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Motivations

How does a model-theoretic constraint on a structure (group, field,
graph...) translate into an algebraic property of the structure?

1 Stable structure – ”does not interpret an infinite half graph”

2 NIP structure – ”does not code P(N)”

1 Stable Fields Conjecture: Every infinite stable field is
separably closed;

2 NIP Fields Conjecture: Every infinite NIP field is either real
closed, separably closed or admits a non-trivial henselian
valuation.

Fact 1
These conjectures are hard to prove.



Motivations

Definition 2
1 Let T be a theory and n ∈ N. An inp-pattern of depth n is a

collection of formulae (φi (x , y))i<n, parameters (bi ,j)i<n,j<ω

and integers (ki )i<n such that
• for every i < n, {φi (x , bi,j) | j < ω} is ki -inconsistent;
• for every function η : n→ ω,

{
φi (x , bi,η(i)) | i < n

}
is

consistent.

2 T is of burden n if there are no inp-patterns of depth n + 1,
and if there is an inp-pattern of depth n. T is inp-minimal if
it is of burden 1.

3 T is NIP if there is no formula φ(x , y) and parameters
(ai )i<ω, (bI )I⊆ω such that φ(ai , bI ) ⇐⇒ i ∈ I .

4 If T is NIP and of burden n, then we say that T has dp-rank
n. If T is NIP and inp-minimal, then we say that T is
dp-minimal.



Motivations

Fact 3
[Joh18] Let F be a dp-minimal field, then F is algebraically closed,
real closed, or admits a non trivial definable henselian valuation.

(This was recently extended by Johnson to finite dp-rank.)

What about dp-minimal integral domains?



Conventions

A domain means an integral domain, i.e. a subring of a field.
Given a domain R and a ∈ R, we set 〈a〉 = Ra. For an ideal I of
R,
√
I = {a ∈ R | an ∈ I , n ∈ N} is the radical of I . An ideal I is

radical if
√
I = I . A domain is local if it has only one maximal

ideal.
A valuation ring is an integral domain whose principal ideals are
linearly ordered by inclusion.
If R is a valuation ring and K = Frac(R), then R induces a
valuation map v : K× → Γ to some ordered abelian group (a group
homomorphism satisfying v(x + y) ≥ min{v(a), v(b)}).



Examples of dp-minimal domains

• Every definable subring of a dp-minimal ring is dp-minimal.

• Thus Zp (which is definable in (Qp, v ,+, ·, 0, 1)) is a
dp-minimal ring.

• Falg
p ((tQ)) is the algebraically closed field whose elements are

formal series ∑
r∈Q

ar t
r ,

with well-ordered support, i.e.{r ∈ Q : ar 6= 0} is well-ordered.

We may define a valuation v : Falg
p ((tQ))→ Q by

v

∑
r∈Q

ar t
r

 = min{r ∈ Q : ar 6= 0}.



A question

Dp-minimal domains: are they all valuation rings?

No.



Example in positive characteristic

Consider K = Falg
p ((tQ)), the Hahn series over Falg

p with value
group Q, together with the natural valuation v .
Consider Fp + {x | v(x) ≥ 1}, it is a definable subring of K and
hence dp-minimal.
It is a local ring of equicharacteristic p > 0, it is not a valuation
ring.
To see this directly, the ideals Fpt + {x ∈ K | v(x) ≥ 2} and
{x ∈ K | v(x) > 1} are incomparable.



Example in mixed characteristic

Let (Qp, v) be the p-adic numbers for p 6= 2, it is dp-minimal by
[DGL11, Theorem 6.13]. Let K := Qp(

√
p) be the totally ramified

finite extension given by adjoining the square root of p, it is also
dp-minimal (together with the valuation v).
The ring R := {0, . . . , p − 1}+ {x ∈ K : v(x) ≥ 1} is definable
and hence dp-minimal.
It is a local ring of mixed characteristic, it is not a valuation ring:
〈p〉 and 〈p√p〉 are incomparable.



First results

Lemma 4
Let R be an integral domain of burden n ∈ N and let p1, . . . , pn+1

be proper prime ideals of R. Then there exists 1 ≤ i0 ≤ n + 1 such
that pi0 ⊆

⋃
j 6=i0

pj . In particular R has at most n maximal ideals.

Corollary 5

Let R be an inp-minimal domain, then the prime spectrum is
linearly ordered by inclusion. In particular R is a local domain.
Further, all the radical ideals are prime and there exists N ∈ N
such that for all a, b ∈ R either bN ∈ 〈a〉 or aN ∈ 〈b〉.

Proof.
A radical ideal I is the intersection of all prime ideals containing I ,
as the intersection of a chain of prime ideals is prime, I is prime.
The rest follows from the fact that

√
〈a〉 and

√
〈b〉 are

comparable, and the uniformity on N is by compactness.



Proof of Lemma 4

Proof.
Assume not, then for each 1 ≤ i ≤ n + 1 there exists
ai ∈ pi \

⋃
j 6=i pj . Also, since the ideals are prime, aki ∈ pi \

⋃
j 6=i pj

for all k ≥ 1. For each 1 ≤ i ≤ n + 1, and k ≥ 1, we set

X k
i := 〈aki 〉 \ 〈ak+1

i 〉.

The latter is nonempty: assume that aki ∈ 〈a
k+1
i 〉, then for some

b ∈ R, aki = ak+1
i b. Since R is an integral domain, it follows that

ai is a unit in R, which contradicts that pi is an ideal. We now
conclude that {x ∈ X k

i }1≤i≤n+1,k≥1 is an inp-pattern of depth
n + 1. Let k1, . . . , kn+1 ≥ 1. We claim that

ak1
1 · . . . · a

kn+1

n+1 ∈ X k1
1 ∩ · · · ∩ X

kn+1

n+1 . Indeed, if not, without loss of

generality, ak1
1 · . . . · a

kn+1

n+1 = ak1+1
1 b, for some b ∈ R, then

ak2
2 · . . . · a

kn+1

n+1 ∈ 〈a1〉 ⊆ p1. Consequently, aj ∈ p1 for some j 6= 1,
contradicting the choice of the ai . To complete the argument, note
that the rows are 2-inconsistent: as before, since R is an integral
domain if 1 ≤ i ≤ n + 1 and s 6= t ≥ 1 then X s

i ∩ X t
i = ∅.



Localisation

Let R be a domain and K = Frac(R). An overring of R is a
subring of K containing R. If S ⊆ R \ {0} is a multiplicatively
closed set, we denote S−1R the overring of R consisting of
elements of the form a

s ∈ K with a ∈ R and s ∈ S . For a prime
ideal p of R, Rp denotes (R \ p)−1R.

Lemma 6
Let R be an integral domain and S a multiplicatively closed subset
of R.

1 If S is definable then the burden of R is equal to the burden of
(S−1R,R). In particular if R is NTP2 then so is (S−1R,R).

2 If S is externally definable in R and R is NIP then (S−1R,R)
is NIP and as a result, by (1),
dp-rk(R) < κ ⇐⇒ dp-rk(S−1R,R) < κ, for any cardinal κ.



Henselianity

A valuation ring is henselian if the valuation it defines on its field
of fraction is henselian.

Fact 7
Let F be a valued field.

• If char(F ) > 0 and F is NIP, then F is henselian ([Joh20]).

• If F is dp-minimal, then it is henselian ([JSW17],[Joh16]).

Corollary 8

Let R be valuation ring.

• If char(R) > 0 and R is NIP then R is henselian.

• If R is dp-minimal then R is henselian.



A criterion for being a valuation ring

Fact 9
[Sim15, Proposition 4.31] Let G be a inp-minimal group and H,N
definable subgroups. Then either |H/H ∩ N| <∞ or
|N/H ∩ N| <∞.

Lemma 10
Let R be an inp-minimal integral domain with maximal ideal M . If
R contains an infinite set F such that F − F ⊆ R× ∪ {0} then R is
a valuation ring. In particular, if R/M is infinite then R is a
valuation ring.

Proof.
Assume that such a set F exists, and let (fi )i<ω ⊆ F be such that
fi 6= fj for all i 6= j . Let a, b ∈ R be nonzero elements. From Fact
9, without loss of generality, assume that 〈a〉/(〈a〉 ∩ 〈b〉) is finite.
As (fia)i ⊆ 〈a〉, there exists i 6= j such that (fia− fja) ∈ 〈b〉. As
F − F ⊆ R× ∪ {0}, a ∈ 〈b〉.



Prime ideals in dp-minimal domains

Let R be an inp-minimal domain with maximal ideal M .

1 For each a ∈ R \ {0} there exists a unique ideal Pa such that
Pa is maximal with the property Pa ∩ {an | n ∈ N} = ∅. Pa is
prime and externally definable.
Pa = {x ∈ R | ∀n ∈ N an /∈ 〈x〉}.

2 For any prime ideal p, p =
⋂

a∈R\p Pa. In particular, every
prime ideal is externally definable.

3 If R is dp-minimal and p is a prime ideal, then (Rp,R) is
dp-minimal in the language of rings with a predicate for R.

Note that for any a ∈ R, RPa = S−1R, where S = {an | n ∈ N}.
The ideals of the form Pa are the so-called Goldman ideals in the
literature. Pa (

√
〈a〉.



Non-maximal prime ideals

In a local ring, every non-maximal radical ideal has infinite index in
the maximal ideal M (as additive groups). Indeed, if r ( M is a
radical ideal then for any b ∈M \ r and n 6= m ∈ N, bn and bm

are in different classes modulo r.

Corollary 11

Let R be a dp-minimal domain with maximal ideal M and p a
non-maximal prime ideal. Then Rp is a valuation ring.



Proof of Corollary 11

As p is radical, p has infinite index in R.
Observe that |R/p| ≤ |Rp/pRp|. Hence the maximal ideal pRp of
Rp has infinite index.
Since p is externally definable, (Rp,R) is dp-minimal. As the
residue field is infinite, Rp is a valuation ring.



Divided domains

Definition 12
([Aki67],[Dob76]) A ring R is divided if for all a ∈ R and all prime
ideal p we have p ⊆ 〈a〉 or 〈a〉 ⊆ p. Equivalently, for all prime
ideals p = pRp.

• Valuation ring : 〈a〉 and 〈b〉 are comparable;

• Divided ring : 〈a〉 and p are comparable;

• Local treed domain : p and q are comparable.

Theorem 13
Every dp-minimal domain is divided. In particular, there exists
N ∈ N such that for all a, b in the maximal ideal, either a ∈ 〈b〉 or
bN ∈ 〈a〉.



Dp-minimal valuation rings

A characterisation of dp-minimal valuation rings.

Theorem 14
Let R be a dp-minimal domain. R is a henselian valuation ring if
and only if one of the following holds

• R has infinite residue field;

• R has finite residue field and the maximal ideal is principal.



Proof of Theorem 14

Assume first that R is a valuation ring and that R has finite
residue field. As K = Frac(R) is dp-minimal, it follows from
[Joh16] that char(K ) = 0 and [0, v(p)] is finite. In particular the
maximal ideal is principal.



Proof of Theorem 14

Conversely we already saw that if R/M is infinite, R is a valuation
ring, so we may assume that M = 〈π〉 and R/M is finite. Let
p = Pπ be the maximal ideal not intersecting {πn | n ∈ N}.
Claim: R/p is a discrete valuation ring.
We show that R/p is Noetherian, it is standard that a local
Noetherian domain whose maximal ideal is principal is a discrete
valuation ring. By definition, for all c ∈ R \ p, there exists n ∈ N
such that πn ∈ 〈c〉. In particular for all a ∈ R/p, πn + p ∈ a(R/p)
for some n ∈ N. This implies that (πn + p)R/p ⊆ a(R/p), hence,
as (π + p)(R/p) is of finite index in R/p, a(R/p) is of finite index
in R/p. It follows that every ideal of R/p has finite index, hence
R/p is Noetherian.



Compositions

Now we have that R/p and Rp are both valuation rings.
Let v1 be the valuation on K = Frac(R) associated to Rp.
Let v2 the valuation on the residue field Rp/pRp of v1 associated to
the valuation ring (R + pRp)/pRp

∼= R/p
(Frac((R + pRp)/pRp) = Rp/pRp).
Then the composition of these two valuations give rise to a
valuation on K whose valuation ring is R + pRp.

K Γ1

Rp/pRp Γ2

v1,Rp

R+pRp

v2,R/p

As R is divided, R + pRp = R hence R is a valuation ring.



Back to the example

Let (Qp, v) be the p-adic numbers for p 6= 2, it is dp-minimal. Let
K := Qp(

√
p) be the totally ramified finite extension given by

adjoining the square root of p.
The ring R := {0, . . . , p − 1}+ {x ∈ K : v(x) ≥ 1} is definable
and hence dp-minimal.
It is a local ring of mixed characteristic, it is not a valuation ring:
〈p〉 and 〈p√p〉 are incomparable.
The maximal ideal is not principal, 〈p〉 is not the maximal ideal
since it does not contain p

√
p. In fact, the maximal ideal is

generated by p and p
√
p.

This shows that it is not a valuation ring and that for dp-minimal
domain, finite residue field does not imply that the maximal ideal
is principal.



Equicharacteristic

Theorem 15
Assume that R is of equicharacteristic p ≥ 0. The following are
equivalent.

1 R is a henselian valuation ring;

2 R is integrally closed;

3 R is root-closed (in its field of fractions);

4 R has an infinite residue field;

5 R has an infinite subring which is a field (necessarily Q or

Falg
p );

6 (char(R) = p > 0) R is Artin-Shreier closed.



A remark

Let Op be the valuation ring of the valued field Falg
p ((tΓ)), for

some divisible ordered abelian group Γ.
Let Ip any ideal of Op, then Rp := Fp + Ip is not a valuation ring.
Let U be a non-principal ultrafilter on the set of prime numbers.
The ultraproduct

∏
U Op is dp-minimal since it is the valuation

ring of an algebraically closed valued field, however
∏
U Rp is not

even inp-minimal.
Indeed, it is not a valuation ring (as none of the Rp are), but it has
a pseudo-finite –hence infinite– residue field so it is not
inp-minimal.



Externally definable domains

Theorem 16
Let R be a domain and O a valuation ring of Frac(R) such that
(R,O) is dp-minimal. Then one of the following holds:

• O ⊆ R, hence R is a valuation ring.
• R ⊆ O and

• if O is dominant, Spec(R) \ {M } is an initial segment of
Spec(O) \ {m};

• if O is non-dominant, O = Rp for some non-maximal prime
ideal p of R.



Three consecutive primes

Let ∗R be the hyperreals (resp. ∗C the hypercomplex) and bR
(resp. bC) the ring of bounded elements.

Fact 17
[EK19] In the prime spectrum of bR and bC, there are no three
consecutive elements.

We say that a domain with linearly ordered prime spectrum R has
property (?) if it satisfies one of the following equivalent property:

1 {Pa | a ∈M } is densely ordered by inclusion;

2 there are no three consecutive prime elements in Spec(R);

3 for all a, b ∈M with a, b 6= 0, Pa 6=
√
〈b〉.

We generalize the result of Echi and Khalfallah.

Theorem 18
Let D be a κ-saturated domain and R a

∨
-definable local subring

whose prime ideals are linearly ordered. Then R has property (?).



Three consecutive primes

Example 19

Let Γ be an ω-saturated ordered abelian group (for instance, a
non-principal ultrapower of R, Q or Z). Then any

∨
-definable

subring of Falg
p [[tΓ]] (if Γ is p-divisible), C[[tΓ]] or Qp[[tΓ]] has

property (?).

Example 20

Any
∨

-definable subring of a non-principal ultrapower of Zp has
property (?).



Question

1 Our only examples of dp-minimal domains are definable in a
dp-minimal valued field, are there other kind of examples? If
R is dp-minimal, so is R[[X Γ]]?

2 Let R be an integral domain. Do the three conditions :
• R is divided;
• Rp is a henselian valuation ring;
• Frac(R) and R/M are dp-minimal;

imply that R is dp-minimal?



Thank You Very Much !
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A remark on NIP commutative rings

The following was observed by Simon.

Observation by Simon

Let R be an NIP commutative ring and (pi )i<ω an infinite family
of prime ideals. Then there is i0 < ω such that pi0 ⊆

⋃
j 6=i0

pj .
Equivalently, there is no infinite antichain of prime ideals and in
particular, there is only a finite number of maximal ideals.

Proof.
Assume otherwise and let ai ∈ pi \

⋃
j 6=i pj , and for each finite

I ⊆ ω, set bI =
∏

i∈I ai . Let φ(x , y) be the formula y ∈ 〈x〉, i.e.
∃z(y = zx). Then for every i < ω and finite set I ⊆ ω, I claim that
φ(ai , bI ) holds if and only if i ∈ I . If i ∈ I then bI ∈ 〈ai 〉 is clear.
Since the ideals pi are prime, bI /∈

⋃
j /∈I pj (R \ pj is

multiplicatively closed) so if i /∈ I then bI /∈ 〈ai 〉.
In a commutative ring, the maximal length of an antichain of prime
ideals is bounded by the VC-dimension of the formula y ∈ 〈x〉.



Proof of Theorem 13

Let R be a dp-minimal ring with maximal ideal M and let p ( M
be a prime ideal. Since R ∩ pRp = p, it will be enough to show
that pRp ⊆ R.
By dp-minimality of (Rp,R), either |R/p| <∞ or |pRp/p| <∞.
Since p has infinite index in R it must be the latter. Let y1, . . . , yn
be representatives for the cosets of p in pRp. {1, y1, . . . , yn}
generate R + pRp as an R-module, i.e. it is a finitely generated
R-module. By an application of Nakayama’s Lemma, there are no
non-trivial finitely generated CPI-extensions of R, hence
R = R + pRp.


