Dp-Minimal Domains

Joint work with Yatir Halevi

Christian d'Elbée

June 22, 2021



Motivations

How does a model-theoretic constraint on a structure (group, field,
graph...) translate into an algebraic property of the structure?

@ Stable structure — "does not interpret an infinite half graph”
® NIP structure — "does not code P(N)”

@ Stable Fields Conjecture: Every infinite stable field is
separably closed;

® NIP Fields Conjecture: Every infinite NIP field is either real
closed, separably closed or admits a non-trivial henselian
valuation.

Fact 1
These conjectures are hard to prove.



Motivations

Definition 2

@ Let T be a theory and n € N. An inp-pattern of depth n is a
collection of formulae (¢i(x,y))i<n, parameters (b;)i<nj<w
and integers (k;)i<n such that

e for every i < n, {¢i(x, bij) | j < w} is ki-inconsistent;
* for every function n: n — w, {¢i(x, bj i) | i < n}is
consistent.
® T is of burden n if there are no inp-patterns of depth n+ 1,
and if there is an inp-pattern of depth n. T is inp-minimal if
it is of burden 1.

® T is NIP if there is no formula ¢(x, y) and parameters
(a;),-<w, (b[)[gw such that (;5(3,', b[) — el

O If T is NIP and of burden n, then we say that T has dp-rank
n. If T is NIP and inp-minimal, then we say that T is
dp-minimal.



Motivations

Fact 3
[Joh18] Let F be a dp-minimal field, then F is algebraically closed,
real closed, or admits a non trivial definable henselian valuation.

(This was recently extended by Johnson to finite dp-rank.)

What about dp-minimal integral domains?



Conventions

A domain means an integral domain, i.e. a subring of a field.
Given a domain R and a € R, we set (a) = Ra. For an ideal / of
R, VI ={a€ R|a"cl,necN}is the radical of I. An ideal / is
radical if /1 = 1. A domain is local if it has only one maximal
ideal.

A valuation ring is an integral domain whose principal ideals are
linearly ordered by inclusion.

If R is a valuation ring and K = Frac(R), then R induces a
valuation map v : K* — T to some ordered abelian group (a group
homomorphism satisfying v(x + y) > min{v(a), v(b)}).



Examples of dp-minimal domains

Every definable subring of a dp-minimal ring is dp-minimal.

Thus Z,, (which is definable in (Qp, v,+,-,0,1)) is a
dp-minimal ring.
F2((£Q)) is the algebraically closed field whose elements are

formal series
g art’,
reQ

with well-ordered support, i.e.{r € Q : a, # 0} is well-ordered.
We may define a valuation v : Ff,/g((tQ)) — Q by

v Zart’ =min{r € Q: a, # 0}.
reQ



A question

Dp-minimal domains: are they all valuation rings?

No.



Example in positive characteristic

Consider K = F38((t?)), the Hahn series over F2%8 with value
group Q, together with the natural valuation v.

Consider F, + {x | v(x) > 1}, it is a definable subring of K and
hence dp-minimal.

It is a local ring of equicharacteristic p > 0, it is not a valuation
ring.

To see this directly, the ideals Fyt + {x € K | v(x) > 2} and
{x € K| v(x) > 1} are incomparable.



Example in mixed characteristic

Let (Qp, v) be the p-adic numbers for p # 2, it is dp-minimal by
[DGL11, Theorem 6.13]. Let K := Q,(,/p) be the totally ramified
finite extension given by adjoining the square root of p, it is also
dp-minimal (together with the valuation v).

The ring R:={0,...,p— 1} +{x € K : v(x) > 1} is definable
and hence dp-minimal.

It is a local ring of mixed characteristic, it is not a valuation ring:

(p) and (p,/p) are incomparable.



First results

Lemma 4

Let R be an integral domain of burden n € N and let p1,...,Ppn+1
be proper prime ideals of R. Then there exists 1 < i < n+ 1 such
that pj, € ;. pj- In particular R has at most n maximal ideals.

Corollary 5

Let R be an inp-minimal domain, then the prime spectrum is
linearly ordered by inclusion. In particular R is a local domain.
Further, all the radical ideals are prime and there exists N € N
such that for all a,b € R either bV € (a) or aV € (b).

Proof.

A radical ideal I is the intersection of all prime ideals containing /,
as the intersection of a chain of prime ideals is prime, I is prime.
The rest follows from the fact that \/@ and \/@ are
comparable, and the uniformity on N is by compactness. O



Proof of Lemma 4

Proof.

Assume not, then for each 1 < j < n+ 1 there exists

aj € pi \ U, pj.- Also, since the ideals are prime, af € p; \ U p)
forall k> 1. Foreach1 <i<n+1, and kK > 1, we set

X5 = (af) \ (af ™).

]

The latter is nonempty: assume that a¥ € (a¥*?), then for some

b€ R, a¥ = ak™b. Since R is an integral domain, it follows that
aj is a unit in R, which contradicts that p; is an ideal. We now
conclude that {x € Xik}lg;SnJFLkZl is an inp-pattern of depth
n+1. Let ki,..., kny1 > 1. We claim that

ar . a,lj’jjll eXfn---n X:fll. Indeed, if not, without loss of
generality, all(1 . a,’j’jll = a’flﬂb, for some b € R, then
a§2 s a:Z:ll € (a1) C p1. Consequently, a; € p; for some j # 1,

contradicting the choice of the a;. To complete the argument, note
that the rows are 2-inconsistent: as before, since R is an integral



Localisation

Let R be a domain and K = Frac(R). An overring of R is a
subring of K containing R. If S C R\ {0} is a multiplicatively
closed set, we denote SR the overring of R consisting of
elements of the form 2 € K with a€ R and s € S. For a prime
ideal p of R, R, denotes (R\ p)~!R.

Lemma 6
Let R be an integral domain and S a multiplicatively closed subset
of R.

@ If'S is definable then the burden of R is equal to the burden of
(S7IR,R). In particular if R is NTP, then so is (SR, R).

@® If S is externally definable in R and R is NIP then (S™!R, R)
is NIP and as a result, by (1),
dp-rk(R) < k <= dp-rk(S~'R, R) < K, for any cardinal k.



Henselianity

A valuation ring is henselian if the valuation it defines on its field
of fraction is henselian.

Fact 7

Let F be a valued field.
® If char(F) > 0 and F is NIP, then F is henselian ([Joh20]).
e If F is dp-minimal, then it is henselian ([JSWI17],[Joh16]).

Corollary 8

Let R be valuation ring.
e If char(R) > 0 and R is NIP then R is henselian.
® [f R is dp-minimal then R is henselian.



A criterion for being a valuation ring

Fact 9

[Sim15, Proposition 4.31] Let G be a inp-minimal group and H, N
definable subgroups. Then either |H/H N N| < oo or

IN/HN N| < 0.

Lemma 10

Let R be an inp-minimal integral domain with maximal ideal ./ . If
R contains an infinite set F such that F — F C R* U {0} then R is
a valuation ring. In particular, if R/.# is infinite then R is a
valuation ring.

Proof.

Assume that such a set F exists, and let (f;)i<, C F be such that
fi # fj for all i # j. Let a, b € R be nonzero elements. From Fact
9, without loss of generality, assume that (a)/((a) N (b)) is finite.
As (f;a); C (a), there exists i # j such that (fia — f;a) € (b). As
F—F C R*U{0}, ac (b). O



Prime ideals in dp-minimal domains

Let R be an inp-minimal domain with maximal ideal .Z .

@ For each a € R\ {0} there exists a unique ideal P, such that
P, is maximal with the property P,N{a" | n€ N} =0. P, is
prime and externally definable.
P,={xeR|VneNa" ¢ (x)}.

® For any prime ideal p, p = ﬂaeR\p P,. In particular, every
prime ideal is externally definable.

® If R is dp-minimal and p is a prime ideal, then (R, R) is
dp-minimal in the language of rings with a predicate for R.

Note that for any a € R, Rp, = SR, where S = {a" | n € N}.
The ideals of the form P, are the so-called Goldman ideals in the

literature. P, C /(a).



Non-maximal prime ideals

In a local ring, every non-maximal radical ideal has infinite index in
the maximal ideal .# (as additive groups). Indeed, if t C .Z is a
radical ideal then for any b€ .# \ vt and n # m € N, b" and b™
are in different classes modulo t.

Corollary 11

Let R be a dp-minimal domain with maximal ideal .# and p a
non-maximal prime ideal. Then R, is a valuation ring.



Proof of Corollary 11

As p is radical, p has infinite index in R.

Observe that |R/p| < |R,/pRy|. Hence the maximal ideal pR, of
R, has infinite index.

Since p is externally definable, (Ry, R) is dp-minimal. As the
residue field is infinite, R, is a valuation ring.



Divided domains

Definition 12
([Aki67],[Dob76]) A ring R is divided if for all a € R and all prime
ideal p we have p C (a) or (a) C p. Equivalently, for all prime
ideals p = pR,.

¢ Valuation ring : (a) and (b) are comparable;

¢ Divided ring : (a) and p are comparable;

® | ocal treed domain : p and q are comparable.

Theorem 13
Every dp-minimal domain is divided. In particular, there exists

N € N such that for all a, b in the maximal ideal, either a € (b) or
bN € (a).



Dp-minimal valuation rings

A characterisation of dp-minimal valuation rings.

Theorem 14
Let R be a dp-minimal domain. R is a henselian valuation ring if
and only if one of the following holds

® R has infinite residue field;

® R has finite residue field and the maximal ideal is principal.



Proof of Theorem 14

Assume first that R is a valuation ring and that R has finite
residue field. As K = Frac(R) is dp-minimal, it follows from

[Joh16] that char(K) = 0 and [0, v(p)] is finite. In particular the
maximal ideal is principal.



Proof of Theorem 14

Conversely we already saw that if R/.# is infinite, R is a valuation
ring, so we may assume that .# = (r) and R/.# is finite. Let

p = P be the maximal ideal not intersecting {7" | n € N}.
Claim: R/p is a discrete valuation ring.

We show that R/p is Noetherian, it is standard that a local
Noetherian domain whose maximal ideal is principal is a discrete
valuation ring. By definition, for all c € R\ p, there exists n € N
such that 7" € (c). In particular for all a € R/p, 7" +p € a(R/p)
for some n € N. This implies that (7" + p)R/p C a(R/p), hence,
as (m 4+ p)(R/p) is of finite index in R/p, a(R/p) is of finite index
in R/p. It follows that every ideal of R/p has finite index, hence
R/p is Noetherian.



Compositions

Now we have that R/p and R, are both valuation rings.

Let v; be the valuation on K = Frac(R) associated to R,.

Let v» the valuation on the residue field R,/pR, of v; associated to
the valuation ring (R +pR,)/pR, = R/p

(Frac((R + pRy) /pRy) = Ro/pRy).

Then the composition of these two valuations give rise to a
valuation on K whose valuation ring is R + pR,.

v, Rp
—_—

M
RerR’p
Ry/pRy, — = 51,

As R is divided, R + pR, = R hence R is a valuation ring.



Back to the example

Let (Qp, v) be the p-adic numbers for p # 2, it is dp-minimal. Let
K := Qp(/p) be the totally ramified finite extension given by
adjoining the square root of p.

The ring R:={0,...,p— 1} + {x € K : v(x) > 1} is definable
and hence dp-minimal.

It is a local ring of mixed characteristic, it is not a valuation ring:
(p) and (p,/p) are incomparable.

The maximal ideal is not principal, (p) is not the maximal ideal
since it does not contain p+/P- In fact, the maximal ideal is
generated by p and p,/p.

This shows that it is not a valuation ring and that for dp-minimal
domain, finite residue field does not imply that the maximal ideal
is principal.



Equicharacteristic

Theorem 15
Assume that R is of equicharacteristic p > 0. The following are
equivalent.

® R is a henselian valuation ring;

® R is integrally closed;

® R is root-closed (in its field of fractions);

O R has an infinite residue field;

@ R has an infinite subring which is a field (necessarily Q or
Fg/g )'.

@ (char(R) = p > 0) R is Artin-Shreier closed.



A remark

Let O, be the valuation ring of the valued field ]Ff,/g((tr)), for
some divisible ordered abelian group T.

Let /, any ideal of Op, then R, :=F, + I, is not a valuation ring.
Let I/ be a non-principal ultrafilter on the set of prime numbers.
The ultraproduct [];, Op is dp-minimal since it is the valuation
ring of an algebraically closed valued field, however [[;, R, is not
even inp-minimal.

Indeed, it is not a valuation ring (as none of the R, are), but it has
a pseudo-finite —hence infinite— residue field so it is not
inp-minimal.



Externally definable domains

Theorem 16
Let R be a domain and O a valuation ring of Frac(R) such that
(R, Q) is dp-minimal. Then one of the following holds:

e O C R, hence R is a valuation ring.
e RC O and
® if O is dominant, Spec(R) \ {.#} is an initial segment of
Spec(O) \ {m};

® if O is non-dominant, O = R, for some non-maximal prime
ideal p of R.



Three consecutive primes

Let *R be the hyperreals (resp. *C the hypercomplex) and °R
(resp. C) the ring of bounded elements.

Fact 17
[EK19] In the prime spectrum of R and PC, there are no three
consecutive elements.

We say that a domain with linearly ordered prime spectrum R has
property (%) if it satisfies one of the following equivalent property:

® {P,| ac .#} is densely ordered by inclusion;
@® there are no three consecutive prime elements in Spec(R);
© for all a,b € 4 with a,b #0, P, # \/(b).

We generalize the result of Echi and Khalfallah.

Theorem 18

Let D be a k-saturated domain and R a \/-definable local subring
whose prime ideals are linearly ordered. Then R has property (x).



Three consecutive primes

Example 19

Let I' be an w-saturated ordered abelian group (for instance, a
non-principal ultrapower of R, Q or Z). Then any \/-definable

subring of Fglg[[tr]] (if T is p-divisible), C[[t"]] or Q,[[t"]] has
property (*).
Example 20

Any \/-definable subring of a non-principal ultrapower of Z, has
property (*).



Question

@ Our only examples of dp-minimal domains are definable in a
dp-minimal valued field, are there other kind of examples? If
R is dp-minimal, so is R[[X"]]?
® Let R be an integral domain. Do the three conditions :
® R is divided;
® R, is a henselian valuation ring;
® Frac(R) and R/.# are dp-minimal;
imply that R is dp-minimal?



Thank You Very Much !



References |

[ Tomoharu Akiba.
A note on AV-domains.
Bull. Kyoto Univ. Educ., Ser. B, 31:1-3, 1967.

[@ Alfred Dolich, John Goodrick, and David Lippel.
Dp-minimality: basic facts and examples.
Notre Dame J. Form. Log., 52(3):267-288, 2011.

[4 David E. Dobbs.
Divided rings and going-down.
Pacific J. Math., 67(2):353-363, 1976.

@ Othman Echi and Adel Khalfallah.
On the prime spectrum of the ring of bounded nonstandard
complex numbers.
Proc. Amer. Math. Soc., 147:687-699, 2019.



References Il

@ Will Johnson.
Fun with Fields.
PhD thesis, University of California, Berkeley, 2016.

@ Will Johnson.
The canonical topology on dp-minimal fields.
J. Math. Log., 18(2):1850007, 23, 2018.

[@ Will Johnson.
Dp-finite fields vi: the dp-finite shelah conjecture.
preprint, https://arxiv.org/abs/2005.13989, 2020.

@ Franziska Jahnke, Pierre Simon, and Erik Walsberg.
Dp-minimal valued fields.
J. Symb. Log., 82(1):151-165, 2017.


https://arxiv.org/abs/2005.13989

References 1l

@ Pierre Simon.
A guide to NIP theories, volume 44 of Lecture Notes in Logic.

Association for Symbolic Logic, Chicago, IL; Cambridge
Scientific Publishers, Cambridge, 2015.



A remark on NIP commutative rings
The following was observed by Simon.

Observation by Simon

Let R be an NIP commutative ring and (p;)i<w an infinite family
of prime ideals. Tht.en the're'is. ip < w su'ch that'p,-0 g U#,-O pj..
Equivalently, there is no infinite antichain of prime ideals and in
particular, there is only a finite number of maximal ideals.

Proof.

Assume otherwise and let a; € p; \ UJ-#,-pj, and for each finite

| Cw, set by =]];c;ai. Let ¢(x,y) be the formula y € (x), i.e.
Jz(y = zx). Then for every i < w and finite set | C w, | claim that
¢(aj, by) holds if and only if i € I. If i € | then by € (a;) is clear.
Since the ideals p; are prime, b; ¢ Ujg,pj (R\ pjis
multiplicatively closed) so if i ¢ I then by ¢ (a;). O
In a commutative ring, the maximal length of an antichain of prime
ideals is bounded by the VC-dimension of the formula y € (x).



Proof of Theorem 13

Let R be a dp-minimal ring with maximal ideal .# and let p C .#
be a prime ideal. Since RN pR, = p, it will be enough to show

that pR, C R.
By dp-minimality of (Ry, R), either |R/p| < oo or [pR,/p| < .
Since p has infinite index in R it must be the latter. Let yi,...,yn

be representatives for the cosets of p in pRy. {1,y1,...,¥n}
generate R + pR, as an R-module, i.e. it is a finitely generated
R-module. By an application of Nakayama's Lemma, there are no
non-trivial finitely generated CPl-extensions of R, hence
R=R+pR,.



