Dp-Minimal Domains Joint work with Yatir Halevi

Christian d'Elbée

June 22, 2021

Motivations

How does a model-theoretic constraint on a structure (group, field, graph...) translate into an algebraic property of the structure?

- 1 Stable structure "does not interpret an infinite half graph"
- **2** NIP structure "does not code $\mathcal{P}(\mathbb{N})$ "
- Stable Fields Conjecture: Every infinite stable field is separably closed;
- NIP Fields Conjecture: Every infinite NIP field is either real closed, separably closed or admits a non-trivial henselian valuation.

Fact 1

These conjectures are hard to prove.

Motivations

Definition 2

- Let T be a theory and n ∈ N. An inp-pattern of depth n is a collection of formulae (φ_i(x, y))_{i<n}, parameters (b_{i,j})_{i<n,j<ω} and integers (k_i)_{i<n} such that
 - for every i < n, $\{\phi_i(x, b_{i,j}) \mid j < \omega\}$ is k_i -inconsistent;
 - for every function η : n → ω, {φ_i(x, b_{i,η(i)}) | i < n} is consistent.
- **2** T is of burden n if there are no inp-patterns of depth n + 1, and if there is an inp-pattern of depth n. T is inp-minimal if it is of burden 1.
- **3** T is NIP if there is no formula $\phi(x, y)$ and parameters $(a_i)_{i < \omega}, (b_I)_{I \subseteq \omega}$ such that $\phi(a_i, b_I) \iff i \in I$.
- If T is NIP and of burden n, then we say that T has dp-rank n. If T is NIP and inp-minimal, then we say that T is dp-minimal.

Motivations

Fact 3

[Joh18] Let F be a dp-minimal field, then F is algebraically closed, real closed, or admits a non trivial definable henselian valuation. (This was recently extended by Johnson to finite dp-rank.)

What about dp-minimal integral domains?

Conventions

A domain means an integral domain, i.e. a subring of a field. Given a domain R and $a \in R$, we set $\langle a \rangle = Ra$. For an ideal I of R, $\sqrt{I} = \{a \in R \mid a^n \in I, n \in \mathbb{N}\}$ is the *radical* of I. An ideal I is *radical* if $\sqrt{I} = I$. A domain is *local* if it has only one maximal ideal.

A *valuation ring* is an integral domain whose principal ideals are linearly ordered by inclusion.

If *R* is a valuation ring and K = Frac(R), then *R* induces a valuation map $v : K^{\times} \to \Gamma$ to some ordered abelian group (a group homomorphism satisfying $v(x + y) \ge \min\{v(a), v(b)\}$).

Examples of dp-minimal domains

- Every definable subring of a dp-minimal ring is dp-minimal.
- Thus \mathbb{Z}_p (which is definable in $(\mathbb{Q}_p, v, +, \cdot, 0, 1)$) is a dp-minimal ring.
- $\mathbb{F}_p^{alg}((t^{\mathbb{Q}}))$ is the algebraically closed field whose elements are formal series

$$\sum_{r\in\mathbb{Q}}a_{r}t^{r},$$

with well-ordered support, i.e. $\{r \in \mathbb{Q} : a_r \neq 0\}$ is well-ordered. We may define a valuation $v : \mathbb{F}_p^{alg}((t^{\mathbb{Q}})) \to \mathbb{Q}$ by

$$v\left(\sum_{r\in\mathbb{Q}}a_{r}t^{r}
ight)=\min\{r\in\mathbb{Q}:a_{r}
eq0\}.$$

A question

Dp-minimal domains: are they all valuation rings?

No.

Example in positive characteristic

Consider $\mathcal{K} = \mathbb{F}_p^{alg}((t^{\mathbb{Q}}))$, the Hahn series over \mathbb{F}_p^{alg} with value group \mathbb{Q} , together with the natural valuation v.

Consider $\mathbb{F}_p + \{x \mid v(x) \ge 1\}$, it is a definable subring of K and hence dp-minimal.

It is a local ring of equicharacteristic p > 0, it is *not* a valuation ring.

To see this directly, the ideals $\mathbb{F}_p t + \{x \in K \mid v(x) \ge 2\}$ and $\{x \in K \mid v(x) > 1\}$ are incomparable.

Example in mixed characteristic

Let (\mathbb{Q}_p, v) be the p-adic numbers for $p \neq 2$, it is dp-minimal by [DGL11, Theorem 6.13]. Let $K := \mathbb{Q}_p(\sqrt{p})$ be the totally ramified finite extension given by adjoining the square root of p, it is also dp-minimal (together with the valuation v).

The ring $R := \{0, \dots, p-1\} + \{x \in K : v(x) \ge 1\}$ is definable and hence dp-minimal.

It is a local ring of mixed characteristic, it is *not* a valuation ring: $\langle p \rangle$ and $\langle p \sqrt{p} \rangle$ are incomparable.

First results

Lemma 4

Let R be an integral domain of burden $n \in \mathbb{N}$ and let $\mathfrak{p}_1, \ldots, \mathfrak{p}_{n+1}$ be proper prime ideals of R. Then there exists $1 \le i_0 \le n+1$ such that $\mathfrak{p}_{i_0} \subseteq \bigcup_{j \ne i_0} \mathfrak{p}_j$. In particular R has at most n maximal ideals.

Corollary 5

Let R be an inp-minimal domain, then the prime spectrum is linearly ordered by inclusion. In particular R is a local domain. Further, all the radical ideals are prime and there exists $N \in \mathbb{N}$ such that for all $a, b \in R$ either $b^N \in \langle a \rangle$ or $a^N \in \langle b \rangle$.

Proof.

A radical ideal *I* is the intersection of all prime ideals containing *I*, as the intersection of a chain of prime ideals is prime, *I* is prime. The rest follows from the fact that $\sqrt{\langle a \rangle}$ and $\sqrt{\langle b \rangle}$ are comparable, and the uniformity on *N* is by compactness.

Proof of Lemma 4

Proof.

Assume not, then for each $1 \le i \le n+1$ there exists $a_i \in \mathfrak{p}_i \setminus \bigcup_{j \ne i} \mathfrak{p}_j$. Also, since the ideals are prime, $a_i^k \in \mathfrak{p}_i \setminus \bigcup_{j \ne i} \mathfrak{p}_j$ for all $k \ge 1$. For each $1 \le i \le n+1$, and $k \ge 1$, we set

$$X_i^k := \langle a_i^k \rangle \setminus \langle a_i^{k+1} \rangle.$$

The latter is nonempty: assume that $a_i^k \in \langle a_i^{k+1} \rangle$, then for some $b \in R$, $a_i^k = a_i^{k+1}b$. Since R is an integral domain, it follows that a_i is a unit in R, which contradicts that p_i is an ideal. We now conclude that $\{x \in X_i^k\}_{1 \le i \le n+1, k \ge 1}$ is an inp-pattern of depth n+1. Let $k_1, \ldots, k_{n+1} \ge 1$. We claim that $a_1^{k_1} \cdot \ldots \cdot a_{n+1}^{k_{n+1}} \in X_1^{k_1} \cap \cdots \cap X_{n+1}^{k_{n+1}}$. Indeed, if not, without loss of generality, $a_1^{k_1} \cdot \ldots \cdot a_{n+1}^{k_{n+1}} = a_1^{k_1+1}b$, for some $b \in R$, then $a_2^{k_2}\cdot\ldots\cdot a_{n+1}^{k_{n+1}}\in\langle a_1
angle\subseteq \mathfrak{p}_1.$ Consequently, $a_j\in\mathfrak{p}_1$ for some j
eq 1, contradicting the choice of the a_i . To complete the argument, note that the rows are 2-inconsistent: as before, since R is an integral

Localisation

Let *R* be a domain and $K = \operatorname{Frac}(R)$. An overring of *R* is a subring of *K* containing *R*. If $S \subseteq R \setminus \{0\}$ is a multiplicatively closed set, we denote $S^{-1}R$ the overring of *R* consisting of elements of the form $\frac{a}{s} \in K$ with $a \in R$ and $s \in S$. For a prime ideal \mathfrak{p} of *R*, $R_{\mathfrak{p}}$ denotes $(R \setminus \mathfrak{p})^{-1}R$.

Lemma 6

Let R be an integral domain and S a multiplicatively closed subset of R.

- If S is definable then the burden of R is equal to the burden of $(S^{-1}R, R)$. In particular if R is NTP₂ then so is $(S^{-1}R, R)$.
- If S is externally definable in R and R is NIP then (S⁻¹R, R) is NIP and as a result, by (1), dp-rk(R) < κ ⇔ dp-rk(S⁻¹R, R) < κ, for any cardinal κ.

Henselianity

A valuation ring is henselian if the valuation it defines on its field of fraction is henselian.

Fact 7

Let F be a valued field.

- If char(F) > 0 and F is NIP, then F is henselian ([Joh20]).
- If F is dp-minimal, then it is henselian ([JSW17],[Joh16]).

Corollary 8

Let R be valuation ring.

- If char(R) > 0 and R is NIP then R is henselian.
- If R is dp-minimal then R is henselian.

A criterion for being a valuation ring

Fact 9

[Sim15, Proposition 4.31] Let G be a inp-minimal group and H, N definable subgroups. Then either $|H/H \cap N| < \infty$ or $|N/H \cap N| < \infty$.

Lemma 10

Let R be an inp-minimal integral domain with maximal ideal \mathcal{M} . If R contains an infinite set F such that $F - F \subseteq R^{\times} \cup \{0\}$ then R is a valuation ring. In particular, if R/\mathcal{M} is infinite then R is a valuation ring.

Proof.

Assume that such a set F exists, and let $(f_i)_{i < \omega} \subseteq F$ be such that $f_i \neq f_j$ for all $i \neq j$. Let $a, b \in R$ be nonzero elements. From Fact 9, without loss of generality, assume that $\langle a \rangle / (\langle a \rangle \cap \langle b \rangle)$ is finite. As $(f_i a)_i \subseteq \langle a \rangle$, there exists $i \neq j$ such that $(f_i a - f_j a) \in \langle b \rangle$. As $F - F \subseteq R^{\times} \cup \{0\}, a \in \langle b \rangle$.

Prime ideals in dp-minimal domains

Let R be an inp-minimal domain with maximal ideal \mathcal{M} .

- For each a ∈ R \ {0} there exists a unique ideal P_a such that P_a is maximal with the property P_a ∩ {aⁿ | n ∈ N} = Ø. P_a is prime and externally definable.
 - $P_{a} = \{ x \in R \mid \forall n \in \mathbb{N} \ a^{n} \notin \langle x \rangle \}.$
- 2 For any prime ideal \mathfrak{p} , $\mathfrak{p} = \bigcap_{a \in R \setminus \mathfrak{p}} P_a$. In particular, every prime ideal is externally definable.
- **3** If R is dp-minimal and \mathfrak{p} is a prime ideal, then $(R_{\mathfrak{p}}, R)$ is dp-minimal in the language of rings with a predicate for R.

Note that for any $a \in R$, $R_{P_a} = S^{-1}R$, where $S = \{a^n \mid n \in \mathbb{N}\}$. The ideals of the form P_a are the so-called *Goldman ideals* in the literature. $P_a \subsetneq \sqrt{\langle a \rangle}$.

Non-maximal prime ideals

In a local ring, every non-maximal radical ideal has infinite index in the maximal ideal \mathscr{M} (as additive groups). Indeed, if $\mathfrak{r} \subsetneq \mathscr{M}$ is a radical ideal then for any $b \in \mathscr{M} \setminus \mathfrak{r}$ and $n \neq m \in \mathbb{N}$, b^n and b^m are in different classes modulo \mathfrak{r} .

Corollary 11

Let R be a dp-minimal domain with maximal ideal \mathcal{M} and \mathfrak{p} a non-maximal prime ideal. Then $R_{\mathfrak{p}}$ is a valuation ring.

Proof of Corollary 11

As p is radical, p has infinite index in R. Observe that $|R/p| \le |R_p/pR_p|$. Hence the maximal ideal pR_p of R_p has infinite index. Since p is externally definable, (R_p, R) is dp-minimal. As the residue field is infinite, R_p is a valuation ring.

Divided domains

Definition 12

([Aki67],[Dob76]) A ring R is *divided* if for all $a \in R$ and all prime ideal \mathfrak{p} we have $\mathfrak{p} \subseteq \langle a \rangle$ or $\langle a \rangle \subseteq \mathfrak{p}$. Equivalently, for all prime ideals $\mathfrak{p} = \mathfrak{p}R_{\mathfrak{p}}$.

- Valuation ring : $\langle a \rangle$ and $\langle b \rangle$ are comparable;
- Divided ring : $\langle a \rangle$ and \mathfrak{p} are comparable;
- Local treed domain : p and q are comparable.

Theorem 13

Every dp-minimal domain is divided. In particular, there exists $N \in \mathbb{N}$ such that for all a, b in the maximal ideal, either $a \in \langle b \rangle$ or $b^N \in \langle a \rangle$.

Dp-minimal valuation rings

A characterisation of dp-minimal valuation rings.

Theorem 14

Let R be a dp-minimal domain. R is a henselian valuation ring if and only if one of the following holds

- *R* has infinite residue field;
- R has finite residue field and the maximal ideal is principal.

Proof of Theorem 14

Assume first that R is a valuation ring and that R has finite residue field. As K = Frac(R) is dp-minimal, it follows from [Joh16] that char(K) = 0 and [0, v(p)] is finite. In particular the maximal ideal is principal.

Proof of Theorem 14

Conversely we already saw that if R/M is infinite, R is a valuation ring, so we may assume that $\mathcal{M} = \langle \pi \rangle$ and R/\mathcal{M} is finite. Let $\mathfrak{p} = P_{\pi}$ be the maximal ideal not intersecting $\{\pi^n \mid n \in \mathbb{N}\}$. **Claim:** R/\mathfrak{p} is a discrete valuation ring. We show that R/\mathfrak{p} is Noetherian, it is standard that a local Noetherian domain whose maximal ideal is principal is a discrete valuation ring. By definition, for all $c \in R \setminus p$, there exists $n \in \mathbb{N}$ such that $\pi^n \in \langle c \rangle$. In particular for all $a \in R/\mathfrak{p}, \pi^n + \mathfrak{p} \in a(R/\mathfrak{p})$ for some $n \in \mathbb{N}$. This implies that $(\pi^n + \mathfrak{p})R/\mathfrak{p} \subseteq a(R/\mathfrak{p})$, hence, as $(\pi + \mathfrak{p})(R/\mathfrak{p})$ is of finite index in R/\mathfrak{p} , $a(R/\mathfrak{p})$ is of finite index in R/\mathfrak{p} . It follows that every ideal of R/\mathfrak{p} has finite index, hence R/\mathfrak{p} is Noetherian.

Compositions

Now we have that R/\mathfrak{p} and $R_\mathfrak{p}$ are both valuation rings. Let v_1 be the valuation on $K = \operatorname{Frac}(R)$ associated to $R_\mathfrak{p}$. Let v_2 the valuation on the residue field $R_\mathfrak{p}/\mathfrak{p}R_\mathfrak{p}$ of v_1 associated to the valuation ring $(R + \mathfrak{p}R_\mathfrak{p})/\mathfrak{p}R_\mathfrak{p} \cong R/\mathfrak{p}$ $(\operatorname{Frac}((R + \mathfrak{p}R_\mathfrak{p})/\mathfrak{p}R_\mathfrak{p}) = R_\mathfrak{p}/\mathfrak{p}R_\mathfrak{p})$. Then the composition of these two valuations give rise to a

valuation on K whose valuation ring is $R + \mathfrak{p}R_{\mathfrak{p}}$.

As R is divided, $R + \mathfrak{p}R_{\mathfrak{p}} = R$ hence R is a valuation ring.

Back to the example

Let (\mathbb{Q}_p, v) be the p-adic numbers for $p \neq 2$, it is dp-minimal. Let $K := \mathbb{Q}_p(\sqrt{p})$ be the totally ramified finite extension given by adjoining the square root of p.

The ring $R := \{0, \dots, p-1\} + \{x \in K : v(x) \ge 1\}$ is definable and hence dp-minimal.

It is a local ring of mixed characteristic, it is *not* a valuation ring: $\langle p \rangle$ and $\langle p \sqrt{p} \rangle$ are incomparable.

The maximal ideal is not principal, $\langle p \rangle$ is not the maximal ideal since it does not contain $p\sqrt{p}$. In fact, the maximal ideal is generated by p and $p\sqrt{p}$.

This shows that it is not a valuation ring and that for dp-minimal domain, finite residue field does not imply that the maximal ideal is principal.

Equicharacteristic

Theorem 15

Assume that R is of equicharacteristic $p \ge 0$. The following are equivalent.

- **1** *R* is a henselian valuation ring;
- 2 R is integrally closed;
- **3** *R* is root-closed (in its field of fractions);
- **4** *R* has an infinite residue field;
- **5** *R* has an infinite subring which is a field (necessarily \mathbb{Q} or \mathbb{F}_p^{alg});
- 6 (char(R) = p > 0) R is Artin-Shreier closed.

A remark

Let \mathcal{O}_p be the valuation ring of the valued field $\mathbb{F}_p^{alg}((t^{\Gamma}))$, for some divisible ordered abelian group Γ .

Let I_p any ideal of \mathcal{O}_p , then $R_p := \mathbb{F}_p + I_p$ is not a valuation ring. Let \mathcal{U} be a non-principal ultrafilter on the set of prime numbers. The ultraproduct $\prod_{\mathcal{U}} \mathcal{O}_p$ is dp-minimal since it is the valuation ring of an algebraically closed valued field, however $\prod_{\mathcal{U}} R_p$ is not even inp-minimal.

Indeed, it is not a valuation ring (as none of the R_p are), but it has a pseudo-finite –hence infinite– residue field so it is not inp-minimal.

Externally definable domains

Theorem 16

Let R be a domain and \mathcal{O} a valuation ring of Frac(R) such that (R, \mathcal{O}) is dp-minimal. Then one of the following holds:

- $\mathcal{O} \subseteq R$, hence R is a valuation ring.
- $R \subseteq \mathcal{O}$ and
 - if O is dominant, Spec(R) \ {M} is an initial segment of Spec(O) \ {m};
 - if O is non-dominant, O = R_p for some non-maximal prime ideal p of R.

Three consecutive primes

Let ${}^*\mathbb{R}$ be the hyperreals (resp. ${}^*\mathbb{C}$ the hypercomplex) and ${}^b\mathbb{R}$ (resp. ${}^b\mathbb{C}$) the ring of bounded elements.

Fact 17

[EK19] In the prime spectrum of ${}^{b}\mathbb{R}$ and ${}^{b}\mathbb{C}$, there are no three consecutive elements.

We say that a domain with linearly ordered prime spectrum R has property (\star) if it satisfies one of the following equivalent property:

1 $\{P_a \mid a \in \mathcal{M}\}$ is densely ordered by inclusion;

2 there are no three consecutive prime elements in Spec(R);

3 for all $a, b \in \mathcal{M}$ with $a, b \neq 0$, $P_a \neq \sqrt{\langle b \rangle}$.

We generalize the result of Echi and Khalfallah.

Theorem 18

Let D be a κ -saturated domain and R a \bigvee -definable local subring whose prime ideals are linearly ordered. Then R has property (*).

Three consecutive primes

Example 19

Let Γ be an ω -saturated ordered abelian group (for instance, a non-principal ultrapower of \mathbb{R} , \mathbb{Q} or \mathbb{Z}). Then any \bigvee -definable subring of $\mathbb{F}_p^{alg}[[t^{\Gamma}]]$ (if Γ is *p*-divisible), $\mathbb{C}[[t^{\Gamma}]]$ or $\mathbb{Q}_p[[t^{\Gamma}]]$ has property (\star).

Example 20

Any \bigvee -definable subring of a non-principal ultrapower of \mathbb{Z}_p has property (*).

Question

- Our only examples of dp-minimal domains are definable in a dp-minimal valued field, are there other kind of examples? If R is dp-minimal, so is R[[X^Γ]]?
- **2** Let R be an integral domain. Do the three conditions :
 - *R* is divided;
 - *R*_p is a henselian valuation ring;
 - Frac(R) and R/M are dp-minimal;

imply that *R* is dp-minimal?

Thank You Very Much !

References I

Tomoharu Akiba. A note on AV-domains. Bull. Kvoto Univ. Educ., Ser. B, 31:1-3, 1967. Alfred Dolich, John Goodrick, and David Lippel. Dp-minimality: basic facts and examples. Notre Dame J. Form. Log., 52(3):267–288, 2011. David E. Dobbs. Divided rings and going-down. Pacific J. Math., 67(2):353-363, 1976. Othman Echi and Adel Khalfallah. On the prime spectrum of the ring of bounded nonstandard complex numbers.

Proc. Amer. Math. Soc., 147:687-699, 2019.

References II

Will Johnson.

Fun with Fields.

PhD thesis, University of California, Berkeley, 2016.

📔 Will Johnson.

The canonical topology on dp-minimal fields. *J. Math. Log.*, 18(2):1850007, 23, 2018.

Will Johnson.

Dp-finite fields vi: the dp-finite shelah conjecture. preprint, https://arxiv.org/abs/2005.13989, 2020.

Franziska Jahnke, Pierre Simon, and Erik Walsberg.
 Dp-minimal valued fields.
 J. Symb. Log., 82(1):151–165, 2017.

References III

Pierre Simon.

A guide to NIP theories, volume 44 of Lecture Notes in Logic. Association for Symbolic Logic, Chicago, IL; Cambridge Scientific Publishers, Cambridge, 2015.

A remark on NIP commutative rings

The following was observed by Simon.

Observation by Simon

Let *R* be an NIP commutative ring and $(\mathfrak{p}_i)_{i < \omega}$ an infinite family of prime ideals. Then there is $i_0 < \omega$ such that $\mathfrak{p}_{i_0} \subseteq \bigcup_{j \neq i_0} \mathfrak{p}_j$. Equivalently, there is no infinite antichain of prime ideals and in particular, there is only a finite number of maximal ideals.

Proof.

Assume otherwise and let $a_i \in \mathfrak{p}_i \setminus \bigcup_{j \neq i} \mathfrak{p}_j$, and for each finite $I \subseteq \omega$, set $b_I = \prod_{i \in I} a_i$. Let $\phi(x, y)$ be the formula $y \in \langle x \rangle$, i.e. $\exists z(y = zx)$. Then for every $i < \omega$ and finite set $I \subseteq \omega$, I claim that $\phi(a_i, b_I)$ holds if and only if $i \in I$. If $i \in I$ then $b_I \in \langle a_i \rangle$ is clear. Since the ideals \mathfrak{p}_i are prime, $b_I \notin \bigcup_{j \notin I} \mathfrak{p}_j$ $(R \setminus p_j$ is multiplicatively closed) so if $i \notin I$ then $b_I \notin \langle a_i \rangle$.

In a commutative ring, the maximal length of an antichain of prime ideals is bounded by the VC-dimension of the formula $y \in \langle x \rangle$.

Proof of Theorem 13

Let *R* be a dp-minimal ring with maximal ideal \mathscr{M} and let $\mathfrak{p} \subsetneq \mathscr{M}$ be a prime ideal. Since $R \cap \mathfrak{p}R_{\mathfrak{p}} = \mathfrak{p}$, it will be enough to show that $\mathfrak{p}R_{\mathfrak{p}} \subseteq R$. By dp-minimality of $(R_{\mathfrak{p}}, R)$, either $|R/\mathfrak{p}| < \infty$ or $|\mathfrak{p}R_{\mathfrak{p}}/\mathfrak{p}| < \infty$. Since \mathfrak{p} has infinite index in *R* it must be the latter. Let y_1, \ldots, y_n be representatives for the cosets of \mathfrak{p} in $\mathfrak{p}R_{\mathfrak{p}}$. $\{1, y_1, \ldots, y_n\}$ generate $R + \mathfrak{p}R_\mathfrak{p}$ as an *R*-module, i.e. it is a finitely generated *R*-module. By an application of Nakayama's Lemma, there are no non-trivial finitely generated CPI-extensions of *R*, hence $R = R + \mathfrak{p}R_\mathfrak{p}$.