given by adjoining the square root of p , it is also dp-minimal (together with the valuation v).

The ring $R := \{0, \ldots, p-1\} + \{x \in K : v(x) \ge 1\}$ is definable and hence dp-minimal.

It is a local ring of mixed characteristic, it is not a valuation ring: $\langle p \rangle$ and $\langle p \sqrt{p} \rangle$ are incomparable.

First results

Lemma 4

Let R be an integral domain of burden $n \in \mathbb{N}$ and let $\mathfrak{p}_1, \ldots, \mathfrak{p}_{n+1}$ be proper prime ideals of R. Then there exists $1 \leq i_0 \leq n+1$ such that $\mathfrak{p}_{i_0}\subseteq\bigcup_{j\neq i_0}\mathfrak{p}_j.$ In particular R has at most n maximal ideals.

Corollary 5

Let R be an inp-minimal domain, then the prime spectrum is linearly ordered by inclusion. In particular R is a local domain. Further, all the radical ideals are prime and there exists $N \in \mathbb{N}$ such that for all $a,b\in R$ either $b^{\textsf{N}}\in \langle a\rangle$ or $a^{\textsf{N}}\in \langle b\rangle.$

Proof.

A radical ideal *I* is the intersection of all prime ideals containing *I*, as the intersection of a chain of prime ideals is prime, I is prime. The rest follows from the fact that $\sqrt{\langle a\rangle}$ and $\sqrt{\langle b\rangle}$ are comparable, and the uniformity on N is by compactness.

Proof of Lemma 4

Proof.

Assume not, then for each $1 \le i \le n+1$ there exists $a_i\in\mathfrak{p}_i\setminus\bigcup_{j\neq i}\mathfrak{p}_j$. Also, since the ideals are prime, $a_i^k\in\mathfrak{p}_i\setminus\bigcup_{j\neq i}\mathfrak{p}_j$ for all $k \geq 1$. For each $1 \leq i \leq n+1$, and $k \geq 1$, we set

$$
X_i^k := \langle a_i^k \rangle \setminus \langle a_i^{k+1} \rangle.
$$

The latter is nonempty: assume that $a_i^k \in \langle a_i^{k+1} \rangle$ $\binom{k+1}{i}$, then for some $b \in R$, $a_i^k = a_i^{k+1}$ i^{k+1} *b*. Since R is an integral domain, it follows that a_i is a unit in R , which contradicts that \mathfrak{p}_i is an ideal. We now conclude that $\{x\in\mathcal{X}_i^k\}_{1\leq i\leq n+1,k\geq 1}$ is an inp-pattern of depth $n+1$. Let $k_1, \ldots, k_{n+1} > 1$. We claim that $a_1^{k_1} \cdot \ldots \cdot a_{n+1}^{k_{n+1}} \in X_1^{k_1} \cap \cdots \cap X_{n+1}^{k_{n+1}}$. Indeed, if not, without loss of generality, $a_1^{k_1} \cdot \ldots \cdot a_{n+1}^{k_{n+1}} = a_1^{k_1+1}b$, for some $b \in R$, then $a_2^{k_2}\cdot\ldots\cdot a_{n+1}^{k_{n+1}}\in\langle a_1\rangle\subseteq \mathfrak{p}_1.$ Consequently, $a_j\in \mathfrak{p}_1$ for some $j\neq 1,$ contradicting the choice of the a_i . To complete the argument, note that the rows are 2-inconsistent: as before, since R is an integral

Localisation

Let R be a domain and $K = \text{Frac}(R)$. An overring of R is a subring of K containing R. If $S \subseteq R \setminus \{0\}$ is a multiplicatively closed set, we denote $S^{-1}R$ the overring of R consisting of elements of the form $\frac{a}{s} \in K$ with $a \in R$ and $s \in S$. For a prime ideal \frak{p} of R , $R_\frak{p}$ denotes $(R \setminus \frak{p})^{-1}R$.

Lemma 6

Let R be an integral domain and S a multiplicatively closed subset of R.

- \bigcirc If S is definable then the burden of R is equal to the burden of $(S^{-1}R, R)$. In particular if R is NTP₂ then so is $(S^{-1}R, R)$.
- $\bm{2}$ If S is externally definable in R and R is NIP then $(\mathcal{S}^{-1}R,R)$ is NIP and as a result, by (1) , $dp\text{-}rk(R)<\kappa\iff dp\text{-}rk(S^{-1}R,R)<\kappa$, for any cardinal κ .

Henselianity

A valuation ring is henselian if the valuation it defines on its field of fraction is henselian.

Fact 7

Let F be a valued field.

- If $char(F) > 0$ and F is NIP, then F is henselian ([\[Joh20\]](#page-31-1)).
- If F is dp-minimal, then it is henselian ([\[JSW17\]](#page-31-2),[\[Joh16\]](#page-31-3)).

Corollary 8

Let R be valuation ring.

- If $char(R) > 0$ and R is NIP then R is henselian.
- If R is dp-minimal then R is henselian.

A criterion for being a valuation ring

Fact 9

[\[Sim15,](#page-32-0) Proposition 4.31] Let G be a inp-minimal group and H, N definable subgroups. Then either $|H/H \cap N| < \infty$ or $|N/H \cap N| < \infty$.

Lemma 10

Let R be an inp-minimal integral domain with maximal ideal $\mathscr M$. If R contains an infinite set F such that $F - F \subseteq R^{\times} \cup \{0\}$ then R is a valuation ring. In particular, if R/M is infinite then R is a valuation ring.

Proof

Assume that such a set F exists, and let $(f_i)_{i\leq\omega}\subseteq F$ be such that $f_i\neq f_j$ for all $i\neq j.$ Let $a,b\in R$ be nonzero elements. From Fact [9,](#page-13-0) without loss of generality, assume that $\langle a \rangle/(\langle a \rangle \cap \langle b \rangle)$ is finite. As $(f_i a)_i \subseteq \langle a \rangle$, there exists $i \neq j$ such that $(f_i a - f_i a) \in \langle b \rangle$. As $F - F \subseteq R^{\times} \cup \{0\}, a \in \langle b \rangle.$

Prime ideals in dp-minimal domains

Let R be an inp-minimal domain with maximal ideal \mathcal{M} .

- **1** For each $a \in R \setminus \{0\}$ there exists a unique ideal P_a such that P_a is maximal with the property $P_a \cap \{a^n \mid n \in \mathbb{N}\} = \emptyset$. P_a is prime and externally definable. $P_a = \{x \in R \mid \forall n \in \mathbb{N} \; a^n \notin \langle x \rangle\}.$
- \bullet For any prime ideal \mathfrak{p} , $\mathfrak{p} = \bigcap_{a \in R \setminus \mathfrak{p}} P_a.$ In particular, every prime ideal is externally definable.
- **3** If R is dp-minimal and p is a prime ideal, then (R_p, R) is dp-minimal in the language of rings with a predicate for R.

Note that for any $a \in R$, $R_{P_a} = S^{-1}R$, where $S = \{a^n \mid n \in \mathbb{N}\}.$ The ideals of the form P_a are the so-called Goldman ideals in the literature. $P_a \subsetneq \sqrt{\langle a \rangle}$.

Non-maximal prime ideals

In a local ring, every non-maximal radical ideal has infinite index in the maximal ideal $\mathcal M$ (as additive groups). Indeed, if $\mathfrak r \subsetneq \mathcal M$ is a radical ideal then for any $b \in \mathscr{M} \setminus \mathfrak{r}$ and $n \neq m \in \mathbb{N}$, b^n and b^m are in different classes modulo r.

Corollary 11

Let R be a dp-minimal domain with maximal ideal $\mathcal M$ and p a non-maximal prime ideal. Then R_p is a valuation ring.

Proof of Corollary 11

As $\mathfrak p$ is radical, $\mathfrak p$ has infinite index in R . Observe that $|R/\mathfrak{p}| \leq |R_{\mathfrak{p}}/\mathfrak{p} R_{\mathfrak{p}}|$. Hence the maximal ideal $\mathfrak{p} R_{\mathfrak{p}}$ of $R_{\rm n}$ has infinite index. Since p is externally definable, (R_p, R) is dp-minimal. As the residue field is infinite, R_p is a valuation ring.

Divided domains

Definition 12

([\[Aki67\]](#page-30-1),[\[Dob76\]](#page-30-2)) A ring R is divided if for all $a \in R$ and all prime ideal p we have $p \subseteq \langle a \rangle$ or $\langle a \rangle \subseteq p$. Equivalently, for all prime ideals $p = pR_p$.

- Valuation ring : $\langle a \rangle$ and $\langle b \rangle$ are comparable;
- Divided ring : $\langle a \rangle$ and p are comparable;
- Local treed domain : p and q are comparable.

Theorem 13

Every dp-minimal domain is divided. In particular, there exists $N \in \mathbb{N}$ such that for all a, b in the maximal ideal, either a $\in \langle b \rangle$ or $b^{\prime\prime} \in \langle a \rangle$.

Dp-minimal valuation rings

A characterisation of dp-minimal valuation rings.

Theorem 14

Let R be a dp-minimal domain. R is a henselian valuation ring if and only if one of the following holds

- R has infinite residue field:
- R has finite residue field and the maximal ideal is principal.

Proof of Theorem 14

Assume first that R is a valuation ring and that R has finite residue field. As $K = \text{Frac}(R)$ is dp-minimal, it follows from [\[Joh16\]](#page-31-3) that $char(K) = 0$ and $[0, v(p)]$ is finite. In particular the maximal ideal is principal.

Proof of Theorem 14

Conversely we already saw that if R/M is infinite, R is a valuation ring, so we may assume that $\mathscr{M} = \langle \pi \rangle$ and R/\mathscr{M} is finite. Let $\mathfrak{p} = P_{\pi}$ be the maximal ideal not intersecting $\{\pi^n \mid n \in \mathbb{N}\}.$ **Claim:** R/\mathfrak{p} is a discrete valuation ring. We show that R/p is Noetherian, it is standard that a local Noetherian domain whose maximal ideal is principal is a discrete valuation ring. By definition, for all $c \in R \setminus \mathfrak{p}$, there exists $n \in \mathbb{N}$ such that $\pi^n \in \langle c \rangle$. In particular for all $a \in R/\mathfrak{p}, \ \pi^n + \mathfrak{p} \in a(R/\mathfrak{p})$ for some $n \in \mathbb{N}$. This implies that $(\pi^n + \mathfrak{p})R/\mathfrak{p} \subseteq a(R/\mathfrak{p})$, hence, as $(\pi + \mathfrak{p})(R/\mathfrak{p})$ is of finite index in R/\mathfrak{p} , $a(R/\mathfrak{p})$ is of finite index in R/\mathfrak{p} . It follows that every ideal of R/\mathfrak{p} has finite index, hence R/\mathfrak{p} is Noetherian.

Compositions

Now we have that R/\mathfrak{p} and $R_{\mathfrak{p}}$ are both valuation rings. Let v_1 be the valuation on $K = \text{Frac}(R)$ associated to R_p . Let v_2 the valuation on the residue field R_p/pR_p of v_1 associated to the valuation ring $(R + \mathfrak{p}R_{\mathfrak{p}})/\mathfrak{p}R_{\mathfrak{p}} \cong R/\mathfrak{p}$ $(\text{Frac}((R + \mathfrak{p}R_n)/\mathfrak{p}R_n) = R_n/\mathfrak{p}R_n).$ Then the composition of these two valuations give rise to a

valuation on K whose valuation ring is $R + pR_p$.

As R is divided, $R + pR_p = R$ hence R is a valuation ring.

Back to the example

Let (\mathbb{Q}_p, v) be the p-adic numbers for $p \neq 2$, it is dp-minimal. Let $K := \mathbb{Q}_p(\sqrt{p})$ be the totally ramified finite extension given by adjoining the square root of p .

The ring $R := \{0, \ldots, p-1\} + \{x \in K : v(x) \ge 1\}$ is definable and hence dp-minimal.

It is a local ring of mixed characteristic, it is not a valuation ring: $\langle p \rangle$ and $\langle p \sqrt{p} \rangle$ are incomparable.

The maximal ideal is not principal, $\langle p \rangle$ is not the maximal ideal since it does not contain $p\sqrt{p}$. In fact, the maximal ideal is since it does not contain
generated by p and $p\sqrt{p}$.

This shows that it is not a valuation ring and that for dp-minimal domain, finite residue field does not imply that the maximal ideal is principal.

Equicharacteristic

Theorem 15

Assume that R is of equicharacteristic $p > 0$. The following are equivalent.

- \bullet R is a henselian valuation ring;
- \bullet R is integrally closed;
- ³ R is root-closed (in its field of fractions);
- **A** R has an infinite residue field:
- \bullet R has an infinite subring which is a field (necessarily $\mathbb O$ or \mathbb{F}_p^{alg});
- **6** $(char(R) = p > 0)$ R is Artin-Shreier closed.

A remark

Let \mathcal{O}_ρ be the valuation ring of the valued field $\mathbb{F}_\rho^{alg}((t^\Gamma)),$ for some divisible ordered abelian group Γ.

Let I_p any ideal of \mathcal{O}_p , then $R_p := \mathbb{F}_p + I_p$ is not a valuation ring. Let U be a non-principal ultrafilter on the set of prime numbers. The ultraproduct $\prod_{\mathcal{U}}\mathcal{O}_{\bm{\rho}}$ is dp-minimal since it is the valuation ring of an algebraically closed valued field, however $\prod_{\mathcal{U}}R_{\textsf{\textit{p}}}$ is not even inp-minimal.

Indeed, it is not a valuation ring (as none of the R_p are), but it has a pseudo-finite –hence infinite– residue field so it is not inp-minimal.

Externally definable domains

Theorem 16

Let R be a domain and $\mathcal O$ a valuation ring of $\text{Frac}(R)$ such that (R, O) is dp-minimal. Then one of the following holds:

- $\mathcal{O} \subset R$, hence R is a valuation ring.
- $R \subseteq \mathcal{O}$ and
	- if $\mathcal O$ is dominant, $Spec(R) \setminus \{ \mathcal M \}$ is an initial segment of $\text{Spec}(\mathcal{O}) \setminus \{\mathfrak{m}\}\$:
	- if $\mathcal O$ is non-dominant, $\mathcal O = R_p$ for some non-maximal prime ideal p of R.

Three consecutive primes

Let $* \mathbb{R}$ be the hyperreals (resp. $* \mathbb{C}$ the hypercomplex) and ${}^b \mathbb{R}$ (resp. ${}^b\mathbb{C}$) the ring of bounded elements.

Fact 17

[\[EK19\]](#page-30-3) In the prime spectrum of ${}^b\mathbb{R}$ and ${}^b\mathbb{C}$, there are no three consecutive elements.

We say that a domain with linearly ordered prime spectrum R has property $(*)$ if it satisfies one of the following equivalent property:

 \bigcirc {P_a | a $\in \mathcal{M}$ } is densely ordered by inclusion;

2 there are no three consecutive prime elements in $Spec(R)$;

 ${\bf 3}$ for all $a,b\in\mathscr{M}$ with $a,b\neq 0,~P_a\neq \sqrt{\langle b\rangle}.$

We generalize the result of Echi and Khalfallah.

Theorem 18

Let D be a κ -saturated domain and R a \bigvee -definable local subring whose prime ideals are linearly ordered. Then R has property (\star) .

Three consecutive primes

Example 19

Let Γ be an ω -saturated ordered abelian group (for instance, a non-principal ultrapower of $\mathbb R$, $\mathbb Q$ or $\mathbb Z)$. Then any \bigvee -definable subring of $\mathbb{F}_p^{alg}[[t^{\Gamma}]]$ (if Γ is p -divisible), $\mathbb{C}[[t^{\Gamma}]]$ or $\mathbb{Q}_p[[t^{\Gamma}]]$ has property $(*)$.

Example 20

Any \bigvee -definable subring of a non-principal ultrapower of \mathbb{Z}_p has property $(*)$.

Question

- **1** Our only examples of dp-minimal domains are definable in a dp-minimal valued field, are there other kind of examples? If R is dp-minimal, so is $R[[X^Γ]]$?
- \bullet Let R be an integral domain. Do the three conditions :
	- R is divided;
	- R_n is a henselian valuation ring;
	- Frac(R) and R/M are dp-minimal;

imply that R is dp-minimal?

Thank You Very Much !

References I

Tomoharu Akiba. A note on AV-domains. Bull. Kyoto Univ. Educ., Ser. B, 31:1–3, 1967.

Alfred Dolich, John Goodrick, and David Lippel. Dp-minimality: basic facts and examples. Notre Dame J. Form. Log., 52(3):267–288, 2011.

暈 David E. Dobbs.

Divided rings and going-down. Pacific J. Math., 67(2):353–363, 1976.

Nothman Echi and Adel Khalfallah.

On the prime spectrum of the ring of bounded nonstandard complex numbers.

Proc. Amer. Math. Soc., 147:687–699, 2019.

References II

Will Johnson.

Fun with Fields.

PhD thesis, University of California, Berkeley, 2016.

螶 Will Johnson.

The canonical topology on dp-minimal fields. J. Math. Log., 18(2):1850007, 23, 2018.

Will Johnson.

Dp-finite fields vi: the dp-finite shelah conjecture. preprint, <https://arxiv.org/abs/2005.13989>, 2020.

Franziska Jahnke, Pierre Simon, and Erik Walsberg. Dp-minimal valued fields. J. Symb. Log., 82(1):151–165, 2017.

References III

E Pierre Simon.

A guide to NIP theories, volume 44 of Lecture Notes in Logic. Association for Symbolic Logic, Chicago, IL; Cambridge Scientific Publishers, Cambridge, 2015.

A remark on NIP commutative rings

The following was observed by Simon.

Observation by Simon

Let R be an NIP commutative ring and $(\mathfrak{p}_i)_{i<\omega}$ an infinite family of prime ideals. Then there is $i_0<\omega$ such that $\mathfrak{p}_{i_0}\subseteq\bigcup_{j\neq i_0}\mathfrak{p}_j$. Equivalently, there is no infinite antichain of prime ideals and in particular, there is only a finite number of maximal ideals.

Proof.

Assume otherwise and let $\mathsf{a}_i\in\mathfrak{p}_i\setminus\bigcup_{j\neq i}\mathfrak{p}_j$, and for each finite $I\subseteq\omega$, set $b_I=\prod_{i\in I}a_i$. Let $\phi(x,y)$ be the formula $y\in\langle x\rangle$, i.e. $\exists z(y = zx)$. Then for every $i < \omega$ and finite set $I \subseteq \omega$, I claim that $\phi(a_i,b_l)$ holds if and only if $i\in I$. If $i\in I$ then $b_l\in \langle a_i\rangle$ is clear. Since the ideals \mathfrak{p}_i are prime, $b_l \notin \bigcup_{j \notin I} \mathfrak{p}_j$ $(R \setminus \rho_j$ is multiplicatively closed) so if $i \notin I$ then $b_1 \notin \langle a_i \rangle$.

In a commutative ring, the maximal length of an antichain of prime ideals is bounded by the VC-dimension of the formula $y \in \langle x \rangle$.

Proof of Theorem 13

Let R be a dp-minimal ring with maximal ideal $\mathcal M$ and let $\mathfrak p \subset \mathcal M$ be a prime ideal. Since $R \cap pR_p = p$, it will be enough to show that $pR_p \subseteq R$. By dp-minimality of (R_{p}, R) , either $|R/\mathfrak{p}| < \infty$ or $|\mathfrak{p}R_{\text{p}}/\mathfrak{p}| < \infty$. Since p has infinite index in R it must be the latter. Let y_1, \ldots, y_n be representatives for the cosets of p in pR_p . $\{1, y_1, \ldots, y_n\}$ generate $R + pR_p$ as an R-module, i.e. it is a finitely generated R-module. By an application of Nakayama's Lemma, there are no non-trivial finitely generated CPI-extensions of R , hence $R = R + \mathfrak{p}R_{\mathfrak{p}}$.