MODEL THEORY OF THE MULTIPLICATIVE GROUPS OF FIELDS

1. Multiplicative group of an algebraically closed field

1.1. Model theoretic description. Let p be a prime number or 0. We will denote by \mathbb{N}_p the set of nonzero natural numbers which are not divisible by p. If p = 0 it is the set of nonzero natural numbers. (\mathbb{N}_p, \cdot) is a submonoide of (\mathbb{N}, \cdot) . Furthermore \mathbb{N}_p inherits the divisibility relation from \mathbb{N} , since if $a \in \mathbb{N}_p$ and $b \in \mathbb{N}$ is such that $b \mid a$ then $b \in \mathbb{N}_p$.

In the language $\{\cdot, ^{-1}, 1\}$ of groups (denoted multiplicatively, for obvious reasons), let T_p be the theory of abelian group with the following set of axioms if p is prime

$$\{\forall x \exists^{=n} y \ y^n = x \mid n \in \mathbb{N}_p\} \cup \{\forall x \exists^{=1} y \ y^p = x\}$$

and if p = 0

 $\{\forall x \exists^{=n} y \ y^n = x \mid n \in \mathbb{N}_0\}.$

We call a model of T_p an *M*-divisible group of characteristic *p*.

The following is a standard group theoretic fact, see for instance [Kap54]

{fact_tors}

{lm_extend}

Fact 1.1. Let G be an abelian group, then G[tor] the subgroup of torsion is a direct factor G, hence there exists F torsion-free such that

- (1) $G = G[tor] \cdot F$
- (2) $G[tor] \cap F = \{1\}$

We will denote the previous two conditions by $G = G[tor] \odot F$.

Definition 1.2. Let $G \models T_p$ and $A \subseteq G$.

- We denote by A^{Mdiv} the set $\{g \in G, g^n \in \langle A \rangle$ for some $n \in \mathbb{N}\}$, with $\langle A \rangle$ the subgroup of G spanned by A.
- We denote by $\mu_n(x)$ the formula $x^n = 1$, and $\mu(G)$ for the set $\bigcup_{n \in \mathbb{N}_0} \mu_n(G)$.

Remark. If $G \models T_p$ then for all $n \in \mathbb{N}_p$ we have that $\mu_n(G)$ is a cyclic group of order n. Indeed we have that k divides n if and only if $\mu_k(G)$ is a subgroup of $\mu_n(G)$, and by the axioms $\mu_n(G)$ has one and only one subgroup of order k for all k dividing n, hence by the characterization of cyclic groups by the subgroups, $\mu_n(G)$ is cyclic. Note that if p is prime and $G \models T_p$ then

$$\mu(G) = \bigcup_{i < \omega} \mu_n(G) = \bigcup_{n \in \mathbb{N}_p} \mu_n(G)$$

as $\mu_{p^k n}(G) = \mu_n(G)$ for all $k, n \in \mathbb{N}$. Remark that the union is a directed as $(\mu_n(G))_{n \in \mathbb{N}_p}$ is a directed family of groups.

Lemma 1.3. Let G and H be two models of T_p and $A \subseteq G$ and $B \subseteq H$ two subgroups such that there exists an isomorphism f between A and B. Then f extends to an isomorphism \tilde{f} between A^{Mdiv} and B^{Mdiv} .

Proof. Assume the hypothesis. By Fact 1.1, A[tor] is a direct factor of A. Note that $A[tor] = \bigcup_{n \in \mathbb{N}_p} \mu_n(A) = \mu(G) \cap A$ and we will denote it $\mu(A)$. Now there is a torsion-free subgroup F_1 of G such that

$$A = \mu(A) \odot F_1.$$

We similarly find $\mu(B)$ the torsion of B and F_2 torsion-free such that

 $B = \mu(B) \odot F_2.$

Let $f_1 = f \upharpoonright \mu(A)$. As f preserves the n-torsion, we have that $f_1 : \mu(A) \to \mu(B)$ is an isomorphisms. We show that f_1 extends to $\tilde{f}_1 : \mu(G) \to \mu(H)$. It is sufficient to show that for all $n \in \mathbb{N}_p$, we can extend $f_1 \upharpoonright \mu_n(A) : \mu_n(A) \to \mu_n(B)$ to $\mu_n(G) \to \mu_n(H)$. But as $\mu_n(G), \mu_n(H)$ are cyclic, so are $\mu_n(A), \mu_n(B)$ so there exists a generator of $\mu_n(A)$ and b generator of $\mu_n(B)$ such that $f_1(a) = b$. Now if g is a generator of $\mu_n(G)$ we can find $k \in \mathbb{N}$ such that $g^k = a$. We can also find $h \in H$ generator of $\mu_n(H)$ such that $h^k = b$. Now we can extend f_1 between $\mu_n(G)$ and $\mu_n(H)$ by $g \mapsto h$. By union we have extended f_1 to $\tilde{f}_1 : \mu(G) \to \mu(H)$. This means that we may assume $\mu(G) \subseteq A$ and $\mu(H) \subseteq B$.

We extend f to A^{Mdiv} .

Now assume that $g^n = a \in A$ and assume that n is minimal such that $g^n = a \in A$.Let b = f(a) and take $h \in H$ such that $h^n = b$. We want to show that n is minimal with the property $h^n \in B$. Assume not, then there is i with $1 \leq i < n$ such that $h^i \in B$. If d = gcd(i, n) then $h^d \in B$. Write n = dn', set $b' = h^d$ and $a' = f^{-1}(b')$. It follows that $a'^{n'} = a$. We also have $(g^d)^{n'} = a$ so finally there is $\xi \in \mu_{n'}(G) \subseteq A$ such that $g^d = a'\xi$, and this contradicts the minimality of n.

Any element in $\langle Ag \rangle$ can be uniquely written as ag^i for some *i* such that $0 \leq i < n$. We extend *f* by sending ag^i to $f(a)h^i$. It is well defined and is an isomorphism.

{prop_pregeo_mult}

Proposition 1.4. The theory T_p has quantifier elimination in the language $\{\cdot, ^{-1}, 1\}$. It is complete. It is strongly minimal and \aleph_1 -categorical. Furthermore for any A in a model of T_p , the algebraic closure is given by $\operatorname{acl}_p(A) = A^{Mdiv}$. Every algebraically closed set is a model of T_p .

Proof. We do the classical back and forth. Let $G, H \models T_p$ sufficiently saturated and $A \subseteq G, B \subseteq H$ two small subsets and f a partial isomorphism between A and B. First it is clear that we can extend f to the subgroup generated by A, so we may assume that A and B are subgroups of G, H respectively. Now by Lemma 1.3 we can also assume that $A = A^{Mdiv}$ and $B = B^{Mdiv}$. Now look at some $g \in G \setminus A$. The quantifier-free type p(x, A) = qftp(g/A) is implied by disjunction of formulae of the form

 $\bigwedge_i x \neq a_i.$

Now as the group H is infinite, we can easily find a corresponding $h \in H$ satisfying f(p(x, A)), by compactness. So the theory T_p has quantifier elimination. By Lemma 1.3, $\mu(G)$ and $\mu(H)$ are isomorphic for any two models of T_p , and they are models of T_p , so the theory is complete. It is clearly strongly minimal, \aleph_1 -categorical. The description of algebraic closure follows easily from quantifier elimination. The last part is just checking the axioms.

Let G, H be models of T_p . We saw that $\mu(G)$ and $\mu(H)$ are isomorphic, and this is $\operatorname{acl}_p(\emptyset)$. We will denote it μ . Now for any model G of T_p we have that G/μ is divisible and torsion-free, so this is a \mathbb{Q} -vector-space, and we write $G = \mu \odot G/\mu$.

Lemma 1.5. In a big model of T_p , we have that acl_p defines a pregeometry which is modular and the associated independence relation in T_p is given by

$$Ap_CB \iff \operatorname{acl}_p(AC) \cap \operatorname{acl}_p(BC) = \operatorname{acl}_p(C).$$

Proof. As T_p is strongly minimal, $\operatorname{acl}_p(.)$ defines a pregeometry. The dimension of some set in the sens of the pregeometry is given by the dimension of the associated \mathbb{Q} -vector space, i.e. $\dim(A)$ is the dimension of $\operatorname{acl}_p(A)/\mu$ as \mathbb{Q} -vector space. Now

this clearly satisfies the modular law, so the pregeometry is modular, see [TZ12, C.1.9]. $\hfill \Box$

1.2. Models of T_p . It is clear that given any field K of characteristic $p \ge 0$, the group K^{\times} is a model of T_p . There is a natural question to ask: is every model of T_p isomorphic to the multiplicative group of some algebraically closed field of characteristic p? Let $G \models T_p$, then if $|G| \ge \aleph_1$, the multiplicative group of any algebraically closed field K of characteristic p and same cardinality as G will be isomorphic to G by \aleph_1 -categoricity.

Now we assume that $|G| = \aleph_0$. First, in the case of characteristic 0 if the acl_{p-1} dimension of G (in the sense of the pregeometry acl_p) is equal to \aleph_0 , then G is isomorphic to $\overline{\mathbb{Q}}^{\times}$. Indeed, in \mathbb{Q} , the set of prime numbers is multiplicatively independent, so the acl_0 -dimension of $\overline{\mathbb{Q}}^{\times}$ is \aleph_0 , so G and $\overline{\mathbb{Q}}^{\times}$ are isomorphic. It follows that the following are equivalent:

- (1) G is a countable model of T_0 ;
- (2) G is isomorphic to the multiplicative group of some model of ACF_0 ;
- (3) the acl₀-dimension of G is \aleph_0 ;
- (4) G is isomorphic to $\overline{\mathbb{Q}}^{\times}$.

As any field of characteristic zero contains \mathbb{Q} , it follows that if G has finite acl_0 dimension there exists no field k of characteristic 0 (algebraically closed or not) such that G is isomorphic to k^{\times} .

Finally we turn to the case $|G| = \aleph_0$ and prime characteristic. It is clear that $\overline{\mathbb{F}_p}^{\times}$ has dimension 0. Note that $\overline{\mathbb{F}_p(t)}^{\times}$ has dimension \aleph_0 , since $(t-a)_{a\in\overline{\mathbb{F}_p}}$ is multiplicatively independent. It follows that if $G \models T_p$ and $|G| = \aleph_0$ then G is isomorphic to the multiplicative subgroup of an algebraically closed field of prime characteristic if and only if its dimension is either 0 of \aleph_0 .

Let \mathbb{Q}^{cyc} be the cyclotomic closure of \mathbb{Q} , i.e. the field $\mathbb{Q}(\mu)$. Then the multiplicative group of \mathbb{Q}^{cyc} is a model of T_0 , because it satisfies the axioms of T_0 . Further, for every field extension K of \mathbb{Q}^{cyc} , K^{\times} is a model of T_0 . Similarly every field extension of $\overline{\mathbb{F}}_p$ is a model of T_p . It follows that the following are equivalent for any field K of characteristic 0

- (1) $K^{\times} \models T_0;$
- (2) K is an extension of \mathbb{Q}^{cyc} .

An the corresponding in positive characteristic:

- (1) $K^{\times} \models T_p;$
- (2) K is an extension of $\overline{\mathbb{F}}_p$.

In particular, by a famous result of Kaplan-Scanlon-Wagner, the multiplicative group of any NIP field of positive characteristic is a model of T_p .

Exercise 1. Prove that for all $n \in \mathbb{N}$, there exists a "twisted addition" + on $\overline{\mathbb{Q}}$ such that $(\overline{\mathbb{Q}}, +, \cdot)$ is a field of transcendence degree n. In particular $(\overline{\mathbb{Q}}, +, \cdot)$ embeds strictly in $(\overline{\mathbb{Q}}, +, \cdot)$ as a strict subfield.

References

- [Kap54] Irving Kaplansky. Infinite Abelian Groups. University of Michigan Publications in Mathematics vol. 2. University of Michigan Press, 1954.
- [TZ12] Katrin Tent and Martin Ziegler. A Course in Model Theory, volume 40 of Lecture Notes in Logic. Association for Symbolic Logic, La Jolla, CA; Cambridge University Press, Cambridge, 2012.