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CHAPTER 1

Preliminaries

Contents
1.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2 Independence relations . . . . . . . . . . . . . . . . . . . . . . . 23
1.3 Pregeometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.4 Classification Theory . . . . . . . . . . . . . . . . . . . . . . . . 29
1.5 Preliminaries on fields . . . . . . . . . . . . . . . . . . . . . . . 34
1.6 The Chabauty topology on Sg(Fp) . . . . . . . . . . . . . . . . . 39

1.1 Generalities

We assume basic knowledge in model theory, concerning formulae, types, theories, and
models. Unless otherwise stated, a type means a complete type. Throughout we will
denote by x, y, xi, yi tuples of variables, the subscript xi, yi will be used to denote a
coordinate inside a tuple. Also, t will often denote a single variable. Capital letters
A,B,C stand for sets whereas small latin letters a, b, c designate either singletons, finite
or infinite tuples. For any tuple a (of elements or of variables), we denote by |a| the
length of a. For a set, |C| is the cardinality of C. As usual in model theory, we denote by
juxtaposition AB the union of the set A and the set B. We also identify juxtaposition
of tuples ab as the concatenation of a and b. When dealing with independence relations
or closure operators, we do not distinguish between tuples, enumerations, and sets.

Given a complete theory T in a language L , a monster model M of T is a strongly
-homogeneous and -saturated model of T , for some big enough . It is standard that
M is +-universal, in particular every model M of cardinality less than  embeds in
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M. Furthermore, we will assume that any reduct of M is also a monster model1 for its
theory in the reduct language. As usual in that context, a small model of T (or a small
set) is a model of T (or a subset of some model of T ) of cardinal less than  and, by
-universality, we consider them as elementary substructures (subsets) of M. A small
cardinal is a cardinal � < . We will sometimes forget about the "small" adjective and
even about the cardinal , as it will always be implied that, in every single proof, every
set we consider has cardinality smaller than .

Given a theory T we use the notations tpT , ⌘
T , aclT and dclT to precise that we

work in the language of T , and when the language is clear, we just use tp, ⌘, acl, dcl.
By strong -homogeneity if a ⌘

T

C
b then there is an automorphism � of M over C (i.e.

fixing C pointwise) such that �(a) = b (i.e. �(ai) = bi for 0  i < |a|, |a| may be
infinite). Such an automorphism is also called a C-automorphism. For two sets A,A0, we
denote by A ⌘C A0 if for all enumeration (a↵)↵<|A| of A there exists an automorphism
� of the monster over C, and an enumeration (a0↵)↵<|A0| of A0 such that �(a↵) = a0↵
for all ↵ < |A| (in particular |A| = |A0

|); equivalently, there is a C-automorphism of
the monster such that �(A) = A0 setwise. The restriction of � to the set A is called
a T -elementary bijection (or T -elementary isomorphism) between A and A0. This must
not be confused with the notion of elementary equivalent models over C: M ⌘C N if
C ✓ M \ N and for all L -sentences ✓ with parameters in C, then M |= ✓ if and only
if N |= ✓. If M ⌘C N , in general there is no C-automorphism of the monster sending
M on N .

A theory T is model-complete if for all models M and N of T , if M is a substructure
of N then M is an elementary substructure of N . A model-complete theory need not
be complete, see for instance ACF below. A model-companion of an L -theory T is an
L -theory T ⇤ such that:

• every model of T has an extension which is a model of T ⇤;

• every model of T ⇤ has an extension which is a model of T ;

• T is model-complete.

The model-companion of a theory need not exists, but if it does, it is unique (see for
instance [Mar02, Exercise 3.4.13]).

An L -structure M is existentially closed in some extension N if every existential
formula with parameters in M that holds in N holds also in M . An existentially closed
model of a theory T is a model of T that is existentially closed in every extension which
is a model of T . A theory is inductive if the union of any chain of models is still a
model. Equivalently, it is 89-axiomatisable. Assume that T is inductive, then if the
model-companion T ⇤ exists, T ⇤ is an axiomatization of the class of existentially closed
models of T (see [Mar02, Exercise 3.4.13]). We say that a theory T has the amalgamation
property if whenever M0, M1 and M2 are models of T such that there exists embedding

1By [Hod08, Chapter 10], choose M to be -big, then it strongly -homogeneous and -saturated,
and any reduct is also -big. Note that in general, a reduct of a strongly -homogeneous structure need
not be strongly -homogeneous, see [Hod08, 10.1, Exercice 11].
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f1 : M0 ! M1 and f2 : M0 ! M2 then there exists a model N of T and embeddings
g1 : M1 ! N and g2 : M2 ! N such that the following diagram commutes.

M0 M1

M2 N

f1

f2 g1

g2

If it exists, the model-companion of a theory which has the amalgamation property is
called the model-completion.

Let M be a monster model of T and A,B small subsets of M. Let p be a (complete)
type over B. We say that p is finitely satisfiable in A if for all formula �(x, b) in p, there
exists a tuple a from A with |a| = |x| and M |= �(a, b). We say that p is A-invariant
if for all A-automorphism, �p = p. If p is finitely satisfiable in A, then it is A-invariant
(see [Sim15, Example 2.17]). A global type is a type over M, a global extension q of p is
a global type such that q � B = p, where q � B is the type consisting of formulae in q
with parameters in B. If a type p over B is finitely satisfiable in A then it has a global
extension which is finitely satisfiable in A (see [Sim15, Example 2.17]). As every type
over a model M is clearly finitely satisfiable in M , it follows that every type over a model
M has a global extension which is finitely satisfiable in M , hence also M -invariant. If
p is a type over B and q is an extension of p which is finitely satisfiable in B, then q is
called a coheir of p.

Let � be a small cardinal and C a small set. A sequence (bi)i<� is C-indiscernible if
for all n < ! and ↵1 < · · · < ↵n < � we have b↵1 , · · · , b↵n ⌘C b1, · · · , bn. For all ↵ < �,
the sequence (bi)↵i< is Cb<↵-indiscernible.

Given an L -theory T , we recall the construction of T eq, see for example [TZ12,
Chapter 8]. To each model M of T is associated a structure M

eq consisting of the
following: one sort (the home sort) for the structure M and for each definable equiva-
lence class E(x, y) in M without parameters (we will also say 0-definable) an associated
imaginary sort SE in the language of M

eq, and a projection ⇡E : M
|x|

! SE such that
⇡E(x) = ⇡E(y) if and only if E(x, y). Let T eq be the theory of M

eq. Basic facts about
T eq are first that it doesn’t depend on the model M of T . Every automorphism of M

extends to an automorphism of M
eq and every automorphism of M

eq restricted to M

is an automorphism of M . It follows that elements in the home sort M have the same
type (over ;) in M if and only if they have the same type in M

eq. Also T eq eliminates
imaginaries, that is, for a monster model N of T eq and formula �(x, b) with parameters
in N , there exists a finite tuple d that is fixed (pointwise) by the same automorphisms
which fix �(N , b) setwise. Such a tuple is called a canonical parameter for �(x, b). A
theory T has elimination of imaginaries if and only if in T eq every element of the home
sort is interdefinable with an element of an imaginary sort. A theory T has weak elimi-
nation of imaginaries if in T eq, for every element e in an imaginary sort, there is a tuple
d from the home sort such that e is definable over d and d is algebraic over e. We denote
by acl

eq

T
and dcl

eq

T
the algebraic closure and definable closure in the sens of the theory

T eq.
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1.2 Independence relations

Let M be a monster model for a theory T .

Definition 1.2.1. For any a, b (finite or infinite) tuples from M and C small set in M
we recall the following various ternary relations (see for instance [CK17]).

(1) Algebraic independence. a |
a

^C
b if and only if acl(Ca) \ acl(Cb) = acl(C)

(2) Imaginary algebraic independence. a |
aeq

^C
b if and only if acleq(Ca) \ acl

eq
(Cb) =

acl
eq
(C). This relation is defined over subsets of Meq. We write |

aeq

^ � M to specify
the restriction to elements of the sort M.

(3) Kim-dividing independence. a |
Kd

^C
b if and only if tp(a/Cb) does not Kim-divides

over C if and only if for all global C-invariant extension p of tp(b/C) and sequences
(bi)i<! such that bi |= p � Cb<i for all i < !, there exists a0 such that a0bi ⌘C ab
for all i < !;

(4) Kim-(forking)independence. a |
K

^C
b if and only if tp(a/Cb) does not Kim-fork over

C if and only if for any b0 ◆ b there exists a0 ⌘Cb a such that a0 |
Kd

^C
b0;

(5) Dividing independence. a |
d

^C
b if and only if tp(a/Cb) does not divide over C if

and only if for any C-indiscernible sequence (bi)i<! with b0 = b there exists a0 such
that a0bi ⌘C ab for all i < !;

(6) Forking independence. a |
f

^C
b if and only if tp(a/Cb) does not fork over C if and

only if for any b0 ◆ b there exists a0 ⌘Cb a such that a0 |
d

^C
b0;

(7) Coheir independence. a |
u

^C
b if and only if tp(a/Cb) is finitely satisfiable in C.

As usual, we extend these notions to sets by the following: A |^C
B if and only if for

all enumeration a of A and b of B, then a |^C
b. The following is a list of properties for

a ternary relation |^ defined over small subsets of M, sometimes relatively to another
ternary relation |^

0, also defined over small subsets of M.

• Invariance. If ABC ⌘ A0B0C 0 then A |^C
B if and only if A0

|^C0 B
0.

• Finite Character. If a |^C
B for all finite a ✓ A, then A |^C

B.

• Symmetry. If A |^C
B then B |^C

A.

• Closure A |^C
B if and only if A |^acl(C)

acl(BC).

• Monotonicity. If A |^C
BD then A |^C

B.

• Base Monotonicity. If A |^C
BD then A |^CD

B.

• Transitivity. If A |^CB
D and B |^C

D then AB |^C
D.
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• Existence. For any C and A we have A |^C
C.

• Full Existence. For all A,B and C there exists A0
⌘C A such that A0

|^C
B.

• Extension. If A |^C
B, then for all D there exists A0

⌘CB A and A0
|^C

BD.

• Local Character. For all finite tuple a and infinite B there exists B0 ⇢ B with
|B0|  @0 and a |^B0

B.

• Strong Finite Character over E. If a 6 |^E
b, then there is a formula ⇤(x, b, e) 2

tp(a/Eb) such that for all a0, if a0 |= ⇤(x, b, e) then a0 6 |^E
b.

• |^
0-amalgamation over E. If there exists tuples c1, c2 and sets A,B such that

– c1 ⌘E c2

– A |^
0
E
B

– c1 |^E
A and c2 |^C

B

then there exists c |^E
A,B such that c ⌘A c1, c ⌘B c2, A |

a

^Ec
B, c |

a

^EA
B and

c |
a

^EB
A.

• Stationnarity over E. If c1 ⌘E c2 and c1 |^E
A, c2 |^E

A then c1 ⌘EA c2.

• Witnessing. Let a, b be tuples, M a model and assume that a 6 |^M
b. Then there

exists a formula ⇤(x, b) 2 tp(a/M b) such that for any global extension q(x) of
tp(b/M ) finitely satisfiable in M and for any (bi)i<! such that for all i < ! we
have bi |= q � M b<i, the set {⇤(x, bi) | i < !} is inconsistent.

If A |^C
B, the set C is called the base set.

Definition 1.2.2. Let |^, |
0
^ be two ternary relations. We say that |^ is stronger than

|
0
^ (or |

0
^ is weaker than |^) if for all a, b, C we have a |^C

b =) a |
0
^C

b. We denote
it by |^ ! |

0
^ .

Assume that |^ ! |
0
^ , then if |^ satisfies Full Existence or Local Character,

so does |
0
^ . Similarly, if a relation satisfies |

0
^ -amalgamation then it also satisfies |^-

amalgamation.

Fact 1.2.3. The following are standard facts more or less obvious from the definition.

(1) |
a

^ satisfies Invariance, Monotonicity, Transitivity, Existence, Extension
and Full Existence;

(2) |
d

^ satisfies Invariance, Monotonicity, Base Monotonicity, Transitivity;

(3) |
f

^ satisfies Invariance, Monotonicity, Base Monotonicity, Transitivity
and Extension;

7



(4) |
u

^ satisfies Invariance, Monotonicity, Base Monotonicity, Transitivity,
Extension, Existence over models, Full Existence over models;

(5) |
d

^ ! |
aeq

^ � M;

(6) |
u

^ ! |
f

^ ! |
d

^ ! |
aeq

^ � M ! |
a

^ ;

(7) |
f

^ ! |
K

^ and |
d

^ ! |
Kd

^ .

Proof. (1) is [Adl09a, Proposition 1.5]. (2) and (3) are [Adl09b, Proposition 1.3]. (4)
is [CK12, Remark 2.16], Base Monotonicity is trivial. For (5), it is clear that if
a |

d

^C
b in M, then a |

d

^C
b in Meq, and by [Adl09a, Remark 5.4] it follows that acleq(Ca)\

acl
eq
(Cb) = acl

eq
(C) hence a |

aeq

^C
b. (6) follows from [CK12, Example 2.22], and the

previous results. (7) is by definition.

Lemma 1.2.4. Let |^ be a relation satisfying Symmetry, Monotonicity, Existence
and Strong Finite Character over C.

If a |
u

^ C
b then a |^C

b.

In particular, as |
u

^ satisfies Full Existence over models, so does |^.

Proof. Indeed, assume a 6 |^C
b then by Strong Finite Character there is a formula

�(x, b) 2 tp(a/Cb) such that if a0 |= �(x, b) then a0 6 |^C
b. As tp(a/Cb) is finitely sat-

isfiable in C there is c 2 C such that c |= �(x, b), so c 6 |^C
b, so by Symmetry and

Monotonicity b 6 |^C
C which contradicts Existence.

Lemma 1.2.5. If |^ satisfies Invariance and Extension, then A |^C
B implies

A |^C
acl(CB). If |^ satisfies Invariance, Extension and Base Monotonicity,

then |^ satisfies Closure.

Proof. Assume that A |^C
B. By Extension, let A0 be such that A0

⌘BC A and
A0

|^C
acl(BC). There is an automorphism � over BC sending A0 to A hence by

Invariance, A |^C
�(acl(BC)). Now, as sets, �(acl(BC)) = acl(BC) so A |^C

acl(BC).
The last assertion is trivial, as acl(C) ✓ acl(BC).

Remark 1.2.6. If |^ satisfies Invariance, Symmetry, Transitivity and Full Exis-
tence, then |^ satisfies Extension. Also if |^ satisfies Existence, Monotonicity
and Extension then it satisfies Full Existence. Hence for relations |^ satisfying
Invariance, Monotonicity, Existence, Transitivity, Symmetry, the properties
Full Existence and Extension are equivalent. Unfortunately, when dealing with non-
symmetrical independence relations, we need to differentiate both properties. In Chap-
ter 7, we see an example of a relation which is not symmetric but satisfies Invariance,
Monotonicity, Existence, Transitivity, Full Existence: forking independence
in ACFG. We show that it also satisfies Extension by non-trivial arguments.
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Remark 1.2.7. Most of the properties above are familiar to anyone who knows forking in
stable or simple theories.

The property Strong Finite Character is always satisfied by forking indepen-
dence relation: take the formula � to be a forking formula. This property is needed
to use [CR16, Proposition 5.3] and prove that under the right assumptions on T , any
completion of TS is NSOP1.

If M is a model of the ambient theory, our formulation of |^-amalgamation over
M is what is called The algebraically reasonable independence theorem in [KR18], which
holds for Kim-forking in any NSOP1 theory (see [KR18, Theorem 2.21]). In simple
theories, the forking independence relation also satisfies this property. The conclusion
A |

a

^Ec
B, c |

a

^EA
B and c |

a

^EB
A is always true in the simple case by Symmetry,

Base Monotonicity and Transitivity of the forking independence relation (and
Fact 1.2.3 (5)). In many examples, one can prove the independence theorem under
weaker assumptions, for instance assuming |^

0 to be |
a

^ , or the base set to be acl-closed.
Actually, there is no known example of an NSOP1 theory in which |

a

^ -amalgamation
is not satisfied.

1.3 Pregeometry

This section introduces basic notions about pregeometries, as can be found in e.g. [TZ12,
Appendix C]. We denote by P(S) the powerset of a set S.

Definition 1.3.1. A pregeometry (S, cl) is a set S and a closure operator cl : P(S) !
P(S) satisfying the following conditions, for all A ✓ S and a, b elements of S:

• (Reflexivity) A ✓ cl(A);

• (Finite Character) cl(A) =
S

A0✓B, A0 finite cl(A0);

• (Transitivity) cl(cl(A)) = cl(A);

• (Exchange) If a 2 cl(Ab) \ cl(A) then b 2 cl(Aa).

A tuple (bi)i< is independent over A if bi /2 cl(A(bj)j 6=i) for all i < . Similarly a set B
is independent over A if for all enumeration b of B, b is independent over A. If A ✓ B,
and B = cl(B), a basis of B over A is a subset B0 of B which is independent over A and
such that cl(AB0

) = B.

Fact 1.3.2. Let (S, cl) be a pregeometry, A ⇢ B ⇢ S, and B = cl(B). Then every
independent tuple in B over A can be completed into a basis of B over A, in particular
B admits a basis over A. Every basis of B over A have the same cardinality, we call it
the dimension of B over A, denoted by dimcl(B/A) (or dimcl(B) if A = ;).

In any pregeometry, there is a notion of independence.

A |
cl

^
C

B () for all basis A0 of cl(A) over C and B0 of cl(B) over C,

A0B0 is a basis of cl(AB) over C

9



When there is a pregeometry in a wider context, we will say that a tuple a is |
cl

^ -
independent over B to precise that this is relatively to the pregeometry (S, cl).

Fact 1.3.3. The relation |
cl
^ satisfies the following properties.

• Finite Character. If for all finite tuple a from A we have a |
cl
^ C

B then
A |

cl
^ C

B.

• Symmetry. If A |
cl
^ C

B then B |
cl
^ C

A.

• Closure A |
cl
^ C

B if and only if A |
cl
^ cl(C)

cl(BC).

• Monotonicity. If A |
cl
^ C

BD then A |
cl
^ C

B.

• Base Monotonicity. If A |
cl
^ C

BD then A |
cl
^ CD

B.

• Transitivity. If A |
cl
^ CB

D and B |
cl
^ C

D then AB |
cl
^ C

D.

• Existence. For all A,C, A |
cl
^ C

C .

As there are no theory lying around (yet), properties like Invariance and Full
Existence doesn’t make sense here.

Definition 1.3.4. A pregeometry (S, cl) is modular if for all A = cl(A), B = cl(B),
dim(AB) + dim(A \B) = dim(A) + dim(B).

Fact 1.3.5. Let (S, cl) be a pregeometry. The following are equivalent.

(1) (S, cl) is modular.

(2) for all A,B ✓ S if c 2 cl(AB) then there exists a 2 cl(A) and b 2 cl(B) such that
c 2 cl(a, b).

(3) for all A,B,C: A |
cl

^ C
B if and only if cl(AC) \ cl(BC) = cl(C).

(4) for all A,B,C such that A = cl(A), B = cl(B) and C = cl(C), if C ✓ B then
cl(AB) \ C = cl(cl(A \ C), C).

Throughout, we will refer to any of these properties using “by modularity”.

Example 1.3.6 (Algebraically closed fields). Let K be an algebraically closed field and
cl the closure operator defined for A ✓ K by cl(A) = F(A) where F(A) is the algebraic
closure (in K) of the subfield of K generated by A and the prime field F. Then (K, cl)
defines a pregeometry. The dimension is the transcendence degree, it is not a modular
pregeometry (see [Bou06b, A.V.110, §3]).

Example 1.3.7 (Vector spaces). Let V be a vector space over some field k and defined
the closure operator hAi to be the span of A ✓ V . Then (V, cl) defines a modular
pregeometry. The dimension is the dimension as a k-vector space.
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In a model theoretical context, a closure operator likely to define a pregeometry in
a model is the model-theoretic algebraic closure, as it always satisfies Reflexivity, Finite
Character and Transitivity.

Definition 1.3.8. A theory T is pregeometric if (M , aclM (·)) defines a pregeometry, for
all model M of T . We denote by |

acl
^ the associated independence relation. We say

that T eliminates 9
1 if for all formula �(x, y) there is an integer n 2 N such that for all

|y|-tuple b in any model M of T , �(M , b) is either infinite or of cardinality less than n.
A pregeometric theory that eliminates 9

1 is called geometric.

Note that if a theory is geometric, it does not mean that the algebraic closure defines
a geometry, see [TZ12, Appendix C] for a definition of a geometry.

Fact 1.3.9 ([Gag05]). Let T be a pregeometric theory and M a monster model for T . For
all B small subset of M and finite tuple x there exists a partial type pB(x) such that a real-
izes pB if and only if a is |

acl
^ -independent over B. Furthermore for any type q in and ex-

pansion of M , and B ✓ D, if q[pB is consistent, then so is q[pD. The relation |
acl
^ satis-

fies Invariance, Finite Character, Symmetry, Closure, Monotonicity, Base
Monotonicity, Transitivity, Existence, Full Existence and Extension.

Proof. The first two assertions are in [Gag05], the fact that q can be choosen in an
expansion of M follows easily by inspection of the proof. A consequence of the first
part is that a |

acl
^C

b is type-definable for every basis a of acl(Ca) over C and b basis of
acl(Cb) over C. As any automorphism fixes (setwise) the algebraic closure, it follows
that |

acl
^ satisfies Invariance. We prove that |

acl
^ satisfies Extension, the rest follows

from Remark 1.2.6, and Fact 1.3.3. Assume that for some finite a, a |
acl
^C

B and D is
arbitrary. Let a0 be a basis of acl(CBa) over CB. As a0 realizes tp(a0/CB) [ pCB(x),
the type tp(a0/CB) [ pCBD is consistent, let a00 be a realisation. A CB-automorphism
sending a0 to a00 sends a to some ã such that ã ✓ acl(a00CB). As a00 |

acl
^C

BD, by
Closure, Symmetry and Monotonicity of |

acl
^ , we have ã |

acl
^C

BD.

Let T be a pregeometric theory with monster M, b a tuple from M and �(x, b)
a formula. By dim(�(x, b)) we mean the maximum dimension of acl(cb) over b, for
realisations c of �(x, b).

Fact 1.3.10. Let T be a geometric theory and M a monster model for T . Then for all
formula �(x, y) there exists a formula ✓�(y) such that ✓�(b) holds if and only if there
exists a realisation a of �(x, b) which is an |

acl
^ -independent tuple over aclT (b).

Proof. From [Gag05, Fact 2.4], for each k  |x| there exists a formula ✓k(y) such that
✓k(b) if and only if dim(�(M, b)) = k. The formula ✓|x|(y) holds if and only if there is a
realisation a of �(x, b) such that dim(acl(ab)/b) = |x|, hence it is |

acl
^ -independent over

aclT (b).

Note that a reduct of a pregeometric theory is pregeometric, and the reduct of a
geometric theory is also a geometric theory (see [Hil08, Fait 2.15]).
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1.4 Classification Theory

Let T be a tree (such as 2
<!,!<!,<�). We denote by � the natural partial order on

T . For ⌫, ⌘ 2 <� we denote by ⌫_⌘ the concatenation of the two.

1.4.1 Stable and simple theories

Definition 1.4.1. Let T be a complete theory, M a monster model of T . Let �(x, y) be
a formula.

• We say that �(x, y) has the order property (or is unstable) if there are two indis-
cernible sequences (ai)i<! and (bi)i<! in M such that M |= �(ai, bj) if and only if
i < j. A theory T is stable if no formula in any monster model M is unstable.

• We say that �(x, y) has the tree property (TP) if there is a sequences (aµ)µ2!<! in
M and k 2 N such that

(1) {�(x, aµ_i) | i < !} is k-inconsistent, for all µ 2 !<!;
(2) {�(x, as�n) | n 2 N} is consistent, for any s 2 !!.

A theory T is simple if no formula in any monster model M has the tree property.

Fact 1.4.2 ([She90, Theorem 2.13]). A theory T is stable if and only if all formulas
�(x, y) over ; with |x| = 1 are stable.

Lemma 1.4.3. Let L be any language and let T be an unstable L -theory with monster
model M. Let L

�
✓ L be such that T �L � is stable. Then there exists an L -formula

�(x, y) over ; with |x| = 1 and a tuple b from M such that �(x, b) is not L
�-definable

with parameters in M.

Proof. By Fact 1.4.2 there is an unstable L -formula �(x, y) over ; with |x| = 1. By
Ramsey and compactness (see e.g. [TZ12, Lemma 7.1.1]) we may assume that (ai)i2Z,
(bi)i2Z are two indiscernible sequences in M that witness the unstability of �(x, y), i.e.,
�(ai, bj) if and only if i < j. Assume towards a contradiction that �(x, b0) is definable
by an L

�-formula  (x, c0) with parameters c0 in M. For each k 2 Z\ {0}, as tp(bk/;) =
tp(b0/;) there is an automorphism �k such that �k(b0) = bk. Let ck = �k(c0). Then
�(x, bk) is equivalent to  (x, ck), and hence  (ai, cj) if and only if i < j, a contradiction
to the stability of T �L � .

There is a “geometric” characterization of stable theories, which appears first in [HH84].
We give a modern presentation, see [Cas11, Theorem 12.22].

Fact 1.4.4 (Harnik-Harrington, characterisation of forking and stable theories). Let T
be a complete theory, and M a monster model. The theory T is stable if and only if
there is a ternary relation |^ defined over small subsets which satisfies: Invariance,
Finite Character, Symmetry, Closure, Monotonicity, Base Monotonicity,
Transitivity, Extension, Local Character and Stationnarity over models. If
such a relation |^ exists, |^ = |

f

^ = |
d

^ .
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Proof. One only needs to check that our set of axioms is equivalent to the set of ax-
ioms in [Cas11, Theorem 12.22]. An independence relation in the sense of [Cas11] sat-
isfies Symmetry ([Cas11, Corollary 12.6]). We need to check first that our set of ax-
ioms implies the property Normality : A |^C

B implies AC |^C
B, which follows from

Invariance, Extension, Monotonicity and Symmetry (using Lemma 1.2.5). We
also need to check that the set of axioms in [Cas11] implies our, the only property one
needs to check is that Closure follows from the set of axioms in [Cas11], which is
Lemma 1.2.5.

In a stable theory, |
f

^ coincides with the coheir independence |
u

^ over models (see
e.g. [TZ12]).

Fact 1.4.5. Let T be a stable theory, M a monster model for T , M � M and a, b tuples
from M. Then a |

f

^M
b if and only if a |

u

^M
b.

There is also a classical “geometric” characterization of simple theories ([KP97]).

Fact 1.4.6 (Kim-Pillay, characterization of forking and simple theories). Let T be a
complete theory, and M a monster model. The theory T is simple if and only if there
is a ternary relation |^ defined over small subsets which satisfies: Invariance, Finite
Character, Symmetry, Closure, Monotonicity, Base Monotonicity, Transitivity,
Extension, Local Character and |^-amalgamation over models. If such a rela-
tion |^ exists, |^ = |

f

^ = |
d

^ .

Proof. This follows from [Cas11, Theorem 12.21]. Indeed, the first nine axioms in our
statement are equivalent to the ones of an independence relation in the sense of [Cas11],
as we saw in the proof of Fact 1.4.4. |^-amalgamation over models is equivalent to
the Independence Theorem over models, for any relation |^ satisfying Symmetry, Base
Monotonicity, Transitivity and which is stronger than |

a

^ , which is the case for
|
f

^ is a simple theory by Fact 1.2.3.

1.4.2 NSOP1 theories and Kim-independence

Definition 1.4.7. Let T be a theory, M a monster for T and �(x, y) a formula in the
language of T . We say that �(x, y) has the 1-strong order property (SOP1) if there exists
a tree of tuple (b⌘)⌘22<! such that

• for all ⌘ 2 2
!
{�(x, b⌘�↵ | ↵ < !} is consistent

• for all ⌘ 2 2
<! if ⌘_0 � ⌫ then {�(x, b⌫),�(x, b⌘_1} is inconsistent.

If in any monster model M of T , no formula has SOP1, then the theory is called NSOP1.

Recall the definitions of Kim-dividing and Kim-forking for types.

Definition 1.4.8. (1) Kim-dividing independence. a |
Kd

^C
b if and only if tp(a/Cb)

does not Kim-divides over C if and only if for all global C-invariant extension p of
tp(b/C) and sequences (bi)i<! such that bi |= p � Cb<i for all i < !, there exists a0

such that a0bi ⌘C ab for all i < !;
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(2) Kim-(forking)independence. a |
K

^C
b if and only if tp(a/Cb) does not Kim-fork over

C if and only if for any b0 ◆ b there exists a0 ⌘Cb a such that a0 |
Kd

^C
b0;

(3) A formula �(x, b) Kim-divides over C if there is a global C-invariant extension p
of tp(b/C) and a sequence (bi)i<! such that bi |= p � Cb<i for all i < !, with
{�(x, bi) | i < !} inconsistent;

(4) A formula �(x, b) Kim-forks over C if it implies a finite disjunction of Kim-dividing
formulae.

Note that a |
K

^C
b if and only if for all finite a0 ✓ a, no formula in tp(a0/Cb) Kim-forks

over C.

Remark 1.4.9. Given any b and C, a global C-invariant extension of tp(b/C) need not
exists. When considering Kim-independence, we will in general assume that the base
set is a model, so that tp(b/M ) has a global extension finitely satisfiable in M hence
M -invariant. If tp(b/C) has no global C invariant extension, then a |

K

^C
b for all a.

Fact 1.4.10 (Kim’s Lemma for Kim-dividing [KR17, Theorem 3.16]). Let T be an
NSOP1 theory. Then for all formula �(x, b), with b in a monster M of T and C ✓ M,
�(x, b) Kim-divides over C if and only if for all global C-invariant extension p of tp(b/C)

and a sequences (bi)i<! such that bi |= p � Cb<i for all i < !, the set {�(x, bi) | i < !}
inconsistent. This is actually equivalent to T being NSOP1.

There is also a recent “geometric” characterisation of NSOP1 by Kim-independence
(Definition 1.2.1), see [CR16], [KR17], [KR18].

Fact 1.4.11 (Chernikov-Kaplan-Ramsey, characterisation of Kim-independence and NSOP1

theories). Let T be a complete theory, and M a monster model. The theory T is NSOP1

if and only if there is a ternary relation |^ which is defined when the base set is a model,
which satisfies: Invariance, Symmetry, Monotonicity, Existence, Strong Fi-
nite Character over models, |^-amalgamation over models and Witnessing. If
such a relation |^ exists, |^ = |

K

^ = |
Kd

^ .

Proof. Only Witnessing and |^-amalgamation differs from the properties in the
statement of [KR17, Theorem 9.1]. It is clear that our system of axioms is stronger
than the one in [KR17, Theorem 9.1], we need to show that they are equivalent. If T is
NSOP1, by [KR18, Theorem 2.21] |

K

^ satisfies the Algebraically reasonable independence
theorem, which is exactly |^-amalgamation over models. Also, |

K

^ = |
Kd

^ . Assume
that a 6 |

Kd

^M
b, then there is a formula ⇤(x, b) 2 tp(a/M b) and a sequence (bi)i<! in a

global M -invariant extension of tp(b/M ) such that {⇤(x, bi) | i < !} is inconsistent. By
Kim’s Lemma (Fact 1.4.10, this actually holds for all global M -invariant extension of
tp(b/M ) hence in particular for any global coheir of tp(b/M ) (which exists), hence our
version of Witnessing holds.

Finally, NSOP1 and simple theories are linked by the following.
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Fact 1.4.12 ([KR17, Propositions 8.4 and 8.8]). Let T be an NSOP1 theory and |
K

^ the
Kim-independence. Then T is simple if and only if |

K

^ = |
f

^ over models, if and only if
|
K

^ satisfies Base Monotonicity.

1.4.3 dp-rank, dp-minimality

We first review two equivalent definitions of dp-rank. More details about dp-rank can be
found, e.g. in [Sim15]. Let M be a monster model of some complete L -theory T .

Definition 1.4.13. A familly of sequences (Ii)i2S is called mutually indiscernible over
B if for all i 2 S, the sequence Ii is indiscernible over B(Ij)j 6=i.

Definition 1.4.14. Let �(x, b) be an L -formula, with parameters b from M, and let � be
a (finite or infinite) cardinal. We say dp-rank(�(x, b)) < � if for every family (Ii : i < �)
of mutually indiscernible sequences over b and a |= �(x, b), there is i < � such that Ii
is indiscernible over ab. We say that dp-rank(�(x, b)) = � if dp-rank(�(x, b)) < �+ but
not dp-rank(�(x, b)) < �. We say that dp-rank(�(x, b))  � if dp-rank(�(x, b)) < � or
dp-rank(�(x, b)) = �. For a theory T we denote by dp-rank(T ) the dp-rank of (x = x)
where |x| = 1. If dp-rank(T ) = 1 we say that T is dp-minimal.

Note that if � is a limit cardinal, it may happen that dp-rank(�(x, b)) < � but
dp-rank(�(x, b)) � µ for all µ < � (see [Sim15, Section 4.2]).

Definition 1.4.15. Let  be some cardinal. An ict-pattern of length  consists of:

• a collection of formulas (�↵(x; y↵) : ↵ < ), with |x| = 1;

• an array (b↵
i
: i < !, ↵ < ) of tuples; with |b↵

i
| = |y↵|

such that for every ⌘ : ! ! there exists an element a⌘ 2 M such that

|= �↵(a⌘; b
↵

i ) () ⌘(↵) = i.

We define ict as the minimal  such that there does not exist an ict-pattern of length .

Fact 1.4.16 ([Sim15, Proposition 4.22]). For any cardinal , we have dp-rank(T ) <  if
and only if ict  .

Lemma 1.4.17. Let L =
S
↵<

L↵ be a language such that every atomic formula in L

is in L↵ for some ↵. Let T be an L -theory that eliminates quantifiers, and for ↵ < 
let T↵ be its reduction to L↵. Let µ↵ be cardinals such that dp-rank(T↵)  µ↵. Then
dp-rank(T ) 

P
↵<

µ↵, where
P

is the cardinal sum.

Proof. Suppose not. Let � :=
P

↵<k
µ↵. Then there is a family (It : t < �+) of mutually

indiscernible sequences over ;, It = (at,i : i 2 It), and a singleton b, such that for all t, It
is not indiscernible over b. For every t < �+, let �t(x̄) = �t(x̄, b) be a formula over b and
let c̄t,1 and c̄t,2 be two finite tuples of elements of It of length |x̄| such that �t(c̄t,1) and
¬�t(c̄t,2), i.e. witnessing the non-indiscernibility of It over b. By quantifier elimination
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in T , we may assume that �t is quantifier-free. Hence there must be an atomic formula
 t(x̄) =  t(x̄, b) such that  t(c̄t,1) and ¬ t(c̄t,2). By the assumption on L , there is
an ↵t <  such that  t(x̄, y) is in L↵t . Therefore, there must be an ↵ <  such that
|{t < �+ : ↵t = ↵}| > µ↵, as otherwise we get

�+ =

�����
[

↵<

�
t < �+ : ↵t = ↵

 
����� 

X

↵<

���t < �+ : ↵t = ↵
 �� 

X

↵<

µ↵ = �,

a contradiction. But then (It : t < �+, ↵t = ↵) is a family of more than µ↵ mutually
indiscernible sequences over ; with respect to L↵, and for all t such that ↵t = ↵, It is
not indiscernible over b with respect to L↵, a contradiction to dp-rank(T↵)  µ↵.

1.5 Preliminaries on fields

1.5.1 Generalities

We recall some definitions from classical field theory, as can be found e.g. in [FJ05,
Chapter 2]. We assume that all fields considered are subfields of a big algebraically
closed field, and we denote by F the prime field. For a field K we will denote by Kalg or
K and Ks respectively the algebraic closure and the separable closure of K, i.e. the field
consisting of all elements algebraic (respectively separably algebraic) over K. We denote
by Kins the maximal purely inseparable extension of K, if char(K) = 0 then K = Kins,
if char(K) = p > 0, Kins is the field generated by

n
↵ | ↵p

�n
2 K, n 2 N

o
. We denote

by L/K the fact that L is an extension of the field K. Given two fields L and K, we
denote by LK the compositum of L and K. For a tuple a, K(a) is the field generated by
K and a. Given a prime number p and n 2 N, the field of cardinality pn will be denoted
by Fpn .

Definition 1.5.1. Let K,L be two field extensions of a field E.

(1) We say that K is linearly disjoint from L over E (denoted by K |
ld

^E
L) if every

finite tuple from K which is linearly independent over E is also linearly independent
over L in the compositum KL.

(2) We say that K is algebraically independent from L over E (denoted by K |
alg

^E
L)

if every finite tuple from K which is algebraically independent over E is also alge-
braically independent over L in the compositum KL.

(3) An extension L/K is called separable if L |
ld

^K
Kins. It is called regular if L |

ld

^K
Kalg.

The definitions of |
ld

^ and |
alg

^ turn out to be symmetric, and we will sometimes
say that K and L are linearly disjoint (or algebraically independent) over E. These
are notions of independence only defined over fields. An easy way of extending their
definition is by setting for every A,B,E subsets of some big field, A |

ld

^E
B if and only if

F(AE) |
ld

^ F(E)
F(BE), and similarly with |

acl

^ . With this extended definition, in any field
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F with prime field F, the ternary relations |
ld

^ and |
alg

^ are defined over every subsets of
F . Note that if K is an algebraically closed field, |

alg

^ defined over subsets of K is the
independence relation associated with the pregeometry described in Example 1.3.6.

Fact 1.5.2. |
ld

^ and |
alg

^ satisfy Symmetry, Finite Character, Monotonicity,
Transitivity and Base Monotonicity. Furthermore |

alg

^ satisfies Closure: if
K |

alg

^ E
L then K |

alg

^ E
L. We have |

ld

^ ! |
alg

^ .

Proof. For |
ld

^ , Symmetry is [FJ05, Lemma 2.5.1], Monotonicity, Base Mono-
tonicity and Transitivity follow from [FJ05, Lemma 2.5.3]. Finite Character
is by definition. For |

alg

^ , it is Fact 1.3.3. The last assertion follows from the simple
fact that a tuple is algebraically dependent over some field if and only if the familly of
monomials of this familly is linearly independent over this field [FJ05, p. 41].

Remark 1.5.3. Note that A |
ld

^C
B implies F(AC) \ F(BC) = F(C) whereas A |

alg

^C
B

implies F(AC) \ F(BC) = F(C).

We deduce the following classical fact:

Fact 1.5.4. Let E ⇢ K ⇢ L be three fields. Assume that L/K is separable (respectively
regular). Then L/E is separable (resp. regular) if and only if K/E is separable (resp.
regular).

The relations |
ld

^ and |
alg

^ coincide when one of the extension is regular.

Fact 1.5.5 ([FJ05, Lemma 2.6.7]). Let E ⇢ K \ L be three fields. If K/E is regular,
then K |

ld

^ E
L if and only if K |

alg

^ E
L.

Fact 1.5.6 ([Cha99, Lemma 3.1 (1)]). Let E ⇢ K \ L be three fields. If K/E, L/E are
regular and K |

ld

^ E
L then Ks

|
ld

^ Es L
s.

Lemma 1.5.7. Let A,B be two extensions of some field E, such that AB/E is regular
and A |

ld

^ E
B. Then (As

+Bs
) \AB = A+B.

Proof. First, observe that AsB \ Bs
= EsB. Indeed A/E and B/E are regular so by

Fact 1.5.6, we have that As
|
ld

^Es B
s hence AsB |

ld

^EsB
Bs and so AsB \ Bs

= EsB.
Symmetrically, we have ABs

\ As
= EsA. If v 2 AB is such that v = ↵+ � for ↵ 2 As

and � 2 Bs, then ↵ = v � � 2 ABs
\ As

= EsA. Similarly � 2 EsB. Let L be a
finite extension of E inside Es such that ↵ 2 AL and � 2 BL. We can complete {1}

to a basis {1, u2, . . . , un} of the E-vector space L. As AB |
ld

^E
L, it is also a basis of

the AB-vector space LAB. As AB |
ld

^A
LA and AB |

ld

^B
LB, it is also a basis of the

A-vector space LA and of the B-vector space LB. Now the coordinates of v 2 AB in
the AB-vector space LAB are (v, 0, . . . , 0) as v = v + 0u2 + · · · + 0un. Let (a1, . . . , an)
(respectively (b1, . . . , bn)) be the coordinates of ↵ with respect to the basis (1, u2, . . . , un)
of the A-vector space LA (respectively of � in this basis of the B-vector space LB). As
v = ↵+ �, we have, looking at the first coordinate that v = a1 + b1, so v 2 A+B.

17



Lemma 1.5.8. Let K be a field and K(X,Y ) be a rational function field in two variables
(in other words X |

alg

^ K
Y and X,Y /2 K). Then

XY /2 K(X) +K(Y );

X + Y /2 K(X) ·K(Y );

where K(X) ·K(Y ) = {uv | u 2 K(X), v 2 K(Y )}.

Proof. There exists a derivative D : K(X,Y ) ! K(X,Y ) such that D(K(Y )) = {0} and
D extends the canonical derivation on K(X) (namely the partial derivative with respect
to X, see [Mor96, Proposition 23.11]). Let u 2 K(X) and v 2 K(Y ). If XY = u+v then
applying D we get Y = Du 2 K(X) a contradiction. If X +Y = uv then applying D we
get 1 = vDu hence, as Du 2 K(X), v 2 K(X) \K(Y ) = K. Now Y = uv �X 2 K(X)

a contradiction.

1.5.2 Fields and model theory

We denote by Lring = {+,�, ·, 0, 1} the language of rings. The following is [Cha99,
(1.17)].

Fact 1.5.9. Let T be any theory of fields in any language L ◆ Lring. Let F |= T and
A ✓ F . Then F/aclT (A) is a regular extension.

The following gives a behaviour of the Kim-independence in any theory of fields.

Fact 1.5.10 ([KR17, Proposition 9.28], [Cha99, Theorem 3.5]). Let T be an arbitrary
theory of fields, and E � F |= T . Let A,B be aclT -closed subsets of F containing E,
such that A |

K

^ E
B. Then

(1) A |
ld

^ E
B;

(2) F/AB is a separable extension;

(3) aclT (AB) \AsBs
= AB.

Lemma 1.5.11. Let T be an arbitrary theory of fields, and F |= T . Let A,B,C,D be
subsets of F , containing some set k ✓ F , and such that A,B ✓ D. Assume that A and
B are aclT -closed and D |

u

^ k
C, (i.e. tpT (D/C) is finitely satisfiable in k). Then we

have the following results.

(1) (F \ (AC)
s
+ F \ (BC)

s
) \D = A+B;

(2) [(F \AC) · (F \BC))] \D = A ·B.

Assume now that A,B |
u

^ A\B F \AC \BC. Then F \AC \BC = F \ (A \B)C.
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Proof. We give the idea for (1), the others are proved by a similar argument. Let v1 2

F \ (AC)
s, v2 2 F \ (BC)

s and u 2 D be such that u = v1 + v2. There exist nontrivial
separable polynomials P (X, a, c) and Q(X, b, c0) with leading coefficients 1 such that v1
is a root of P (X, a, c) and v2 is a root of Q(X, b, c0), a a tuple in A, b a tuple in B. The
formula �(z1, z2, z3, c, c0)

9x9y x+ y = z1 ^ P (x, z2, c) = 0 ^Q(y, z3, c
0
) = 0

is in tpT (u, a, b/C), which is finitely satisfiable in k. Hence, there exists d, d0 2 k such
that �(z1, z2, z3, d, d0) 2 tpT (u, a, b/k) and so u 2 A+B as A and B are aclT -closed.

The theory ACF. Let ACF be the theory of algebraically closed fields in Lring. We recall
here some basic facts about this well-known theory, as can be found e.g. in [Bou+98].
ACF is model-complete, it is the model-companion of the theory of fields in Lring. It
is not complete but its completions are given by specifying the characteristic p of the
field, we denote the completion obtained by ACFp. ACFp is strongly minimal, so in
particular it is stable. Let K |= ACFp. A Zariski-closed subset of Kn is the set of
solutions of a finite number of polynomial equations in (X1, · · · , Xn). Those are closed
subsets of a topology on all cartesian powers of K called the Zariski topology. An affine
(irreducible) variety is a Zariski-closed set that cannot be written as the union of two
proper Zariski-closed sets. Every Zariski-closed set can be decomposed into the union of
finitely many affine varieties (the topology is Noetherian). A quasi-affine variety is an
open subset of an affine variety, hence a set of solutions of some polynomial equations
and some polynomial inequations. The theory ACFp has quantifier eliminations in the
language of rings, this means that every definable set in an algebraically closed field K
is a finite union of quasi-affine varieties. A generic x of some quasi-affine variety V is a
tuple in an elementary extension of K such that if P (x) = 0 for some polynomial P with
coefficients in K, then V is included in the Zariski-closed set defined by P . Informally, x
satisfies no other equations than the one defining V . Generic points of a variety V ⇢ Kn

always exists in elementary extensions of K. We will not need much those notions except
in Section 3.3. For a field K of characteristic p, the Frobenius endomorphism is the field
endomorphism of K defined by Frob : x 7! xp.

Fact 1.5.12. Let K |= ACFp. If ⇠ : K ! K is an additive definable endomorphism,
then ⇠ is of the form ⇠(x) = a1Frob

n1(x) + · · ·+ akFrob
nk(x), with n1, · · · , nk 2 Z.

Proof. By [Bou+98, Chapter 4, Corollary 1.5], a definable map is given by a composition
of powers of the Frobenius and rational maps, on a definable partition of K, and by
[Hum98, Lemma A, VII, 20.3], additive polynomials are p-polynomials. It is easy to see
that the fact follows.

The theory SCF. If K is of characteristic p > 0, we denote by Kp the image of K
by the Frobenius endomorphism. If K is separably closed and perfect (i.e. if K is of
characteristic 0 or K is of characteristic p and Kp

= K), K is an algebraically closed
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field. We assume that the characteristic of K is p > 0. Let A ✓ K, the p-closure of A is
the field Kp

(A). This defines a pregeometry on K (see for instance [Bou06a, Chapitre 5,
§13]), a basis for this pregeometry is called a p-basis, and an independent set is called a
p-independent set. A set A is p-independent if and only if for all finite tuple a1, · · · , an
from A, the set of monomials ae11 · · · · ·aenn are Kp-linearly independent, where 0  nk < p.
If K/Kp is a finite extension, it has degree pe for some integer e, which we call the Ershov
invariant of K (or imperfection degree). If K/Kp is infinite, we write e = 1. Let L

be the language of rings extended by n-ary relations Qn. Let SCFp,e be the theory of
separably closed field of characteristic p and Ershov invariant e in the language L in
which the relations Qn represent p-independence.

Fact 1.5.13. For all e  1, the theory SCFp,e is complete, model-complete and stable.
Furthermore, SCFp,e eliminates 9

1.

Proof. The first part is Theorems 1 and 3 of [Woo79]. In [Del88, Proposition 61.] is
proved that SCFp,e has the NFCP, which implies elimination of 91.

Note that any model of SCFp,e is existentially closed in every separable extension
([Bou+98, Chapter 9, Claim 2.2]). We have the following description of nonforking in
the sense of SCFp,e (see the remark after [Cha02, (1.2)]).

Fact 1.5.14. Assume that A,B,C are separably closed subfields of a separably closed
field F such that C ✓ A \ B. If A |

ld

^ C
B and F/AB is separable, then tpSCFp,e(A/B)

does not fork over C.

The theories ACFAp, DCFp. The theory ACFAp is the model-companion of the theory
of difference fields (i.e. fields with a distinguished endomorphism) of characteristic p, it
was proved to be model-complete in [Mac97] and unstable but supersimple in [CH99] for
any p prime or zero. DCFp is the model-companion of differential fields of characteristic
p (for p = 0, see [MMP96] and for p > 0, see [Woo73]) and is proved to be stable in
[Woo76]. The theory ACFAp eliminates 9

1 in all characteristic, this follows easily from
the definability of the �-degree (see [CH99, Section 7]). For all p prime or 0, the theory
DCFp eliminates the quantifier 91, this follows from the proof of this result in [MMP96,
Theorem 2.13, p51], although it was proved in the characteristic 0 case, the proof works
in all characteristics.

The theory PAC. A pseudo algebraically closed field is a field K which is existentially
closed in every regular extension2. The property for a field to be pseudo algebraically
closed is first order (see [FJ05]), we denote by PAC the corresponding theory. It is
an incomplete theory, even when specifying the characteristic of the field (we denote

2The classical definition of a pseudo algebraically bounded field is the following: K is pseudo alge-
braically closed if every absolutely irreducible variety defined over K has a K-rational point (see [FJ05]
or [TZ12]). We do not use this definition here and prefer the equivalent in term of regular extension
since it is the main property that we will use about these fields. Note that these fields were also called
regularly closed, which would be a better name for our purpose.
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the corresponding theory by PACp). The theory of a PAC field K is described by the
isomorphism type of the field acl(;), the imperfection degree of K and the “first-order
theory of the absolute Galois group” (in a suitable !-sorted language, for more details,
see [CDM81]). A PAC field K is bounded if it has finitely many algebraic extensions of
degree n, for all n. It is known that a PAC field has a simple theory if and only if it is
bounded (see [CP98] for the “if” and [Cha99] for the “only if”). An !-free PAC field is
a PAC field K which has an elementary substructure K0 whose absolute Galois group
is isomorphic to the free profinite group with countably many generators. In [FJ05,
Chapter 27] is presented a language and a theory of fields for which !-free PACp fields
of imperfection degree 1 (if p > 0) are the existentially closed models: expand Lring

by n-ary predicates Rn(x1, · · · , xn) expressing that 9z zn + x1zn�1
+ · · · + xn = 0. In

this expanded laguage, K is a substructure of L if and only if K is algebraically closed
in L. Then the theory of !-free PAC fields of imperfection degree 1 (if p > 0) is the
model-companion of the theory of fields in this expanded language.

Fact 1.5.15 ([Cha02], [CR16]). Every !-free PAC field has an NSOP1 theory.

A recent result from Nick Ramsey states that a PAC field is NSOP1 provided its
Galois group has an NSOP1 theory.

A theory of fields T in an expansion of the language of rings is algebraically bounded
if for all formula �(x, y) with |x| = 1 there are polynomials P1(X,Y ), · · · , Pn(X,Y ) in
Z[X,Y ] with |X| = 1 and |Y | = |y| such that for all K |= T , and b a |y|-tuple from K,
if �(K, b) is finite then there exists i such that Pi(X, b) is finite and �(K, b) is contained
in the set of roots of Pi(X, b). In particular, an algebraically bounded field eliminates
the quantifier 9

1. This notion was introduced in [Dri89], it leads to the existence of a
well-behaved notion of dimension on the definable sets, in particular, any algebraically
bounded field must be perfect.

Fact 1.5.16 ([CH04]). Every perfect PAC field is algebraically bounded.

The theory Psf. It is the theory of pseudo-finite fields (see [Ax68] or [TZ12]), fields
which are PAC, perfect and 1-free (i.e. has only one extension of degree n for all n). In
particular, from Fact 1.5.16 it eliminates the quantifier 9

1. From [TZ12, Proposition
B.4.13], an extension L of a pseudo-finite field K is regular if and only if K is relatively
algebraically closed in L (i.e. L \K = K), hence a Psf field K is existentially closed in
every extension L in which it is relatively algebraically closed. Any non-principal ultra-
product of finite fields is a pseudo-finite field. Let L be the language of rings expanded by
constants symbols (ci,j)i<!,j<i, and let Psfc be the expansion of Psf expressing that the
polynomial Xn

+ cn,n�1X + · · ·+ cn,0 is irreducible. The theory Psfc is model-complete,
see [Cha97, Section 3].

1.6 The Chabauty topology on Sg(Fp)

Recall some standard facts about the topology on the Cantor space 2
!, which can be

found for instance in [Mos09] or [Kec95]. The Cantor space 2
! is endowed with the
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product topology coming from the discrete topology on 2. This topology turns 2! into a
Polish space; i.e. the topology admits a countable basis (second-countable) and admits
a complete metric (complete metrizable). By Tychonoff’s theorem, it is also compact,
and it is perfect, i.e. without isolated points. It is also totally disconnected i.e. has no
nontrivial connected subsets. Finally, a theorem of Brouwer states that 2! is the unique
(up to homeomorphism) non-empty, totally disconnected, perfect, compact, metrizable
set. Such a set is henceforth referred to as a Cantor space.

We fix a bijection : e : ! ! Fp and an enumeration E = {ei := e(i) | i < !}. This
enumeration induces a homeomorphism between the Cantor space 2

! and 2
Fp , hence

turns the powerset P(Fp) into a Cantor space. We give a description of the topology
obtained on P(Fp) based one the notion of Cantor scheme, i.e. a topology on the branchs
of an infinite binary tree, as can be seen in [Kec95, Subsection I.6.A].

For each A ✓ Fp, let 1A be the function 1A : E ! 2 := {0, 1} defined by

1A(b) = 1 () b 2 A.

For k < ! we adopt the following notation:

A � k := (1A(e0), · · · , 1A(ek�1)) 2 2
k.

Let k < ! and s 2 2
k, we define Bs =

�
A ✓ Fp | A � k = s

 
and for A ✓ Fp, let B(A, k) be�

B ✓ Fp | B � k = A � k
 
= BA�k. The family (Bs)s22k,k<! forms a basis of the topology

on P(Fp). A convenient way of getting a picture of this topology is by representing the
subsets of P(Fp) by branchs of a binary tree in which each level of nodes represent an
element of the enumeration E of Fp. A branch representing A 2 P(Fp) takes the value
1 at the node of level ei if and only if ei 2 A. Hence, in Figure 1.1, the set A contains
e0, e1, e2 but not e3. For s 2 2

k, the ball Bs contains all the sets that are represented by
branchs that start with the sequence s. It is easy to see that each ball is clopen (closed
and open).

The set of all subgroups of some countable group can be endowed with a topology
that is compact, it is called the Chabauty topology. In the case of the group (Fp,+), this
topology has a very explicit description, in particular, it is the topology of a Cantor set.
More generally the Chabauty topology of any countable group is the one of a Cantor
space provided that the group is not minimax, see [CGP10, Proposition A].

Lemma 1.6.1. Let Sg(Fp) ✓ P(Fp) be the set of all subgroups of (Fp,+). Then Sg(Fp)

is a compact subset of P(Fp). Furthermore, it is a Cantor space, the topology is generated
by clopens sets of the form B(H0,Fpn) =

�
H 2 Sg(Fp) | H \ Fpn = H0

 
, for some finite

group H0 2 Sg(Fp).

Proof. First, we show that Sg(Fp) is compact. As P(Fp) is compact, it is enough to
show that Sg(Fp) is closed. We show that its complement is open. A set A 2 P(Fp) is
a not a group if and only if at least one of the following three conditions is satisfied:

• 0 /2 A;
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Figure 1.1: Topology on 2
Fp .

• a 2 A and � a /2 A;

• a, b 2 A and a+ b /2 A.

The first condition is clearly open since in a metric space every singleton is closed, let O0

be P(Fp) \ {0}. Let a, b 2 Fp, let i, j, k < ! be such that ei = a, ej = b and ek = a+ b.
Let S(a, b) be the set of all finite sequence s 2 2

max(i,j,k) such that si = sj = 1 and
sk = 0 (see Figure 1.2). Then O1 =

S
a,b2Fp

S
s2S(a,b) Bs is the set of all subsets A of Fp

such that for some a, b 2 Fp we have a, b 2 A and a+ b /2 A. This is clearly an open set.
Similarly there is an open set O2 which is the set of all A 2 P(Fp) such that there exists
a 2 Fp with a 2 A and �a /2 A. Then P(Fp) \ Sg(Fp) = O0 [ O1 [ O2 is open.

It is clear that Sg(Fp) is again metrizable and totally disconnected. Assume that it
is not perfect, and let H be an isolated point in Sg(Fp), and B(H, k) a clopen containing
H, for some k. Then consider the finite subgroup H0 generated by {ei 2 H | 0  i  k}.
It is clear that H0 2 B(H, k) since H0 � k = H � k. As H0 is finite, there exists n � k
such that for all m � n we have 1H0(m) = 0. If 1H(en) = 0, then en /2 H and consider G
the group generated by H0 and en. If 1H(en) = 1 consider G = H0. In any case we have
G 6= H and G,H 2 B(H, k) hence H is not isolated. It follows that Sg(Fp) is perfect. As
it is clearly nonempty it follows that Sg(Fp) is a Cantor space. The topology on Sg(Fp) is
generated by B(H, k), as for P(Fp). By the same agument as above, if H0 is the subgroup
generated by {ei 2 H | 0  i  k}, then H0 2 B(H, k) hence for some k0 � k, we have
B(H0, k0) ✓ B(H, k). Similarly, there is some n 2 N such that B(H0,Fpn) ✓ B(H0, k0),
hence the topology is spanned by balls of the form B(H0,Fpn).
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CHAPTER 2

Generic expansions by a reduct

Let T be an L -theory. Let L0 ✓ L and let T0 be a reduct of T to the language L0.
Let S be a new unary predicate symbol and set LS = L [ {S}. We denote by TS

the LS-theory of LS-structures (M ,M0) where M |= T and S(M ) = M0 |= T0 is a
substructure of M � L0. The main result of this chapter is an answer to the following
question:

Under which conditions on T and T0 does the model-companion of the theory TS exist?
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2.1 The main result

We denote by acl0 the algebraic closure in the sense of T0. Assume that T0 is pregeometric.
By Section 1.3, there is an associated independence relation |

0
^ . It is defined over every

subset of any model of T0 and satisfies the properties Finite Character, Symmetry,
Closure, Monotonicity, Base Monotonicity, Transitivity. In particular, |

0
^ is

defined over every subset of any model of T , and we will only use it over small subsets of
a monster model M of T . The property Symmetry of |

0
^ will be tacitly used throughout

this chapter.

Definition 2.1.1. Let t be a single variable and x, y two tuples of variables. We say that
a formula  (t, y) is n-algebraic in t (or just algebraic in t) if for all tuple b the number
of realisations of  (t, b) is at most n. In that context we say that a formula  (t, x, y)
is strict in y if whenever b is an |

0
^ -independent tuple over a, the set of realisations of

 (t, a, b) is in acl0(a, b) \ acl0(a).

If  (t, b) is an L0-algebraic formula, there exists an L0-formula  ̃(t, x) algebraic in
t such that  (M , b) ✓  ̃(M, b).

Example 2.1.2. In the language of vector spaces, the formula t = �x + µy is strict in
y if and only if µ 6= 0.

Lemma 2.1.3. Assume that T0 is pregeometric. Then for u a singleton and tuples a and
b, if u 2 acl0(a, b) \ acl0(a), there exists an L0-formula ⌧(t, x, y) algebraic in t and strict
in y such that u |= ⌧(t, a, b).

Proof. Assume that b = b1, . . . , bn. By hypothesis and using Exchange, we may assume
that b1 2 acl0(u, a, b2, . . . , bn). Let ⌧1(t, a, b) be an L0-formula algebraic in t isolating the
type tpT0(u/ab) and ⌧2(y1, u, a, b2, . . . , bn) algebraic in y1 isolating tpT0(b1/u, a, b2, . . . , bn).
Then ⌧(t, x, y) = ⌧1(t, x, y) ^ ⌧2(y1, t, x, y2, . . . , yn) is strict in y. Indeed assume that for
some independent tuple b0 over a0, and singleton u0 we have |= ⌧(u0, a0, b0). It follows that
u0 2 acl0(a0b0) and b01 2 acl0(u0, a0, b02 . . . , b

0
n). If u0 2 acl0(a0) then b01 2 acl0(a0, b02, . . . , b

0
n)

contradicting that b0 is |
0
^ -independent over a0, so u0 /2 acl0(a0).

Definition 2.1.4. An expansion (M ,M0) ✓ (N ,N0) is strong if N0 |
0
^M0

M .

Theorem 2.1.5. Assume that the following holds:

(H1) T is model complete;

(H2) T0 is model complete and for all infinite A, acl0(A) |= T0;

(H3) T0 is pregeometric;

(H4) for all L -formula �(x, y) there exists an L -formula ✓�(y) such that for b 2 M |=

T ,

M |= ✓�(b) () there exists N � M and a 2 N such that
�(a, b) and a is an |

0
^ -independent tuple over M .
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Then there exists a theory TS containing TS such that

• every model of TS has a strong extension which is a model of TS;

• if (M ,M0) |= TS and (N ,N0) |= TS is a strong extension of (M ,M0) then
(M ,M0) is existentially closed in (N ,N0).

An axiomatization of TS is given by adding to TS the following axiom scheme: for each
tuple of variables x = x0x1, for L -formula �(x, y), and L0-formulae (⌧i(t, x, y))i<k which
are algebraic in t and strict in x1,

8y(✓�(y) ! (9x�(x, y) ^ x0 ✓ S ^

^

i<k

8t (⌧i(t, x, y) ! t /2 S))).

Proof. We prove the first assertion. Let (M ,M0) be a model of TS , �(x, y) an L -formula
and a partition x = x0x1. Assume that for some tuple b from M we have ✓�(b). We
show that the conclusion of the axiom can be satisfied in a strong extension (N ,N0)

with N � M . Then the result will follow by taking the union of a chain of models of
TS , which is again a model of TS because it is an elementary chain of models of T with a
predicate for models of T0 which is inductive, by model-completeness. The fact that the
union of a chain of strong extensions is again strong follows from Finite Character
and Transitivity of |

0
^ , and the model-completeness of T0.

By (H4) there exists an extension N � M , and a tuple a 2 N satisfying �(x, b)
and such that a is |

0
^ -independent over M . Set N0 = acl0(M0a0). Then using

Monotonicity, Base Monotonicity and Closure of |
0
^ , a0M0 |

0
^M0

M . This
means that the extension (M ,M0) ✓ (N ,N0) is strong. Now clearly a0 ✓ S. Us-
ing Base Monotonicity and Closure, it follows that ab |

0
^ a0b

M0a0. Take any L0-
formula ⌧(t, x, y) algebraic in t and strict in x1, and assume that u 2 N satisfies ⌧(t, a, b).
As ⌧ is strict in x1 and a1 is |

0
^ -independent over ba0, we have u 2 acl0(ab) \ acl0(a0b).

If u 2 N0 then it belongs to acl0(ab) \ acl0(M0a0) ✓ acl0(a0b), a contradiction, hence
u /2 S. It follows that (N ,N0) |= �(a, b) ^ a0 ✓ S ^

V
i<k

8t (⌧i(t, a, b) ! t /2 S))).
We now prove the second assertion.
Let (M ,M0) |= TS and (N ,N0) |= TS , a strong extension of (M ,M0). Take finite

tuples a 2 N and b 2 M . To understand the quantifier-free LS-type of a over b, it is
sufficient to deal with formulae of the form

 (x, b) ^
^

i2I
xi 2 S ^

^

j2J
xj /2 S

with  (x, y) an L -formula. The reduction to formulae of this form is done by increasing
the length of x (replacing L -terms by variables), which may be greater than |a|. We
assume that a satisfies the formula above.
Claim. There exists an |

0
^ -independent tuple a0 = a00a10 such that acl0(M a) = acl0(M a0)

with

(1) a0 |
0
^ M ;
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(2) acl0(a0) \ N0 = acl0(a00);

(3) N0 \ acl0(M , a0) = acl0(M0, a00);

Proof of the claim. Take a tuple a00 in N0 \ acl0(M , a) maximal |
0
^ -independent over

M0. We have a00 |
0
^ M0, and as the extension is strong we also have a00 |

0
^ M by

Transitivity. Now take a tuple a10 in acl0(M a) maximal |
0
^ -independent over acl0(M a00).

We have a10 |
0
^ M a00 and so a00a10 |

0
^ M . Set a0 = a00a10 and the claim holds.

Now as a ✓ acl0(M , a0) there exists a finite tuple m1 from M |
0
^ -independent over

M0a0 such that a ✓ acl0(M0m1a0). Similarly there exists a finite tuple m0 from M0 with
m0

|
0
^ m1a0 such that a ✓ acl0(m0m1a0).
If i 2 I, using (3), we have ai 2 acl0(M0a00) \ acl0(m0m1a0) = acl0(m0a00). Hence

there is an L0-formula ⌧i(t, a00,m0
) algebraic in t such that ai |= ⌧i(t, a00,m0

).
Let J1 be the set of indices j 2 J such that aj 2 acl0(a00,m0,m1

). As aj /2 S, by
Lemma 2.1.3 there is an L0-formula ⌧j(t, x0, y, z) algebraic in t and strict in z such that
aj |= ⌧j(t, a00,m0,m1

).
Let J2 = J \ J1. Then for j 2 J2, we have aj /2 acl0(a00,m0,m1

) so there is an L0-
formula ⌧j(t, x0, x1, y, z) algebraic in t and strict in x1 such that aj |= ⌧j(t, a00, a10,m0,m1

).
We now set b0 = bm0m1 and set �(a0, b0) to be the following formula

9v (v, b) ^

^

i2I
⌧i(vi, a

00,m0
)

^

^

j2J1

⌧j(vj , a
00,m0,m1

)

^

^

j2J2

⌧j(vj , a
00, a10,m0,m1

)

Step (?). By model-completeness we have that N � M . As a0 is |
0
^ independent

over M it follows that M |= ✓�(b0). Using one instance of the axiom scheme, there exists
d0 2 M such that d0 |= �(x, b0) with d00 ✓ M0 and for all j 2 J2, all the realizations
of ⌧j(t, d0,m) are not in M0. Let d be the tuple whose existence is stated in �(d0, b0),
in particular M |=  (d, b). For i 2 I, we have di 2 acl0(d00m0

) ✓ M0. For j 2 J2 we
already saw that dj /2 M0. For j 2 J1, as ⌧j(t, d00,m0,m1

) is strict in the variable of
m1 and m1 is |

0
^ -independent over M0, we have that dj /2 acl0(d00,m0

). Recall that
m1

|
0
^ M0, so m1

|
0
^ d00,m0 M0 hence acl0(d00,m0,m1

)\M0 = acl0(d00,m0
), so dj cannot

belong to M0. We conclude that

(M ,M0) |=  (d, b) ^
^

i2I
di 2 S ^

^

j2J
dj /2 S

which proves that (M ,M0) is existentially closed in (N ,N0).

Remark 2.1.6. Notice that if we consider L0 = {=}, the previous Theorem gives nothing
more than the generic predicate (see[CP98]). The hypothesis (H4) becomes equivalent to
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elimination of 91 in that case. Note also that if T0 is strongly minimal and has quantifier
elimination in L0, the conditions (H2) and (H3) are satisfied.

We can forget hypothesis (H1) to get this adapted version of Theorem 2.1.5.

Proposition 2.1.7. Assume that the following holds.

(H2) T0 is model complete and for all A infinite, acl0(A) |= T0;

(H3) T0 is pregeometric;

(H4) for all L -formula �(x, y) there exists an L -formula ✓�(y) such that for b 2 M |= T

M |= ✓�(b) () there exists N � M and a 2 N such that
�(a, b) and a is an |

0
^ -independent tuple over M

Then there exists a theory TS containing TS such that

• every model (M ,M0) of TS has a strong extension (M
0,M 0

0) which is a model of
TS, such that M � M

0;

• assume that (M ,M0) |= TS and (N ,N0) is a model of TS which is a strong exten-
sion of (M ,M0). If M is existentially closed in N then (M ,M0) is existentially
closed in (N ,N0).

An axiomatization of TS is given by adding to TS the following axioms, for each tuple
of variables x = x0x1, for L -formula �(x, y), and L0-formulae (⌧i(t, x, y))i<k which are
algebraic in t and strict in x1,

8y(✓�(y) ! (9x�(x, y) ^ x0 ✓ S ^

^

i<k

8t (⌧i(t, x, y) ! t /2 S))).

Proof. The same proof as for Theorem 2.1.5 works. In the proof of Theorem 2.1.5, the
model-completeness of T was used to ensure that given any model N of T extending
M , then M is existentially closed in N , which is now part of the second bullet. In
the first bullet, the model M

0 of T extending M is the union of an elementary chain
of extensions hence is an elementary extension of M , this condition does not use the
model-completeness of T .

Remark 2.1.8. Assume that T, T0 satisfies (H1), (H2) and (H3). Assume that there is a
class C of L -formula such that for all M |= T , for all L -formula �(x, b) with parameters
in M , there exists a tuple c from M and formulae #1(x, z), · · · ,#n(x, z) 2 C such that

�(M , b) = #1(M , c) [ · · · [ #n(M , c).

Assume that condition (H4) holds only for formulae #(x, z) 2 C . Then the conclusion
of Theorem 2.1.5 applies, with the axiom-scheme restricted to formulae in C . It is clear
that the proof of the first assertion works similarly, considering only formulae in C . For
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the second assertion, the proof changes at Step (?), we need to show that there exists a
realisation of �(x, b0) that satisfies the right properties using the axioms. By assumption
�(M , b0) = #1(M , c) [ · · · [ #n(M , c) for some #1(x, z), · · · ,#n(x, z) 2 C and tuple c
from M . This decomposition holds also in N by model-completeness of T . Now as
a0 |= �(x, b0), there is some i  n such that a0 |= #i(x, c) hence M |= ✓#i(c). Using one
instance of the axiom, there exists d0 in M satisfying #i(x, c), hence also �(x, b0), and
that satisfies the right properties, and the end of the proof is similar. The main example
for the class C is the class of quasi-affine varieties in the theory ACF, see Theorem 3.3.5.

2.2 A weak converse

In this subsection, Lemmas 2.2.2 and 2.2.3 give some insight on the condition (H4), and
Proposition 2.2.4 gives a weak converse statement for the existence of TS.

In this section, we assume that T and T0 satisfies the following conditions:

(H1) T is model-complete;

(H�
2 ) T0 is model-complete;

(H3) T0 is pregeometric;

Given two tuples of variables x and y, the condition “x is |
0
^ -independent over

aclT (y)” is type-definable, it is given by the set of formulae of the form

8t1, · · · , tn

0

@
n^

i=1

 i(ti, y) !

|x|̂

k=1

¬⌧k(xk, t1, · · · , tn, x1, · · · , xk�1, xk+1, · · · , x|x|)

1

A

for all n 2 N,  i(t, y) L -formula algebraic in t and ⌧j(t, t1, · · · , tn, z) L0-formula alge-
braic in t with |z| = |x| � 1. As algebraic formulae are closed under finite disjunction
and conjunction, it is clear that the previous type is equivalent to the set of all formulae
of the form

8t1, · · · , tn

0

@
n^

i=1

 (ti, y) !

|x|̂

k=1

¬⌧(xk, t1, · · · , tn, x1, · · · , xk�1, xk+1, · · · , x|x|)

1

A

for all n 2 N,  (t, y) L -formula algebraic in t and ⌧(t, t1, · · · , tn, z) L0-formula algebraic
in t with |z| = |x|� 1. We call this type ⌃(x, y).

We work in a monster model M of T .

Lemma 2.2.1. For all A,B,C aclT -closed small sets in a monster model, then there
exists A0

⌘
T

C
A such that A0

|
0
^ C

B.

Proof. The lemma follows from Fact 1.3.9, take q to be the type of an |
0
^ basis of A over

C. Note that we only use hypothesis (H3) here.
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Lemma 2.2.2. Let �(x, y) be an L -formula, M an @0-saturated small model of T and
b a |y|-tuple from M . The following are equivalent:

(1) there exists N � M and some realisation a of �(x, b) in N such that a is an
|
0
^ -independent tuple over M ;

(2) there exists some realisation a of �(x, b) in M such that a is |
0
^ -independent over

aclT (b).

Proof. (1) implies (2). Let ⌃(x, b) be the partial type over b expressing that “x is an
|
0
^ -independent tuple over aclT (b)”. By (1), ⌃(x, b) is finitely satisfiable in M hence by
saturation it is realised in M .
(2) implies (1). Using Lemma 2.2.1, there exists a0 ⌘T

b
a such that a0 |

0
^ aclT (b)

M . Using
Transitivity a0 is |

0
^ -independent over M . For any N containing a0, the condition

(2) holds.

Lemma 2.2.3. Let �(x, y) be some L -formula. The following are equivalent.

(1) There exists a formula ✓�(y) such that ✓�(b) holds if and only if there exists some
realisation a of �(x, b) such that a is |

0
^ -independent over aclT (b).

(2) There exists n 2 N, an L -formula  (t, y) algebraic in t and an L0-formula
⌧(t, t1, . . . , tn, z) algebraic in t with |z| = |x| � 1 such that for all b, if some re-
alisation a of �(x, b) is not an |

0
^ -independent tuple over aclT (b) then there exist

n realizations c1, . . . , cn of  (t, b) such that for some 1  k  |x|, we have that ak
satisfies ⌧(t, c1, · · · , cn, a1, · · · , ak�1, ak+1, · · · , a|x|).

Proof. Recall that ⌃(x, y) is the set of all formula of the form

�(x, y) ^ 8t1, · · · , tn

0

@
n^

i=1

 (ti, y) !

|x|̂

k=1

¬⌧(xk, t1, · · · , tn, x1, · · · , xk�1, xk+1, · · · , x|x|)

1

A

for all n 2 N,  (t, y) L -formula algebraic in t and ⌧(t, t1, · · · , tn, z) L0-formula algebraic
in t with |z| = |x|�1. Let ⌃(y) be the (consistent) partial type {9x�(x, y) | �(x, y) 2 ⌃}.
By compactness, if ✓�(y) exists, it is equivalent to a finite fragment of ⌃(y), hence to a
single formula in ⌃(y). The existence of ✓�(y) is equivalent to the existence of a bound
n 2 N, an L -formula  (t, y) algebraic in t and an L0-formula ⌧(t, t1, · · · , tn, z) for
|z| = |x|� 1 such that for all b if a realizes �(x, b), a is not |

0
^ -independent over aclT (b)

(if and) only if there are n realisations c1, . . . , cn 2 aclT (b) of  (t, b) such that for some
1  k  |x|, ak is in acl0(c1, · · · , cn, a1, · · · , ak�1, ak+1, · · · , a|x|), witnessed by ⌧ .

Proposition 2.2.4. Assume that there exists a theory TS such that

• every model of TS has a strong extension which is a model of TS;

• if (M ,M0) |= TS and (N ,N0) |= TS is a strong extension of (M ,M0) then
(M ,M0) is existentially closed in (N ,N0).

33



Then the following holds:

for all L -formula �(x, y) and all 1  k  |x|, there exists an L -formula ✓k
�
(y) such

that for all tuple b in an @0-saturated model M of T ,

M |= ✓k
�
(b) () there exists some realisation a of �(x, b) in M such that

ak /2 acl0(aclT (b), a1, . . . , ak�1, ak+1, · · · , a|x|).

Proof. Given a single variable t and some tuple of variables y, we denote by AL (t, y) the
set of all L -formulae without parameters that are algebraic in t with free variables (other
than t) in y. Assume that the conclusion doesn’t hold. Similarly to Lemma 2.2.3 there
is some formula �(x, y), some 1  k  |x| and an @0-saturated model M of T such that
for all n 2 N, for all  (t, y) 2 AL (t, y) and ⌧(t, t1, · · · , tn, z) 2 AL0(t, t1, · · · , tn, z) (with
|z| = |x|� 1) there is some b = b(n, , ⌧) and a realisation a = a(n, , ⌧) of �(x, b) in M

such that ak 2 acl0(aclT (b), a1, . . . , ak�1, ak+1, . . . , a|x|) and for all realisations c1, . . . , cn
of  (t, b) and all k

M |= ¬⌧(ak, c1, · · · , cn, a1, · · · , ak�1, ak+1, · · · , a|x|).

For convenience, we assume that k = 1. We may assume that for all n,  and ⌧ , all
realisations of �(x1, a>1, b) in M are in acl0(aclT (b), a>1). Otherwise, for some n, , ⌧ as
above, the formula

9x�(x, y) ^ 8t1, . . . , tn

 
n^

i=1

 (ti, y) ! ¬⌧(x1, t1, · · · , tn, x>1)

!

would isolate the type 9x�(x, y) ^ “x1 /2 acl0(aclT (y), x>1)” which contradicts the hy-
potheses. By @0-saturation, as �(M , a>1, b) ✓ acl0(aclT (b), a>1), we have that �(M , a>1, b)
is finite, for all (n, , ⌧).

We define the following subset of N⇥ AL (t, y)⇥
�S

n2N AL0(t, t1, . . . , tn, z)
�

I = {(n, , ⌧) | n 2 N, 2 AL (t, y), ⌧ 2 AL0(t, t1, · · · , tn, z)}

By assumptions, M contains {a>1b | (n, , ⌧) 2 I}. We expand M to a model of TS

by setting S(M ) = M . By hypothesis, there exists a model (N ,N0) of TS which is
a strong extension of (M ,M ). As T is model-complete, each realisation a01 in N of
�(x1, a>1b) is still in acl0(aclT (b), a>1), hence �(N , a>1, b) ⇢ S. Furthermore, for all
(n, , ⌧) 2 I, the following holds in (N ,N0)

9x1�(x1, a>1b) ^ 8t1, . . . , tn

 
n^

i=1

 (ti, b) ! ¬⌧(x1, t1, · · · , tn, x>1)

!
.

Let U be a nonprincipal ultrafilter on I and consider the ultrapower (N ,N0)
U of

(N ,N0), which is also a model of TS. For a>1b the class of (a>1b(n, , ⌧))(n, ,⌧)2I) in
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(N ,N0)
U , every realisation of �(x1, a>1b) in (N ,N0)

U is in S. On the other hand, the
partial type consisting of all formulae of the form

9x1�(x1, a>1b) ^ 8t1, . . . , tn

 
n^

i=1

 (ti, b) ! ¬⌧(x1, t1, · · · , tn, a>1)

!

for (n, , ⌧) 2 I, is consistent. Hence there exists a realisation ã1 of �(x1, a>1b) in N
U

which is not in acl0(aclT (b)a>1). By Lemma 2.2.1, there exists singleton ã01 in some
elementary extension K of N

U such that ã01 ⌘
T

aclT (b)a>1
ã1 and ã01 |

0
^ aclT (b)a>1

N
U .

Now ã01 /2 acl0(aclT (b)a>1) implies that ã01 |
0
^ aclT (b)a>1, so by Transitivity ã01 /2

N
U . Finally observe that (K , S(N U

)) is a strong extension of (N U , S(N U
)), hence

(N
U , S(N U

)) is existentially closed in (K , S(N U
)), but

(K , S(N U
)) |= 9x1�(x1, a>1b) ^ x1 /2 S

a contradiction.

Remark 2.2.5. A consequence of Proposition 2.2.4 is that if TS exists, then T eliminates
9
1. A question one might ask is wether it is a sufficient condition for the existence

of the theory TS. The answer is no, the theory ACF0 eliminates 9
1 but the model

companion of the theory of algebraically closed fields of characteristic 0 with a predicate
for an additive subgroup is not first order axiomatisable, see Proposition 3.2.7. On the
other hand, the existence of TS under the reduction of the hypothesis (H4) to formulae
�(x, y) with |x| = 2 would be a good improvement, as it would be much easier to check.

2.3 Suitable triple

In Sections 2.1 and 2.2, we have listed minimal hypotheses in order to have (weakly) nec-
essary and sufficient conditions for the existence of a generic theory TS. We now consider
a stronger assumption on T0 which encompass the conditions of Sections 2.1 and 2.2: the
modularity of the pregeometry in T0. This hypothesis make obsolete the notion of strong
extension. As a consequence, the theory TS becomes the model-companion of the theory
TS .

Definition 2.3.1. We say that a triple (T, T0,L0) is suitable if it satisfies the following

(H1) T is model complete;

(H2) T0 is model complete and for all infinite A, acl0(A) |= T0;

(H+
3 ) acl0 defines a modular pregeometry;

(H4) for all L -formula �(x, y) there exists an L -formula ✓�(y) such that for b 2 M |= T

M |= ✓�(b) () there exists N � M and a 2 N such that
�(a, b) and a is |

0
^ -independent over M .
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Remark 2.3.2. Let (T, T0,L0) be a suitable triple. By Fact 1.2.3, in T , the relation
|
a

^ defined by A |
a

^C
B if and only if aclT (AC) \ aclT (BC) = aclT (C) satisfies Full

Existence, so for all A,B,C subsets of M there exists A0
⌘

T

C
A such that aclT (A0C) \

aclT (BC) = aclT (C). As acl0 is modular, it follows that aclT (A0C) |
0
^ aclT (C)

aclT (BC),
this gives another proof of Lemma 2.2.1 in that context.

From Section 2.1, we immediately get the following.

Proposition 2.3.3. Let (T, T0,L0) be a suitable triple. Then TS exists and is the
model-companion of the theory TS.

Lemma 2.3.4. Let (M ,M0) and (N ,N0) are two models of TS, such that M0 |
0
^ N0

N

and N0 |
0
^M0

M . Then, there exists a model (K ,K0) of TS extending both (M ,M0)

and (N ,N0). If furthermore (M ,M0) and (N ,N0) are models of TS, then (K ,K0)

is an elementary extension of both (M ,M0) and (N ,N0).

Proof. Let K
0 be a model of T extending M and N . Now set K

0
0 = acl0(M0,N0).

Clearly (K
0,K 0

0 ) is a model of TS . By hypothesis we have K
0
0 |

0
^M0

M and K
0
0 |

0
^N0

N .
Using Theorem 2.1.5, there is a model (K ,K0) of TS extending (K

0,K 0
0 ), (M ,M0)

and (N ,N0). We conclude by model-completeness.

Proposition 2.3.5. Let (T, T0,L0) be an adapted triple.

(1) Let (M ,M0) and (N ,N0) be two models of TS and A be a common subset of M

and N . Then we have

(M ,M0) ⌘
TS

A (N ,N0) () there exists f : aclT (A) ! aclT (A)

T -elementary bijection over A,
such that f(M0 \ aclT (A)) = N0 \ aclT (A).

(2) For any a, b, A in a monster model of TS

a ⌘
TS

A b () there exists f : aclT (Aa) ! aclT (Ab)

a T -elementary bijection over A with f(a) = b,
such that f(S(aclT (Aa))) = S(aclT (Ab))..

We call such a function a T -elementary LS-isomorphism between
(aclT (Aa), S(aclT (Aa)) and (aclT (Ab), S(aclT (Ab)).

(3) The completions of TS are given by the T -elementary LS-isomorphism types of

(aclT (;), S(aclT (;))).

(4) For all A, aclTS(A) = aclT (A).
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Proof. (1) The left to right implication is standard. From right to left. Note that, under
hypotheses, we may assume that A = aclT (A) is a subset of both M and N and that
M0\A = N0\A. By Lemma 2.2.1, there exists M

0
⌘

T

A
M such that M

0
|
0
^A

N . There
is an L -isomorphism g between M

0 and M that fixes A, so we may define M
0
0 = g�1

(M0)

and turn (M
0,M 0

0) into a model of TS. By Monotonicity and Base Monotonicity
we have M

0
0 |

0
^N0

N . Similarly we have N0 |
0
^M 0

0
M

0 hence by Lemma 2.3.4 there exists
a model (K ,K0) of TS that is an elementary extension of both (M

0,M 0
0) and (N ,N0),

hence (M
0,M 0

0) ⌘
TS

A
(K ,K0) ⌘

TS

A
(N ,N0).

(2) This is similar to (1).
(3) This is an obvious application of (1).
(4) We only need to show that aclTS(A) ✓ aclT (A). Assume that b /2 aclT (A).

Let (M ,M0) be a model of TS containing b. There exists a model N of T and a T -
isomorphism f : N ! M over A such that N |

0
^ aclT (A)

M . Consider N0 = f�1
(M0),

then (N ,N0) and (M ,M0) are LS-isomorphic. Now set b0 = f�1
(b), we have b0 ⌘TS

A
b

and b 6= b0 because b |
0
^ aclT (A)

b0 and b /2 aclT (A). Since N |
0
^ aclT (A)

M , we may do as
in (1) and find a model of TS extending both M and N in which the condition (3) is
satisfied. Similarly we can produce as many conjugates of b over A as we want inside
some bigger model so b /2 aclTS(A).

Proposition 2.3.6. Let M be a monster model of T . Let M � M and M0 ✓ M

such that (M ,M0) is a model of TS. Let B ⇢ M , and X a small subset of M. Let
SXB ✓ aclT (XB) ⇢ M be some acl0-closed set containing S(aclT (B)) and such that:

(1) SXB \ M = S(aclT (B))

(2) aclT (XB) \ M = aclT (B).

Then the type (over B) associated to the T -elementary LS-isomorphism type of (aclT (XB), SXB)

is consistent in Th(M ,M0).

Proof. Let M0
0 = acl0(M0, SXB). We have that (M,M0

0) is a model of TS and an extension
of (M ,M0). Indeed, M0

0\M = acl0(M0, SXB)\M = acl0(M0, SXB\M ) by modularity.
By hypothesis (1), SXB\M = S(aclT (B) ✓ M0 hence M0

0\M = M0. By Theorem 2.1.5
there exists a model (N ,N0) of TS extending (M,M0

0) which is an elementary extension
of (M ,M0). Now

aclT (XB) \ N0 = aclT (XB) \M0

= aclT (XB) \ acl0(M0, SXB)

= acl0(SXB, aclT (XB) \ M0) by modularity
= acl0(SXB, aclT (B) \ M0) by (2)
= acl0(SXB, S(aclT (B)))

= SXB.

It follows that in (N ,N0), tpTS
(X/B) is given by the T -elementary LS-isomorphism

type of (aclT (XB), SXB).
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2.4 Iterating the construction

Let T be an L -theory, L1, · · · ,Ln be sublanguages of L and let Ti = T � Li. Let
S1, · · · , Sn be new unary predicate and let LS1...Sn be the language L [{S1, · · · , Sn}. Let
TS1...Sn be the LS1...Sn-theory which models are models M of T in which Mi := Si(M )

is an Li-substructure of M and a model of Ti. The following give a condition for the
existence of a model companion for TS1...Sn .

Proposition 2.4.1. Assume inductively that (TS1 . . . Si, Ti+1,Li+1) is a suitable triple
for i = 0, · · · , n�1, and let TS1 . . . Si+1 be the model companion of the theory TS1, . . . , SiSi+1

of models of TS1, . . . , Si with a predicate Si+1 for an Li+1 submodel of Ti+1. Then
TS1 · · ·Sn is the model-companion of the theory TS1...Sn .

Proof. We show the following:

(1) every model (M ,M1, . . .Mn) of TS1...Sn can be extended to a model (N ,N1, · · · ,Nn)

of TS1 . . . Sn;

(2) every model (N ,N1, . . . ,Nn) of TS1 . . . Sn is existentially closed in an extension
(M ,M1, . . . ,Mn) model of TS1,...Sn .

(1) Start by extending (M ,M1) to a model (N 1,N 1
1 ) of TS1. Then (N

1,N 1
1 ,M2)

is a model of TS1S2
so can be extended to a model (N 2,N 2

1 ,N 2
2 ) of TS1S2. The struc-

ture (N
2,N 2

1 ,N 2
2 ) is also an extension of (M ,M1,M2). We iterate this process to end

with a model (N n,N n

1 , · · · ,N n
n ) of TS1 · · ·Sn extending (M ,M1, · · · ,Mn).

(2) Let (N ,N1, · · · ,Nn) be a model of TS1 · · ·Sn and (M ,M1, · · · ,Mn) be a model
of TS1...Sn extending it. By (1) there exists a model (M

0,M 0
1, · · · ,M

0
n) of TS1 · · ·Sn

extending (M ,M1, · · · ,Mn). As (N ,N1, · · · ,Nn) is a model of TS1 · · ·Sn it is existen-
tially closed in any model of TS1 · · ·Sn�1Sn

extending it, in particular, it is existentially
closed in (M

0,M 0
1, · · · ,M

0
n) and hence also in (M ,M1, . . . ,Mn).

In a model of TS1 · · ·Sn, the relations between the Si are very generic. For example,
it is not possible that Si ✓ Sj for some i, j, since one can always extend the predicate Si

by a new element which is not in Sj . In a sense, those generic predicates are invisible from
one another. A way to impose relations between the Si, is by considering, for instance, a
slightly stronger version of the generic expansion by a reduct –analogously to the generic
predicate in [CP98]. Consider a suitable triple (T, T0,L0) and P a 0-definable predicate
in T such that in any model M of T , P is a model of T0 which is a substructure of
M . One may do the construction of the generic expansion by a substructure S inside
P . In that case, assume that Ti = Tj for all i, j  n. One may construct TS1 then add
a generic substructure S2 inside S1 and iterate. This would be the model companion of
the theory TS1...Sn [ {S1 ◆ S2 ◆ · · · ◆ Sn}. One may also consider the case in which Ti

is not the theory of a substructure but of a structure 0-definable in T .
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CHAPTER 3

Examples of generic expansion by a reduct

In this chapter, we apply the results of Chapter 2 to construct new examples of generic
expansions.

Contents
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3.1 Generic vector subspaces over a finite field

Let Fq be a finite field. In this section, we let L0 =
�
(�↵)↵2Fq ,+, 0

 
, and L a language

containing L0. We let T be a complete L -theory which contains the L0-theory T0 of
infinite-dimensional Fq-vector spaces. For A a subset of a model of T , the set acl0(A) is
the vector space spanned by A, and we denote it by hAi. Let LV = L [ {V }, with V a
unary predicate and TV the LV -theory whose models are the models of T in which V is
an infinite vector subspace.

Definability and notations. For ↵ = ↵1, . . . ,↵n 2 Fq and any n-tuple x of variables
let �↵(x) be the term

�↵1(x1) + · · ·+ �↵n(xn).

Let z be a tuple of variables of length s = qn�1 and z0 = z0z a tuple of length s+1 = qn.
Let  (t) be any LV -formula, t a single variable. We fix an enumeration ↵1, . . . ,↵s of
(Fq)

n
\ (0, . . . , 0). We denote by

z = hxi0 the formula
^

i=1,...,s

zi = �↵i(x)

z0 = hxi the formula z0 = 0 ^ z1, · · · , zs = hxi0

t 2 hxi the formula 8z0
 
z0 = hxi !

s_

i=0

t = zi

!

t 2 hxyi \ hyi the formula t 2 hxyi ^ ¬t 2 hyi

hxi \  = hyi the formula 8t (t 2 hxi ^  (t) $ t 2 hyi) .

The formulae above have the obvious meaning, for instance, for any a, b in a model of T ,
if M |= b = hai0 then b is an enumeration of all non-trivial Fq-linear combinations of a.

The following is [CP98, Lemma 2.3]:

Fact 3.1.1. Assume that T is a theory that eliminates the quantifier 9
1. Then for any

formula �(x, y) there is a formula ✓�(y) such that in any @0-saturated model M of T the
set ✓�(M ) consists of tuples b from M such that there exists a realisation a of �(x, b)
with ai /2 aclT (b) for all i.

Theorem 3.1.2. If T is model complete and eliminates the quantifier 91, then (T, T0,L0)

is a suitable triple. It follows that the theory TV admits a model companion, which we
denote by TV .

Proof. We have to show that the triple (T, T0,L0) is suitable, the existence of the
model-companion then follows from Proposition 2.3.3. We check the conditions of Defi-
nition 2.3.1:

(H1) T is model complete;

(H2) T0 model complete and for all infinite A, hAi |= T0;

(H+
3 ) h·i defines a modular pregeometry;
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(H4) for all L -formula �(x, y) there exists an L -formula ✓�(y) such that for b 2 M |= T

M |= ✓�(b) () there exists a saturated N � M and a 2 N such that
�(a, b) and a is |

0
^ -independent over M .

Condition (H1) holds by hypothesis. Conditions (H2) and (H+
3 ) are also clear, these are

basic properties of the theory of infinite dimensional vector spaces. As A is infinite, hAi
is an infinite dimensional Fq-vector space.

We prove condition (H4). Let �(x, y) be an L -formula. For some tuple of variables
z of suitable length, let �̃(z, y) be the following formula

9x z = hxi0 ^ �(x, y).

Now apply Fact 3.1.1 with �̃(z, y). We get a formula ✓
�̃
(y) such that for any @0-

saturated model N of T and b 2 N we have that N |= ✓
�̃
(b) if and only if there

exist tuples a and c in N such that �(a, b) holds, c = hai0 and for all i, ci /2 aclT (b).
Equivalently N |= ✓

�̃
(b) if and only if there exists a tuple a from N such that a is

Fq-linearly independent over aclT (b) and N |= �(a, b). By Lemma 2.2.2, this condition
is equivalent to (H4), hence the triple (T, T0,L0) is suitable.

Lemma 3.1.3. Let  (x, y) be an LV -formula. Assume that in a saturated model (M , V )

of TV the following holds for some tuple b from M , for all L -formula �(x, y):

✓�(b) ! 9x�(x, b) ^  (x, b).

Then for all �(x, y), if M |= ✓�(b) then there exists a realisation a of �(x, b) ^  (x, b)
such that a is linearly independent over aclT (b).

Proof. Let ⌃(x, y) be the partial type expressing “x is linearly independent over aclT (y)”
(see Section 2.2). We claim that {�(x, b) ^  (x, b)} [ ⌃(x, b) is consistent. Indeed, let
⇤(x, b) be a finite conjunction of formulae in ⌃(x, b). As ✓�(b) holds, by Lemma 2.2.2
there exists a realisation a of �(x, b) which is Fq-linearly independent over aclT (b), hence
in particular a satisfies �(x, b)^⇤(x, b), hence M |= ✓�^⇤(b). By hypothesis, the formula
�(x, b) ^ ⇤(x, b) ^  (x, b) is consistent, hence we conclude by compactness.

Proposition 3.1.4 (Axioms for TV ). The theory TV is axiomatised by adding to TV

the following LV -sentences, for all tuples of variable yV ⇢ y, xV ⇢ x and L -formula
�(x, y)

8y(hyi \ V = hyV i ^ ✓�(y)) ! (9x�(x, y) ^ hxyi \ V = hxV yV i). (A1)

Equivalently, the theory TV is axiomatised by adding to TV the following LV -sentences,
for all tuples of variable y1 ✓ y, xV ⇢ x and L -formula �(x, y)

8y(hy1i \ V = {0} ^ ✓�(y)) ! (9x�(x, y) ^ hxy1i \ V = hxV i). (A2)
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Proof. It is clear that the system of axioms (A1) is equivalent to the one given in The-
orem 2.1.5. It is also clear that the system of axioms (A1) implies the system of axioms
(A2). We show that the two systems are equivalent. Assume that the system (A2) is
satisfied in an @0 saturated model (M , V ) of TV . Let �(x, y) be given, and subtuples
yV of y and xV of x. We show that (M , V ) satisfies the axiom of the form (A1) given
by yV ⇢ y, xV ⇢ x and �(x, y). Assume that for some tuple b from M , the formula
hbi \ V = hbV i ^ ✓�(b) holds. Let b1 be a subtuple of b which is a basis of hbi over
hbV i. We have hb1i \ V = {0} hence using an instance of an axiom (A2), there exists a
realisation a of �(x, b) such that hab1i \ V = haV i. Since bV ✓ V , it follows from Base
Monotonicity that habi \ V = haV bV i.

Lemma 3.1.5. Assume that T is model complete and eliminates the quantifier 91. Then
TV eliminates the quantifier 9

1, so (TV, T0,L0) is also a suitable triple.

Proof. Assume that |x| = 1. From the description of types (see Proposition 2.3.5), types
in TS are obtained by adding to the types in T the description of V on the algebraic
closure. By compactness, every LV -formula �(x, y) is equivalent to a disjunction of
formulae of the form

9z (x, z, y) ^ hxzi \ V = hzV i

where  (x, z, y) is an L -formula (not necessarily quantifier-free) and zV a subtuple of
variables of z1. In order to prove elimination of 9

1, by the pigeonhole principle , we
may assume that �(x, y) is equivalent to such a formula. Now let u, v be two tuples of
variables such that |u| + |v|  |z| + 1, and let uV ⇢ u, vV ⇢ v be two subtuples. Let
�
uv
uV vV

(u, yv) be the following L -formula

9xz (x, z, y) ^ hxzi = huvi ^ hzvi = huV vV i ^ x 2 huvi \ hvi.

Let ⇤(y) be the formula
_

|uv||z|+1,uV ✓u,vV ✓v,|u|�1

9v(hvi \ V = hvV i ^ ✓�uv
uV vV

(yv)).

Claim: For all tuple b from a saturated model (M , V ) of TV , (M , V ) |= ⇤(b) if and
only if there exists a 2 M such that (M , V ) |= �(a, b) and a /2 aclT (b).

From left to right. If ⇤(b) holds for some b, there exists a formula � = �
uv
uV vV

and
some tuple e from M and a subtuple eV of e such that V \ hei = heV i and M |= ✓�(be).
Using one instance of the axioms (A1) (Proposition 3.1.4) and Lemma 3.1.3, there exists
a realisation d of �(u, be) such that hdbei\V = hdV bV eV i, for dV the subtuple associated
to the variables uV and such that d is linearly independent over aclT (be). Using that d is
linearly independent over hdei, we obtain that hdei\V = hdV eV i. As (M , V ) |= �(d, be),
there exists a and a tuple c from M such that

1Actually we might assume that every realisation of z in  is algebraic over the realisations of x, y in
 , but we don’t need this fact here. Also, we may replace the condition hxzi\V = hzV i by hzi\V = hzV i,
but we assume that the formula gives a description of V on hxzi in order to simplify the proof.
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• M |=  (a, c, b)

• haci = hdei

• hcV i = hdV eV i

• a 2 hdei \ hei.

Now as hdei \ V = hdV eV i we have haci \ V = hcV i so (M , V ) |= �(a, b). Now as d is
linearly independent over aclT (be) and a 2 hdei\ hei we have a /2 aclT (be) so a /2 aclT (b).

From right to left. Assume that (M , V ) |= �(a, b) and a /2 aclT (b). Let c be such
that c |=  (a, z, b) and haci \ V = hcV i. Let eV be a basis of aclT (b) \ V \ haci, and
complete it in a basis e of aclT (b) \ haci. Let dV be a basis of a complement of heV i
inside haci \ V and complete it in a basis d of a complement of hedV i inside haci. As
a 2 hdei \ aclT (b) we have a 2 hdei \ hei. It is clear that (M , V ) |= �

uv
uV vV

(d, be) for the
appropriate choice of subtuple of variables uV ✓ u and vV ✓ v. Furthermore, as d is
linearly independent over aclT (b) = aclT (be), we have ✓�(be), and so ⇤(b) holds.

Corollary 3.1.6. Assume that T is model-complete and eliminates 9
1. Let TV1...Vn be

the theory whose models are models of T in which Vi is a predicate for a vector subspace
over Fq. Then TV1...Vn admits a model companion TV1 . . . Vn.

Proof. This is an immediate consequence of Lemma 3.1.5 and Proposition 2.4.1.

Example 3.1.7 (Generic vector subspace of a vector space). Consider the theory T of
infinite Fq-vector spaces in the language L =

�
(�↵)↵2Fq ,+, 0

 
. Applying Corollary 3.1.6

the theory TV1...Vn admits a model companion TV1 . . . Vn. It is easy to check that TV1

is the theory of belles paires (see [Poi83]) of the theory T , hence as T is NFCP, TV1 is
stable. One can easily show that TV1 has U-rank 2, and one expects that TV1 . . . Vn has
U-rank n+ 1. This is a particular case of Proposition 3.4.1.

3.2 Fields with generic additive subgroups

Let p > 0 be a prime number. Let L = {+,�, ·, 0, 1, . . .} and T an L -theory of an
infinite field of characteristic p. Let Fq1 , · · · ,Fqn be finite subfields in any model of
T . Consider the theory T 0 obtained by adding to the language a constant symbol for
each element of Fq1 [ · · · [ Fqn . Then T and T 0 have the same models. It follows that
for each i we may consider that the theory of infinite Fqi-vector space in the language
Li =

n
+, 0, (�↵)↵2Fqi

o
is a reduct of T .

Proposition 3.2.1. Let L ◆ Lring and T an L -theory of an infinite field of character-
istic p. Let Fq1 , · · · ,Fqn be finite subfields in any model of T . Assume that

(1) T is model-complete;

(2) T eliminates 9
1.
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Let TV1...Vn be the theory whose models are models of T in which each Vi is a predicate for
an Fqi-vector subspace. By Corollary 3.1.6 the theory TV1...Vn admits a model-companion.

An additive subgroup of a field of characteristic p is an Fp-vector space, hence Propo-
sition 3.2.1 translates as follows.

Proposition 3.2.2. Let L ◆ Lring and T an L -theory of an infinite field of character-
istic p. Assume that

(1) T is model-complete;

(2) T eliminates 9
1.

Let TG1...Gn be the theory whose models are models of T in which each Gi is a predicate for
an additive subgroup. By Corollary 3.1.6 the theory TG1...Gn admits a model-companion,
which we denote by TG1 . . . Gn.

Example 3.2.3. The hypotheses of Propositions 3.2.1 and 3.2.2 are satisfied by the
following theories by Subsection 1.5.2:

• ACFp, SCFp,e for e finite or infinite, Psfc,

• ACFAp, DCFp.

Example 3.2.4 (ACFV1 · · ·Vn and ACFG). Let Fq1 , · · · ,Fqn be any finite fields of char-
acteristic p. We denote by ACFV1 · · ·Vn and ACFG respectively the theories ACFpV1 · · ·Vn

and ACFpG. Chapters 5, 6 and 7 are dedicated to a detailed study of the theory ACFG,
which is NSOP1 and not simple (see also Example 4.4.3).

Recall from Subsection 1.5.2 that a pseudo-algebraically closed field is a field K
which is existentially closed in every regular extension. The theory PAC is incomplete
but eliminates 9

1 if the field is perfect (Fact 1.5.16).

Proposition 3.2.5. Let PACpG be the theory whose models are perfect PACp-fields in
Lring with a predicate G for an additive subgroup. Then there exists a theory PACpG
such that

(1) every model (F,G0
) of PACpG extends to a model (K,G) of PACpG such that K is

a regular extension of F ;

(2) every model (K,G) of PACpG is existentially closed in every extension (F,G0
) such

that F is a regular extension of K.

Let T be a theory of perfect PACp-fields in a language containing Lring such that T is
model-complete, and TG1···Gn be the theory whose models are models of T with predicates
Gi for additive subgroups. Then TG1···Gn admits a model-companion, TG1 · · ·Gn.

Proof. Perfect PACp-fields in Lring satisfies (H4), the proof of this in Theorem 3.1.2
does not use the model-completeness of the theory T , so the first statement follows from
Proposition 2.1.7. The second statement is Corollary 3.1.6.

44



Remark 3.2.6. Note that the perfect assumption is only here to ensure that the fields
eliminate the quantifier 91. It should be true that all PAC fields eliminate the quantifier
9
1 although we did not find any reference in the literature.

However, in the characteristic 0 case the model-companion does not exist.

Proposition 3.2.7. Let T be the theory of a field of characteristic 0 in a language L

containing Lring, such that T is inductive. Let LG = L [ {G} and let TG be the LG-
theory of models of T in which G is a predicate for an additive subgroup of the field. Let
(K,G) be an existentially closed model of TG. Then

SK(G) := {a 2 K | aG ✓ G} = Z.

In particular, the theory TG does not admit a model-companion.

Proof. The right to left inclusion is trivial. Assume that a 2 K \ Z, let L be a proper
elementary extension of K and t 2 L \ K. Then (L,G + Z t

a
) is an LG-extension of

(K,G). Furthermore, as a /2 Z, we have t /2 G+Z t

a
. Then t

a
2 G+Z t

a
and a t

a
/2 G+Z t

a
.

As (K,G) is existentially closed in (L,G+ Z t

a
), we have that

(K,G) |= 9x(x 2 G ^ ax /2 G)

hence a /2 SK(G). The class of existentially closed models of TG is not axiomatisable
as the definable infinite set SL(G) is of fixed cardinality. As TG is inductive, this is
equivalent to saying that TG does not admit a model-companion.

Remark 3.2.8. Let T be the theory of a field of characteristic 0 in a language L containing
Lring, such that T is inductive. Let LD = L [ {D} and let TD be the LD-theory of
models of T in which D is a predicate for a divisible additive subgroup of the field.
Let (K,D) be an existentially closed model of TD. A similar argument yields that
{a 2 K | aD = D} = Q, so TD does not admits a model-companion either.
Remark 3.2.9. Let K = C (or R). Using Remark 3.2.8 and Lemmas 2.2.2 and 2.2.3, one
deduces that there exist k, l 2 N and a constructible set if K = C (or a semialgebraic set
if K = R) V ✓ Kk

⇥K l such that for all polynomials P (X,Y ) 2 K[X,Y ] with |X| = 1,
|Y | = l and for all n 2 N and all q1, . . . qn, s1, . . . , sk 2 Q there exists b 2 K l such that
for all a 2 Kk, if (a, b) 2 V then

(1) a is not Q-linearly independent over Q(b) \K;

(2)
P

k

i=1 siai /2 q1R+ · · ·+ qnR for R the set of roots of P (X, b) in K.

3.3 Algebraically closed fields with a generic multiplicative
subgroup

We are now interested in using Theorem 2.1.5 to prove that the theory of algebraically
closed fields of fixed arbitrary characteristic with a predicate for a multiplicative subgroup
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admits a model companion. Consider Lfield =
�
+,�, ·,�1 , 0, 1

 
and L0 =

�
·,�1 , 1

 
✓

Lfield.
The pure multiplicative group of any field is an @1-categorical abelian group, its model

theory is described in [Mac71], see also [Che76, Chapter VI].
Fix p a prime or 0. Consider the theory ACFp. The theory ACFp � L0 is complete

and we will identify it with the theory of the multiplicative group of an algebraically
closed field of characteristic p, denoted by Tp. The theory Tp is axiomatised by adding
to the theory of abelian groups the following sets of axiom:

• If p > 0: {8x 9
=ny yn = x | n 2 N \ pN} [

�
8x9=1y yp = x

 

• If p = 0: {8x 9
=ny yn = x | n 2 N \ {0}} .

Proposition 3.3.1. The theory Tp has quantifier elimination in the language L0. It is
strongly minimal hence @1-categorical. Furthermore for any subset A of a model M of
Tp, the algebraic closure is given by

aclp(A) := {u 2 M,un 2 hAi for some n 2 N \ {0}}

where hAi is the group spanned by A. Every algebraically closed set is a model of Tp.
Furthermore aclp defines a pregeometry which is modular and the associated independence
relation in Tp is given by

A |
p

^
C

B : () aclp(AC) \ aclp(BC) = aclp(C).

See Subsection 1.5.2 for basics about affine varieties and generics of a variety.

Lemma 3.3.2. Let K |= ACF, V ⇢ Kn an affine (irreducible) variety, O ⇢ Kn a
Zariski open set. The following are equivalent:

(1) for all k1, . . . , kn 2 N, c 2 K the quasi affine variety V \O is not included in the
zero set of xk11 · · · · · xknn = c

(2) for all k1, . . . , kn 2 N, c 2 K the variety V is not included in the zero set of
xk11 · · · · · xknn = c

(3) there exist L � K and a tuple a which is multiplicatively independent over K and
with a 2 (V \O)(L)

Proof. (1) implies (2) is trivial. We show that (2) implies (3). Assume that (3) does not
hold. Take a generic a over K of the variety V in some L � K. We have a 2 O. Then
there exists k1, . . . , kn 2 N such that ak11 · · · · · aknn = c for some c 2 K. By genericity of
a, it follows that V is included in the zero set of xk11 · · · · · xknn = c, hence (2) does not
hold. (3) implies (1) follows easily from the fact that V and O are definable over K.

The following fact was first observed in the proof of Theorem 1.2 in [BGH13], it is
also Corollary 3.12 in [Tra17].
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Fact 3.3.3. Let p be a prime number or 0. Let �(x, y) an Lfield-formula such that for
all tuple b in a model of ACFp, �(x, b) defines an affine variety. Then there exists an
Lfield-formula ✓�(y) such that for any model K of ACFp and tuple b from K, we have
K |= ✓�(b) if and only if for all k1, . . . , kn 2 N, c 2 K, the set �(K, b) is not included in
the zero set of xk11 · · · · · xknn = c.

By Subsection 1.5.2, every definable set in ACFp can be written as a finite union of
quasi-affine varieties. Furthermore, it is standard that given any Lring-formula #(x, z),
the set of c such that #(x, c) is a quasi-affine variety is a definable set ([Tra17, Lemma
3.10]). Let C be the class of formulae #(x, z) such that for all K |= ACFp and c tuple
from K, the set #(K, c) is a quasi-affine variety.

Lemma 3.3.4. Let p be a prime number or 0. For any #(x, z) 2 C there exists an
Lfield-formula ✓#(z) such that for any model K of ACFp and tuple c from K, we have
K |= ✓#(c) if and only if there exists a such that |= #(a, c) and a is |

p

^ -independent over
K.

Proof. Let K |= ACFp and #(x, z) 2 C . Using [Joh16, Theorem 10.2.1], there exists a
formula #̃(x, z) such that for all tuple c from K, the set #̃(K, c) is the Zariski closure of
#(K, c). Now by Fact 3.3.3, there exists a formula ✓(z) such that K |= ✓(c) if and only if
#̃(K, c) is not included in the zero set of xk11 · · · · · xknn = d, for all d 2 K, k1, · · · , kn 2 N.
By Lemma 3.3.2, K |= ✓(c) if and only if there exist L � K and a tuple a which is
multiplicatively independent over K and with a |= #(x, c).

If G⇥ is a symbol for a unary predicate, we denote by ACFG⇥ the theory in the
language Lring [ {G⇥

} whose models are algebraically closed fields of characteristic p in
which the predicate G⇥ consists of a multiplicative subgroup.

Theorem 3.3.5. The theory ACFG⇥ admits a model companion, which we denote by
ACFG

⇥.

Proof. We check the conditions of Definition 2.3.1

(H1) ACFp is model complete;

(H2) Tp is model-complete and for all infinite A, aclp(A) |= Tp;

(H+
3 ) aclp defines a modular pregeometry;

(H4) for all Lfield-formula �(x, y) there exists an Lfield-formula ✓�(y) such that for b 2
K |= ACFp

M |= ✓�(b) () there exists L � K and a 2 L such that
�(a, b) and a is |

p

^ -independent over K.

ACFp is model complete by quantifier elimination. Conditions (H2) and (H3) follow
from Proposition 3.3.1. We don’t have condition (H4) for all formulae, but only for the
formulae in C (Lemma 3.3.4), which is sufficient for the existence of the model-companion
by Remark 2.1.8.
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3.4 Pairs of geometric structures

Let T be an L -theory. Let LS be the expansion of L by a unary predicate S. A
pair of models of T is an LS-structure (M ,M0), where M |= T and S(M ) = M0 is a
substructure of M model of T . We call TS the theory of the pairs of models of T . This
is consistent with the notations in Chapter 2.

Proposition 3.4.1. Let T be a model-complete geometric theory (see Section 1.3) in a
language L . Assume that every aclT -closed set is a model of T . Then there exists an
LS-theory TS containing TS such that:

(1) every model (N ,N0) of TS has a strong extension which is a model of TS;

(2) every model of TS is existentially closed in every strong extension model of TS.

Furthermore, TS satisfies the conclusions of Proposition 2.3.5.

Proof. We check that T, T0,L0 satisfies the hypotheses of Theorem 2.1.5. (H1), (H2)

and (H3) are clear, and (H4) is Fact 1.3.10.

We call this theory the weak model companion of the pairs of models of T . If the
pregeometry is modular, it is the model-companion.

Example 3.4.2. The theory of pairs of any strongly minimal theory with quantifier
elimination admits a weak model companion. For instance, the weak model companion
of the theory of pairs of algebraically closed fields is the theory of proper pairs of alge-
braically closed fields and coincides with the theory of belle paires of algebraically closed
fields (see [Del12], [Poi83]). The theory RCF also satisfies the hypotheses of Proposi-
tion 3.4.1, hence the theory of pairs of real closed fields admits a weak model-companion.
Connections with lovely pairs of geometric structures ([BV10]) could be made, although
we did not investigate.
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CHAPTER 4

Preservation of NSOP1

The aim of this chapter is to establish when the construction presented in Chapter 2
preserves NSOP1. More precisely, given some suitable triple (T, T0,L0) such that T is
NSOP1, we establish a condition on the triple (T, T0,L0) so that TS is NSOP1. This
condition (see (A) in Theorem 4.2.1) expresses how the pregeometry given by acl0 is
controled by the Kim-independence in T , and how the latter interacts with |

0
^ .
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49



4.1 Independence relations in T and TS

We set up the context for this section, Section 4.2 and Section 4.3. Let (T, T0,L0) be a
suitable triple (see Definition 2.3.1 and Corollary 2.3.3). We work in a monster model
(M,M0) of TS such that M is a monster model of T . In particular we fix some completion
of TS. Also, M is a monster model for T (see Section 1.1). All small sets A,B,C, . . .
or models M ,N of T , or models (M ,M0), (N ,N0) of TS are seen as subsets of M,
respectively elementary substructures of M or elementary substructures of (M,M0). For
instance we have S(M ) = M \ S(M) = M \M0 = M0. We will start with a ternary
relation ( |

T

^ ) defined over subsets of M and construct from it a ternary relation ( |
w

^ )
taking into account the predicate S(M) = M0.

We denote by A the set aclT (A) which, as we saw, equals aclTS(A).

Assumption. There exists a ternary relation |
T

^ defined over subsets of M, such that
|
T

^ ! |
a

^ , where A |
a

^C
B () AC \BC = C.

In particular, if A |
T

^C
B then aclT (AC) |

0
^ aclT (C)

aclT (BC), by modularity.

Definition 4.1.1. We call weak independence the relation |
w

^ defined by

A |
w

^
C

B () A |
T

^
C

B and S(acl0(AC,BC)) = acl0(S(AC), S(BC)).

We call strong independence the relation |
st

^ defined by

A |
st

^
C

B () A |
T

^
C

B and S(ABC) = acl0(S(AC), S(BC)).

Obviously |
st

^ ! |
w

^ .

We will show that if |
T

^ satisfies most of the properties listed in Section 1.2 relatively
to the theory T , then so does |

w

^ relatively to the theory TS. The property Symmetry
of |

0
^ , |

T

^ and |
w

^ will be tacitly used throughout this chapter.

Lemma 4.1.2. If |
T

^ satisfies Invariance, Closure, Symmetry, Existence and
Monotonicity, then so does |

w

^ .

Proof. Invariance is clear because S(acl0(AC,BC)) = acl0(S(AC), S(BC)) is an LS-
invariant condition. Closure, Symmetry and Existence are trivial.

For Monotonicity, let A,B,C,D such that A |
w

^C
BD. By hypothese, A |

T

^C
B.

Now

S(acl0(AC,BC)) = S(acl0(AC,BCD)) \ acl0(AC,BC)

= acl0(S(AC), S(BCD)) \ acl0(AC,BC).
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Since S(AC) ✓ acl0(AC,BC), we have by modularity

acl0(S(AC), S(BCD)) \ acl0(AC,BC) = acl0(S(AC), S(BCD) \ acl0(AC,BC)).

Using that |
T

^ ! |
a

^ , it follows from the hypotheses that AC |
0
^C

BCD hence by Base
Monotonicity of |

0
^ we have BCD \ acl0(AB,BC) = BC hence

S(BCD) \ acl0(AC,BC) = S(BC).

It follows that S(acl0(AC,BCD)) = acl0(S(AC), S(BC)) and so A |
w

^C
B.

Lemma 4.1.3. If |
T

^ satisfies Full Existence, then |
st

^ and |
w

^ satisfy Full Exis-
tence.

Proof. We show that |
st

^ satisfies Full Existence. Let A,B,C be contained in some
model (M ,M0) of TS. By Full Existence for |

T

^ , there exists A0
⌘

T

C
A with

A0
|
T

^C
M , in particular A0C \BC = C. Using Full Existence of |

a

^ we may assume
that A0BC \ M = BC. Let f : A0C ! AC be a T -elementary isomorphism over C and
SA0C := f�1

(S(AC)). Let SA0BC = acl0(SA0C , S(BC)). It is easy to see that

• SA0BC \ M = SA0BC \BC = S(BC)

• SA0BC \A0C = SA0C

Using A0BC \ M = BC and the first item, the type over BC defined by the pair
(A0BC,SA0BC) is consistent (see Proposition 2.3.6). We may assume that A0

✓ M realizes
this type. From the second item, we have that A0

⌘
TS

C
A, and it is clear that S(A0BC)

is equal to acl0(S(A0C), S(BC)) so A0
|
st

^C
B. We conclude that Full Existence is

satisfied by |
st

^ . As |
st

^ ! |
w

^ , Full Existence is also satisfied by |
w

^ .

Lemma 4.1.4. If |
T

^ satisfies Strong Finite Character over algebraically closed
sets, then the relation |

w

^ satisfies Strong Finite Character over algebraically closed
sets.

Proof. Assume that a 6 |
w

^C
b and C = C. If a 6 |

T

^C
b, we have a formula witnessing

Strong Finite Character over C by hypothesis. Otherwise, assume that a |
T

^C
b,

set A = Ca, B = Cb and assume that there exists s 2 S(acl0(A,B)) \ acl0(S(A), S(B)).
Let u 2 A\S(A) and v 2 B \S(B) be such that s 2 acl0(u, v). There exists LS-formulae
 u(y, a, c) and  v(z, b, c) isolating respectively tpTS

(u/Ca) and tpTS
(v/Cb) for some tu-

ple c in C. There is also an L0-formula �(t, y, z) algebraic in t, strict in y and strict in
z, such that s |= �(t, u, v).

Claim. v /2 acl0(S(B), C).
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Proof of the claim. Assuming otherwise, by modularity there exists singletons sb 2 S(B)

and c 2 C such that v 2 acl0(sb, c) and so s 2 acl0(sb, c, u). As cu ✓ A, by modularity
there exists a singleton u0 2 A such that s 2 acl0(sb, u0) and by Exchange u0 2 acl0(sb, s)\
A ✓ S(A), this contradicts the hypothesis on s.

In particular for any other realisation v0 of  v(z, b, c) we have v0 /2 acl0(S(B), C).
Now let ⇤(x, b, c) be the following formula

9y9z9t u(y, x, c) ^  v(z, b, c) ^ �(t, y, z) ^ t 2 S.

We have that ⇤(x, b, c) 2 tpTS
(a/bC). Assume that a0 |= ⇤(x, b, c). If a0 6 |T^C

b

then we are done, so we may assume that a0 |
T

^C
b, in particular Ca0 \ B = C as C is

algebraically closed. There exists u0 2 Ca0 and v0 2 B \ acl0(S(B), C) such that there is
s0 2 acl0(u0, v0) \ S. In particular v0 2 acl0(s0, u0) as �(t, y, z) is strict in z. Now assume
that s0 2 acl0(S(B), S(Ca0)), then v0 2 acl0(Ca0, S(B)) and also v0 2 B. By modularity,

acl0(S(B), Ca0) \B = acl0(S(B), Ca0 \B) = acl0(S(B), C)

so v0 2 acl0(S(B), C), a contradiction. We conclude that

s0 2 S(acl0(Ca0, B)) \ acl0(S(Ca0), S(B))

so a0 6 |w^C
B.

Theorem 4.1.5. Assume that |
T

^ satisfies the hypotheses of Lemmas 4.1.2. Assume
that for some subset E of M, the following two properties hold:

(A1) |^
0-amalgamation over E for some |^

0
! |

a

^ , |^
0 satisfying Monotonicity,

Symmetry and Closure;

(A2) For all A,B,C algebraically closed containing E, if C |
T

^ E
A,B and A |^

0
E
B then

(AC,BC) |
0
^
A,B

AB.

Then |
w

^ satisfies |^
0-amalgamation over E.

Proof. Let c1, c2, A,B be in a (M ,M0) � (M,M0) such that

• c1 ⌘TS

E
c2

• A |^
0
E
B

• c1 |
w

^E
A and c2 |

w

^E
B
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As |^
0 satisfies Symmetry, Closure and Monotonicity, we have that A |^

0
E
B ()

AE |^
0
E
BE, hence we may assume that A,B are algebraically closed and contain E. By

hypothesis there is a T -elementary LS-isomorphism h : Ec1 ! Ec2 over E sending c1
to c2. Let C1 be an enumeration of Ec1 and let C2 be the enumeration h(C1). We have
C1 ⌘

T

E
C2.

We have C1 |
T

^E
A, C2 |

T

^E
B and C1 ⌘

T

E
C2. By (A1), there exists C such that

C ⌘
T

A
C1, C ⌘

T

B
C2 with C |

T

^E
AB, A |

a

^C
B, C |

a

^B
A and C |

a

^A
B. We may assume

that ABC \ M = AB using Full Existence of |
a

^ . There exists two T -elementary
bijections f : AC ! AC1 over A and g : BC ! BC2 over B such that g � C = h�(f � C).

We define SAC = f�1
(S(AC1)) ✓ AC and SBC = g�1

(S(BC2)) ✓ BC, and set
SABC = acl0(SAB, SAC , SBC), with SAB = S(AB). The following is easy to check, it
uses that A |

a

^C
B, C |

a

^B
A and C |

a

^A
B:

• SAB \ SAC = SAB \A = SAC \A = S(A) =: SA;

• SAB \ SBC = SAB \B = SBC \B = S(B) =: SB;

• SAC \ SBC = SAC \ C = SBC \ C = f�1
(S(C1)) = g�1

(S(C2)) =: SC .

Furthermore, with S�
AB

= SAB \ acl0(A,B), S�
AC

= SAC \ acl0(A,C) and S�
BC

=

SBC \ acl0(B,C), it follows from c1 |
w

^E
A and c2 |

w

^E
B that

(1) S�
AC

= acl0(SA, SC);

(2) S�
BC

= acl0(SB, SC).

Claim. We have the following

• SABC \AB = SAB;

• SABC \AC = SAC ;

• SABC \BC = SBC .

Proof of the claim. As A |
a

^C
B, C |

a

^B
A and C |

a

^A
B, we have that AC |

0
^C

BC,
BC |

0
^B

AB and AC |
0
^A

AB. By hypothesis (A2) and Transitivity of |
0
^ we have

the following:

• (AC,BC) |
0
^A,B

AB;

• (AB,BC) |
0
^A,C

AC;

• (AC,AB) |
0
^B,C

BC.

In order to prove the first item of the claim, by modularity, it suffices to show that
acl0(SAC , SBC) \AB ✓ SAB. We will in fact show that

acl0(SAC , SBC) \AB = S�
AB

.
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We have that (AB,BC) |
0
^A,C

AC. Since S�
AC

= SAC \ acl0(A,C) and SBC ✓ BC we
deduce SAC |

0
^ S

�
AC

AB,SBC . Now since S�
AC

= acl0(SA, SC) we can use Base Mono-

tonicity of |
0
^ and the fact that SC ✓ SBC to get

SAC |
0
^

SA,SB ,SBC

AB.

On the other hand, BC \ AB = B so SBC |
0
^ SB

AB. Using Base Monotonicity

of |
0
^ we also have that SBC |

0
^ SA,SB

AB so using Transitivity of |
0
^ it follows that

(SAC , SBC) |
0
^ SA,SB

AB.
For the second item, it is sufficient to prove that acl0(SAB, SBC)\AC ✓ SAC . We do

similarly as before paying attention to the fact that SAB and SAC do not play a symmetric
role. We get first that SBC |

0
^ S

�
BC

(AC,SAB) using (AC,AB) |
0
^B,C

BC. Now S�
BC

=

acl0(SB, SC), so we deduce SBC |
0
^ SC ,SB

(AC,SAB) and by Base Monotonicity of |
0
^

and the fact that SB, SA ✓ SAB we deduce

SBC |
0
^

SC ,SA,SAB

AC.

Now by Base Monotonicity of |
0
^ , we have SAB |

0
^ SA,SC

AC. We conclude using
Transitivity of |

0
^ that (SAB, SBC) |

0
^ SA,SC

AC. The proof of the last assertion is
similar.

We know that ABC\M = AB. Moreover, it follows from the first point of the claim
that SABC \ M = SABC \ AB = SAB. Consequently, by Proposition 2.3.6, the type in
the sense of the theory TS defined by the pair (ABC,SABC) is consistent, so we may
consider that it is realised in (M,M0), by say C. It follows that C = Ec with c such that
c ⌘

TS

A
c1 and c ⌘

TS

B
c2. What remains to show is that C |

w

^E
A,B. We already have

that C |
T

^E
A,B so we will prove that

S(acl0(C,AB)) = acl0(S(C), S(AB)).

By modularity, it suffices to show that acl0(SAC , SBC)\acl0(C,AB) ✓ acl0(SC , SAB). We
in fact prove that (SAC , SBC) |

0
^ SA,SB ,SC

(AB,C). As before, using (AB,BC) |
0
^A,C

AC

we have that SAC |
0
^ S

�
AC

(AB,BC), so as S�
AC

= acl0(SA, SC) we have

SAC |
0
^

SA,SC

(AB,SBC , C).

Using Base Monotonicity of |
0
^ , we have

SAC |
0
^

SA,SB ,SC ,SBC

(AB,C).
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On the other hand, from (AC,AB) |
0
^B,C

BC and Monotonicity of |
0
^ , we have

that BC |
0
^B,C

(AB,C). It follows that SBC \ acl0(AB,C) ✓ S�
BC

= acl0(SB, SC) so
SBC |

0
^ SB ,SC

(AB,C). Using Base Monotonicity of |
0
^ we have

SBC |
0
^

SB ,SA,SC

(AB,C).

Now using Transitivity of |
0
^ , we get (SAC , SBC) |

0
^ SA,SB ,SC

(AB,C).

Lemma 4.1.6. Assume that a 6 |
w

^ C
b and a |

T

^ C
b with C = C. Then there is a formula

⇤(x, b, c) 2 tp(a/Cb) such that for all sequence (bi)i<! such that

(1) bi ⌘TS

C
b for all i < !,

(2) bi |
a

^ C
bj and S(acl0(Cbi, Cbj)) = acl0(S(Cbi), S(Cbj)) for all i, j < !,

the partial type {⇤(x, bi, c) | i < !} is inconsistent.

Proof. Let A = Ca, B = Cb. As a 6 |
w

^C
b there exists s 2 S(acl0(A,B))\acl0(S(A), S(B)).

As we saw in the proof of Lemma 4.1.4, there exist u 2 A\S(A), v 2 B\S(B) and LS(C)-
formulae  u(y, a) algebraic in y and  v(z, b) algebraic in z, satisfied respectively by u and
v. There is also an L0-formula �(t, y, z) algebraic in t, strict in y and strict in z, such that
s |= �(t, u, v). Again, as v /2 acl0(S(B), C) and  v(z, b) isolates the type tpTS

(v/Cb),
every v0 satisfying  v(z, b) will satisfy v0 /2 acl0(S(B), C). Let ⇤(x, b, c) 2 tpTS

(a/Cb) be
the following formula, for a tuple c from C

9y9z9t u(y, x) ^  v(z, b) ^ �(t, y, z) ^ t 2 S.

As we saw in the proof of Lemma 4.1.4, it witnesses Strong Finite Character over
C. Note that if b0 ⌘TS

C
b, then no realization of  v(y, b0) is in acl0(S(Cb0), C).

Now let (bi)i<! be as in the hypothesis. By contradiction, assume that {⇤(x, bi, c) | i < !}
is consistent, and realised by some a0. Assume that  u(t, a0) does not have more than k
distinct realisations. As ^

i<k+1

⇤(a0, bi, c)

is consistent, there is u0 2 Ca0 and i < j < k + 1 such that vi, vj are two realisations of
 v(z, bi) and  v(z, bj) respectively –we assume i = 1, j = 2 for convenience– and such
that there exist s1 2 acl0(u0, v1) \ S and s2 2 acl0(u0, v2) \ S. As v2 /2 acl0(S(Cb2), C)

it follows that v2 /2 acl0(u0), hence u0 2 acl0(s2, v2) so s1 2 acl0(s2, v1, v2). By mod-
ularity, it means that there is some w 2 acl0(v1, v2) such that s1 2 acl0(s2, w). We
have that w 2 acl0(s1, s2), so w 2 acl0(v1, v2) \ S. As S(acl0(Cb1), acl0(Cb2)) =

acl0(S(acl0(Cb1), S(acl0(Cb2))) there is some sb1 2 S(Cb1) and sb2 2 S(Cb2) such that
w 2 acl0(sb1, s

b

2). Now, as v1 /2 C, it follows that v1 /2 acl0(v2) hence v1 2 acl0(w, v2), and
so v1 2 acl0(sb1, s

b

2, v2). So there is v02 2 acl0(sb2, v2) ✓ Cb2 such that v1 2 acl0(sb1, v
0
2).

It follows that v02 2 acl0(sb1, v1) so v02 2 Cb1 \ Cb2 = C, hence v02 2 C. Now v1 2

acl0(S(Cb1), C) and this is a contradiction.
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Lemma 4.1.7. Assume that |
T

^ satisfies the hypothesis of Lemma 4.1.2 and 4.1.4. If
|
T

^ satisfies Witnessing, then so does |
w

^ .

Proof. Assume that a 6 |
w

^M
b, and let ⇤(x, b,m) be as in Lemma 4.1.6 and set p(x) =

tpTS
(a/M b), pL = p � L = tpT (a/M b). Let q(x) be a global extension of tpTS

(b/M )

finitely satisfiable in M , qL = q � L . It is clear that qL is finitely satisfiable in
M . Let (bi)i<! be a sequence in M such that bi |= q � M b<i for all i < !. Observe
that for j < i we have tpTS

(bi/M bj) is finitely satisfiable in M . By hypothesis, |
w

^
satisfies in particular Symmetry, Monotonicity, Existence, and Strong Finite
Character over models, hence by Lemma 1.2.4, bi |

w

^M
bj . In particular bi |

a

^M
bj and

S(acl0(M bi,M bj)) = acl0(S(M bi), S(M bj)) for all i, j < !. If {⇤(x, bi,m) | i < !} is
inconsistent, we conclude. If {⇤(x, bi,m) | i < !} is consistent, by Lemma 4.1.6 we have
a 6 |

T

^M
b. Now also bi |= qL � M b<i, hence as |

T

^ satisfies Witnessing, we conclude.

Lemma 4.1.8. Assume that |
T

^ satisfies Base Monotonicity. The following are
equivalent.

(1) |
w

^ satisfies Base Monotonicity;

(2) For all algebraically closed sets A,B,C,D such that A,B,D contain C and A |
T

^ C
BD,

the following holds

acl0(A,BD) [AD = acl0(AD,BD).

In particular if acl0 is trivial or if acl0 = aclT then |
w

^ satisfies Base Monotonicity.

Proof. Assume that there exist A,B,C,D that does not satisfy (2). Let w 2 acl0(AD,BD)\

(acl0(A,BD) [ AD), and S0 := S(aclT (;). We define SABD = acl0(S0, w). The type
(over ;) defined by the pair (ABD,SABD) is consistent. As SABD \ acl0(A,BD) =

SABD \ A = SABD \ BD = S0 and A |
T

^C
BD we have that A |

w

^C
BD. Now w 2

SABD \ acl0(AD,BD) whereas SABD \AD = SABD \BD = S0, hence

S0 = acl0(SABD \AD,SABD \BD) ( SABD \ acl0(AD,BD).

It follows that A 6 |
w

^D
B, so |

w

^ doesn’t satisfies Base Monotonicity.
Conversely if |

w

^ doesn’t satisfies Base Monotonicity, it means that there ex-
ist A,B,C,D such that A |

w

^C
BD and A 6 |

w

^CD
B. We may assume that A,B,D are

algebraically closed and contains C. As |
T

^ satisfies Base Monotonicity we have that

S(acl0(AD,BD)) ) acl0(S(AD), S(BD)).

Let w be in S(acl0(AD,BD)) \ acl0(S(AD), S(BD)). As w 2 S we have that w /2
AD and w /2 BD. It remains to show that w /2 acl0(A,BD). Assume that w 2

acl0(A,BD). As w 2 S we have that w 2 S(acl0(A,BD)). From A |
w

^C
BD we have that

S(acl0(A,BD)) = acl0(S(A), S(BD)) so w 2 acl0(S(A), S(BD)) which contradicts that
w /2 acl0(S(AD), S(BD)). So it follows that w 2 acl0(AD,BD)\(acl0(A,BD)[AD).
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4.2 Preservation of NSOP1

In this section, we use the results of the previous section to prove that if T is NSOP1 and
T satisfies an additional hypothesis then TS is also NSOP1. This additional hypothesis
(namely (A) below) translates how |

0
^ in the reduct T0 is controlled by |

T

^ in T . We
work in the same context as the previous section, with small sets and small models in a
monster model for TS, when (T,L0, T0) is a suitable triple.

Theorem 4.2.1. Assume that (T,L0, T0) is a suitable triple. Assume that T is NSOP1

and that |
T

^ is the Kim-independence relation in T . If

(A) all M |= T and A,B,C algebraically closed containing M , if C |
T

^M
A,B and

A |
T

^M
B then

(AC,BC) |
0
^
A,B

AB.

Then TS is NSOP1 and the Kim-independence relation in TS is given by |
w

^ , i.e. the
relation

A |
T

^
M

B and S(acl0(AM , BM )) = acl0(S(AM ), S(BM )).

Proof. From [KR17], if T is NSOP1 the Kim-independence |
T

^ satisfies Invariance,
Symmetry, Monotonicity, Existence and Strong Finite Character all over
models. Furthermore, by [KR18, Theorem 2.21], it also satisfies |

T

^ -amalgamation
over models. By Lemmas 4.1.2, 4.1.4 and Theorem 4.1.5, all these properties are also
satisfied over models by |

w

^ (relatively to the theory TS). By Proposition 5.3 in [CR16],
TS is NSOP1. As |

T

^ satisfies Witnessing, so does |
w

^ by Lemma 4.1.7. Using [KR17,
Theorem 9.1] (and [KR17, Remark 9.2]), it follows that |

w

^ and Kim-independence in
TS coincide over models.

The results of the previous section give more than the previous Theorem. Indeed,
most of the nice features that may happen in T for |

T

^ are preserved when expanding
T to TS. For instance, if |

T

^ is defined over every small base set, so is |
w

^ . If the
independence theorem in T is satisfied by |

T

^ not only over models but over a wider class
of small sets then the same holds in TS for |

w

^ . We summarize these features in the next
result.

Theorem 4.2.2. Assume that (T,L0, T0) is a suitable triple. Assume that there is a
ternary relation |

T

^ over small sets of a monster model of T that satisfies

• Invariance;

• Symmetry;

• Closure;

• Monotonicity;
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• Existence;

• Full Existence;

• Strong Finite Character over E for E = E;

• |^
0-amalgamation over E for E = E, where |^

0 is such that |
T

^ ! |^
0
! |

a

^
and |^

0 satisfies Monotonicity, Symmetry and Closure;

(A) For E = E and A,B,C algebraically closed containing E, if C |
T

^ E
A,B and

A |
T

^ E
B then AC |

0
^ C

BC and

(AC,BC) |
0
^
A,B

AB;

• Witnessing.

(In particular T is NSOP1, and |
T

^ coincide with Kim-independence over models of T ,
by [CR16, Proposition 5.3] and [KR17, Theorem 9.1]).

Then any completion of TS is NSOP1 and |
w

^ and the Kim-forking independence
relation in TS coincide over models. Furthermore |

w

^ satisfies all these properties, rela-
tively to the theory TS.

Finally, using [KR17, Proposition 8.8] we give a condition on (T, T0,L0) that charac-
terizes the simplicity of TS, assuming that T satisfies the hypotheses of Theorem 4.2.2.

Corollary 4.2.3. Let (T,L0, T0) be a suitable triple satisfying all the assumptions of
Theorem 4.2.2. The following are equivalent.

(1) Any completion of TS is not simple

(2) T is not simple or there exist algebraically closed sets A,B,C,D such that A,B,D
contain C and A |

T

^ C
BD, and such that

acl0(A,BD) [AD 6= acl0(AD,BD).

In particular if acl0 is trivial or if acl0 = aclT the theory TS is simple if and only if T is
simple. If TS is simple, |

w

^ is forking independence over models.

Proof. From Theorem 4.2.2, we know that the relation |
w

^ is Kim-independence over
models. By [KR17, Proposition 8.8], TS is simple if and only if |

w

^ satisfies Base Mono-
tonicity. The equivalence follows from Lemma 4.1.8. The fact that Kim-independence
and forking independence coincide is [KR17, Proposition 8.4].

Corollary 4.2.4. Assume that T is a complete L -theory and L1, . . . ,Ln are sublan-
guages of L . Let T1 = T � L1, . . . , Tn = T � Ln such that (TS1 . . . Si, Ti+1,Li+1) is a
suitable triple for each i = 0, · · · , n�1. By Proposition 2.4.1, let TS1 . . . Sn be the model
companion of the theory of models of T with a predicate Si for an Li substructure.
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(1) Assume that T is NSOP1, with Kim-independence |
T

^ in T and that for all i we
have (for A,B,C algebraically closed containing M |= T )

if C |
T

^M
A,B and A |

T

^M
B then (AC,BC) |

i

^ A,B
AB.

Then TS1 . . . Sn is NSOP1 and Kim-independence in TS is given by

A |
T

^
M

B and for all i  n Si(acli(AM , BM )) = acli(Si(AM ), Si(BM ))

(for acli, |
i

^ the algebraic closure and independence in the sense of the pregeometric
theory Ti).

(2) If there exists |
T

^ that satisfies the hypotheses of Theorem 4.2.2 (relatively to each
theory Ti), then TS1 . . . Sn is NSOP1 and the relation

A |
T

^
C

B and for all i  n Si(acli(AC,BC)) = acli(Si(AC), Si(BC))

agrees with Kim-independence over models. Furthermore this relation satisfies all
the properties listed in Theorem 4.2.2.

4.3 Mock stability and stability

We keep the same hypotheses on T and |
T

^ as in the previous section. Mock stability is
a notion introduced in [Adl08a] by Adler.

Definition 4.3.1. A theory T is mock stable if there is a relation satisfying Invariance,
Finite Character, Closure, Symmetry, Monotonicity, Base Monotonicity,
Transitivity, Full Existence, Stationnarity over models.

Remark 4.3.2. In the original definition of mock stability ([Adl08a]), Adler asks for
slightly different properties but as in the proof of Fact 1.4.4, it is easy to see that our set
of properties is equivalent to the one in [Adl08a].

Lemma 4.3.3. Assume that |
T

^ satisfies Invariance, Finite Character, Symmetry,
Closure, Monotonicity, Base Monotonicity,Transitivity, Full Existence
then so does |

st

^ . Furthermore, for any E = E, if |
T

^ satisfies Stationnarity over
E = E, so does |

st

^ . In particular if T is mock stable, so is TS.

Proof. Invariance, Finite Character, Symmetry, Closure are trivial. Full Ex-
istence is Lemma 4.1.3. It remains to show Monotonicity, Base Monotonicity,
Transitivity and Stationnarity over algebraically closed sets.

59



Monotonicity. Assume that A |
st

^C
BD. We only need to check that S(ABC) =

acl0(S(AC), S(BC). We have

S(ABC) = acl0(S(AC), S(BCD)) \ABC

= acl0(S(AC), S(BCD) \ABC by modularity)
= acl0(S(AC), S(BC)) as BCD \ABC = BC ( |

T

^ ! |
a

^ ).

Base Monotonicity. If A |
st

^C
BD then by Base Monotonicity of |

T

^ we
have A |

T

^CD
B. As S(ABCD) = acl0(S(CA), S(CBD), in particular S(ABCD) ✓

acl0(S(ACD), S(BCD) ✓ S(ABCD), so A |
st

^CD
B.

Transitivity. Assume that A |
st

^CB
D and B |

st

^C
D. By Closure, we may as-

sume that A = ABC,B = BC,D = CD. By Monotonicity, it is sufficient to show
that A |

st

^C
D. We have A |

T

^C
D by Transitivity of |

T

^ . We show that S(AD) =

acl0(S(A), S(D). By A |
st

^B
D we have S(AD) = acl0(S(A), S(BD)). By B |

st

^C
D,

S(BD) = acl0(S(B), S(D)) hence S(AD) = acl0(S(A), S(B), S(D)) = acl0(S(A), S(D).

Stationnarity. Assume that c1 |
st

^E
A and c2 |

st

^E
A and c1 ⌘

TS

E
c2. We may

assume that A is algebraically closed and contains E. There is a T -elementary S-
preserving map f : Ec1 ! Ec2 over E. By Stationnarity over E, we can extend
f to f̃ : Ac1 ! Ac2 T -elementary over A. But as S(Ac1)) = acl0(S(Ec1), S(A)) and
S(Ac2) = acl0(S(Ec2), S(A)), f̃ preserves S, so c1 ⌘TS

B
c2.

Proposition 4.3.4. If T is stable and acl0 = aclT , then the theory TS is stable.

Proof. By Corollary 4.2.3, TS is simple and |
w

^ is the forking independence, in particular
it satisfies Local Character. As aclT = acl0 it follows that |

st

^ = |
w

^ , hence as |
T

^
is stationnary over models, so is |

w

^ by Lemma 4.3.3. Hence TS is stable by Fact 1.4.4.
Note that the fact that forking independence is stationnary over models gives directly
the stability.

Remark 4.3.5. Assume that T is stable and that acl0 is trivial, then TS is not necessary
stable. From Corollary 4.2.3, TS is simple and |

w

^ is forking independence. As acl0 is
trivial, we have |

w

^ = |
T

^ , (with |
T

^ forking independence in T ) which is not likely to be
stationnary. The easiest example of a reduct T0 for which acl0 is trivial is the particular
case of L0 = {=}. Then TS is the theory of the generic predicate on T (see Remark 2.1.6
and [CP98]), which does not preserve stability. Indeed [CP98, (2.10) Proposition, Errata]
gives a sufficient condition on T so that TS have the independence property (hence is
unstable): there exists a model M of T and two elements a and b such that b |

u

^M
a and

M ab 6= M a [ M b. It follows that adding a generic predicate to an algebraically closed
field result in a simple unstable theory (take a and b two generics independent over M ).

Example 4.3.6. We saw in Example 3.1.7 that the generic theory TV1 · · ·Vn of infinite
Fq-vector spaces with predicates for Fq-vector subspaces V1, · · · , Vn is stable for n = 1
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as it is the theory of a belle paire of infinite Fq-vector space. Proposition 4.3.4 gives us
inductively that TV1 · · ·Vn is stable for all n 2 N.

Example 4.3.7. Assume that T is a model-complete geometric theory such that every
aclT -closed set is a model of T (Proposition 3.4.1). If T is stable, then the weak model-
companion of the pairs of models of T is stable.

4.4 NSOP1 expansions of fields

4.4.1 Fields with generic additive subgroups

In this section, we give some condition under which the theory obtained in Proposi-
tion 3.2.1 is NSOP1. In this section, for A in some field, we denote by aclT the model-
theoretic algebraic closure, As the separable closure and A the field theoretic algebraic
closure.

Theorem 4.4.1. Let T be a model-complete theory of an NSOP1 field that eliminates
9
1 and let Fq1 , · · · ,Fqn be subfields. Assume that T satisfies the following assumption

for all aclT -closed A,B and E |= T contained in A and B:

if A |
T

^ E
B then aclT (AB) ✓ AB.

Then TV1 . . . Vn is NSOP1 and Kim-independence in TV1 . . . Vn is given by

A |
w

^
E

B () A |
T

^
E

B and for all i  n Vi(A+B) = Vi(A) + Vi(B)

(for A,B,C aclT -closed, A,B containing E, E |= T ).

Proof. We prove that |
T

^ satisfies the conditions of Corollary 4.2.4. Let |
i

^ the indepen-
dence in the sense of Fqi-vector space, we want to show that for all i = 1, . . . , n,

(A) for all model E of T and A,B,C algebraically closed containing E, if C |
T

^E
A,B

and A |
T

^E
B then

(aclT (AC), aclT (BC)) |
i

^
A,B

aclT (AB).

Let F |= T , let E � F and A,B,C in F containing E, with C |
T

^E
A,B and A |

T

^E
B.

For all i = 1, · · · , n, the condition (aclT (AC), aclT (BC)) |
i

^A,B
aclT (AB) is equivalent

to
(aclT (AC) + aclT (BC)) \ aclT (AB) = A+B.

From Fact 1.5.10 (2), F/AB, F/BC and F/AC are separable extension. By our assump-
tions on T and A,B and C we have that aclT (AB) ✓ (AB)

s, aclT (AC) ✓ (AC)
s and

aclT (BC) ✓ (BC)
s, so

(aclT (AC) + aclT (BC)) \ aclT (AB) ✓ ((AC)
s
+ (BC)

s
) \ (AB)

s.
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Claim. ((AC)
s
+ (BC)

s
) \ (AB)

s
= As

+Bs

Proof of the claim. First, observe that as fields, Es is an elementary substructure
of F s. Indeed, by model completeness of Th(Es

) (which is SCFp,e for some e  1, see
Subsection 1.5.2) we have to check that they have the same imperfection degree (which
is clear as F � E) and that F s/Es is separable (the later follows from the fact that F/E
is a regular extension). Now by Fact 1.5.10 (1) we have C |

ld

^E
AB. As E is a model,

C/E and AB/E are regular extensions1, by Fact 1.5.6 we have that

Cs
|
ld

^
Es

(AB)
s. (⇤)

Moreover F s/ABC is separable, (as so are F s/F and F/ABC, the latter using Fact 1.5.10
(2)) and so is Cs

(AB)
s/ABC. It follows that the following extension is separable

F s/Cs
(AB)

s. (⇤⇤)

From (⇤) and (⇤⇤), using Fact 1.5.14 we have that tpSCF(Cs/(AB)
s
) does not fork over

Es. By stability, as Es is an elementary submodel of the ambiant model F s of SCFp,e,
tpSCF(Cs/(AB)

s
) is a coheir of tpSCF(Cs/Es

) (Fact 1.4.5). From Lemma 1.5.11, it follows
that ((AC)

s
+ (BC)

s
) \ (AB)

s
= As

+Bs.
By the claim (aclT (AC) + aclT (BC)) \ aclT (AB) ✓ (As

+ Bs
) \ aclT (AB). Now

by Fact 1.5.10 (3), we have that AsBs
\ aclT (AB) = AB so (As

+ Bs
) \ aclT (AB) ✓

(As
+ Bs

) \ AB. Finally, by Lemma 1.5.7, as AB/E is regular and A |
ld

^E
B, we have

(As
+Bs

) \AB = A+B.

Proposition 4.4.2. Let T be a theory of fields satisfying the same hypotheses as Theo-
rem 4.4.1. Then TV1 · · ·Vn is not simple.

Proof. To prove that TV1 · · ·Vn is not simple, it is sufficient to prove that TV is not
simple. Let E � F be models of T and a, b, d elements of F be such that a |

T

^E
b, d and

b |
T

^E
d. We show that

ad+ b 2 [aclT (Ead) + aclT (Ebd)] \ [(aclT (Ea) + aclT (Ebd)) [ aclT (Ead)] ,

then TV is not simple, byy Corollary 4.2.3. Since b /2 aclT (Ead), it is clear that ad+ b /2
aclT (Ead). Assume that ad+b 2 aclT (Ea)+aclT (Ebd). Then ad 2 aclT (Ea)+aclT (Ebd),
let u 2 aclT (Ea) and v 2 aclT (Ebd) be such that ad = u + v. From Fact 1.5.10, we
have that aclT (Ea) |

ld

^E
aclT (Ebd), hence aclT (Ea)(d) |

ld

^E(d)
aclT (Ebd) so aclT (Ea)(d)\

aclT (Ebd) = E(d). Similarly, aclT (Ebd)(a) \ aclT (Ea) = E(a). It follows that

u = ad� v 2 aclT (Ebd)(a) \ aclT (Ea) = E(a)

v = ad� u 2 aclT (Ea)(d) \ aclT (Ebd) = E(d)

hence ad 2 E(a) + E(b), which contradicts Lemma 1.5.8.
1In fact here we only use that E = aclT (E), and Fact 1.5.9.
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Example 4.4.3 (The theories ACFV1 . . .Vn and ACFG). Let ACFV1 . . .Vn and ACFG

be the theories as in Example 3.2.4. By Theorem 4.4.1 and Proposition 4.4.2 those
theories are NSOP1 not simple. In ACFV1 . . .Vn, Kim-independence agrees with the
relation

A |
w

^
C

B () A |
ACF
^
C

B and for all i  n, Vi(AC +BC) = Vi(AC) + Vi(BC).

Furthermore, |
w

^ satisfies

• Strong Finite Character over algebraically closed sets. For alge-
braically closed E, if a 6 |

w

^E
b, then there is a formula �(x, b, e) 2 tpACFV1...Vn(a/bE)

such that for all a0, if a0 |= �(x, b, e) then a0 6 |w^E
b.

• |
a

^ -amalgamation over algebraically closed sets. For algebraically closed
set E if there exists tuples c1, c2 and sets A,B such that

– c1 ⌘
ACFV1...Vn
E

c2

– AE \BE = E

– c1 |
w

^E
A and c2 |

w

^E
B

then there exists c |
w

^E
A,B such that c ⌘ACFV1...Vn

A
c1, c ⌘ACFV1...Vn

B
c2, A |

a

^Ec
B,

c |
a

^EA
B and c |

a

^EB
A.

This is Theorem 4.2.2, knowing that |
ACF
^ is stationary over algebraically closed sets

hence satisfies the independence theorem over algebraically closed sets without any as-
sumption on the parameters.

Example 4.4.4. Perfect !-free PACp fields are NSOP1 (see Subsection 1.5.2), further-
more, as they are algebraically bounded, the condition on the algebraic closure in Theo-
rem 4.4.1 is satisfied. If T is a theory of a perfect !-free PACp-field in an expansion of
the language Lring such that T is model-complete, then TG1 · · ·Gn (Proposition 3.2.5)
is NSOP1. This holds of course for any NSOP1 perfect PACp field.

4.4.2 Algebraically closed fields with a generic multiplicative subgroup

Let ACFG
⇥ be the theory obtained in Theorem 3.3.5. We denote by A · B the product

set {a · b | a 2 A, b 2 B}.

Theorem 4.4.5. Any completion of ACFG⇥ is NSOP1 and not simple. Furthermore,
Kim-independence coincide over models with the relation

A |
w

^
C

B () A |
ACF
^
C

B and G⇥
(AC ·BC) = G⇥

(AC) ·G⇥
(BC).

Furthermore, |
w

^ satisfies
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• Strong Finite Character over algebraically closed sets. For alge-
braically closed E, if a 6 |

w

^ E
b, then there is a formula �(x, b, e) 2 tpACFG⇥

(a/bE)

such that for all a0, if a0 |= �(x, b, e) then a0 6 |
w

^ E
b.

• |
a

^ -amalgamation over algebraically closed sets. For algebraically closed
set E if there exists tuples c1, c2 and sets A,B such that

– c1 ⌘ACFG⇥
E

c2

– AE \BE = E

– c1 |
w

^ E
A and c2 |

w

^ E
B

then there exists c |
w

^ E
A,B such that c ⌘

ACFG⇥
A

c1, c ⌘
ACFG⇥
B

c2, A |
a

^ Ec
B,

c |
a

^ EA
B and c |

a

^ EB
A.

Proof. Using Theorem 4.2.1, it is enough to show that for E algebraically closed and
A,B,C algebraically closed containing E, if C |

ACF
^E

A,B and A |
ACF
^E

B then

AC ·BC \AB = A ·B.

This easily follows from the fact that tpACF
(C/AB)) is finitely satisfiable in E, as in the

proof of Theorem 4.4.1. The rest is Theorem 4.2.2, knowing that |
ACF
^ is stationnary

over algebraically closed sets, similarly to Example 4.4.3. To prove that ACFG
⇥ is not

simple, we use Corollary 4.2.3, as in the proof of Proposition 4.4.2. Let E be a model
of ACFp and a, b, d in an extension be such that a |

ACF
^E

b, d and b |
ACF
^E

d. We claim
that

(a+ d)b 2
⇥
Ead · Ebd

⇤
\
⇥
(Ea · Ebd) [ Ead

⇤
.

Since b /2 Ead, it is clear that (a + d)b /2 Ead. Assume that (a + d)b 2 Ea · Ebd.
Then a + d 2 Ea · Ebd, let u 2 Ea and v 2 Ebd be such that a + d = uv. We
have that Ea |

ld

^E
Ebd, hence Ea(d) |

ld

^E(d)
Ebd so Ea(d) \ Ebd = E(d). Similarly,

Ebd(a) \ Ea = E(a). It follows that

u = (a+ d)v�1
2 Ebd(a) \ Ea = E(a) and

v = (a+ d)u�1
2 Ea(d) \ Ebd = E(d)

hence a+ d 2 E(a) · E(d), which contradicts Lemma 1.5.8.
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CHAPTER 5

A study of ACFG

Let p > 0 be a fixed prime number. Unless stated otherwise, every field we consider
has characteristic p. Let Lring be the language of rings and LG = Lring [ {G} for G
a unary predicate. Let ACFG be the LG-theory whose models are algebraically closed
fields of characteristic p in which G is a predicate for an additive subgroup. Let ACFG

be the model companion of ACFG, see Examples 3.2.4 and 4.4.3. In this chapter, we
give a basic study of the theory ACFG. First, we give a precise description of the Kim-
independence. Then we investigate some algebraic properties of any models. Finally, we
construct inductively a model inside Fp and prove that such models are numerous in Fp.
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5.1 Preliminaries, axioms and types

The following is Proposition 3.1.4.

Proposition 5.1.1 (Axiomatisation of ACFG). The theory ACFG is axiomatised by
adding to ACFG the following LG-sentences, for all tuples of variables x0 ⇢ x, y0 ⇢ y
and Lring-formula �(x, y)

8y(hy0i \G = {0} ^ ✓�(y)) ! (9x�(x, y) ^ hxy0i \G = hx0i),

where ✓�(y) such that K |= ✓�(b) if and only if in an elementary extension of K, there
exists a tuple of realisations of �(x, b) which is Fp-linearly independent over K (see The-
orem 3.1.2).

By Proposition 2.3.5 we have the following, for (K,G) |= ACFG sufficiently saturated,
and a, b, C in K

(1) aclACFG(C) = aclACF(C) =: C;

(2) a ⌘C b if and only if there exists an LG-isomorphism � : Ca ! Cb over C such
that �(a) = b;

(3) the completions of ACFG are given by the LG-isomorphism type of (Fp, G(Fp)).

Let x be a tuple from a field extension of K and H be an additive subgroup of the
field Cx. If

Cx \K = C and H \ C = G(C)

then, by Proposition 2.3.6, the type associated to the LG-isomorphism class of the pair
(Cx,H) is consistent in (K,G), i.e. there exists a tuple a from K such that there is a
LG-isomorphism over C

f : (Ca,G(Ca)) ! (Cx,H)

with f(a) = x.

Example 5.1.2 (Empty types). Let (K,G) be a -saturated model of ACFG, C ✓ K
such that |C| <  and x a finite tuple algebraically independent over K. By previously,
the type associated to the pair (Cx,G(C)) is consistent. Hence there is some tuple a from
K, algebraically independent over C such that G(Ca) = G(C). This type is unique if
G(C) ✓ C: let a and a0 realise this type, meaning that G(Ca) = G(Ca0) = G(C). Then
a ⌘C a0. Indeed if � is a field isomorphism over C between Ca and Ca0, then it fixes
G(C) so it is an LG-isomorphism. The type is unique in particular if C is algebraically
closed. This uniqueness is a special case of the stationarity of the strong independence
(cf. Lemma 4.3.3).
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5.2 Independence relations in (K,G)

We work in a monster model (K,G) of ACFG.

Definition 5.2.1 (Weak and strong independence). Let A,B,C be subsets of K. Let
|
ACF
^ be the forking independence in the sense of ACF. Recall the weak independence
relation:

A |
w

^
C

B if and only if A |
ACF
^
C

B and G(AC +BC) = G(AC) +G(BC),

and the strong independence relation:

A |
st

^
C

B if and only if A |
ACF
^
C

B and G(ABC) = G(AC) +G(BC).

Theorem 5.2.2. The relation |
w

^ satisfies Invariance, Closure, Symmetry, Full
Existence, Monotonicity, Existence, Local Character, Transitivity, Strong
Finite Character over algebraically closed sets, |

a

^ -amalgamation over algebraically
closed sets.

Proof. Apart from Transitivity and Local Character, all properties has been
proven in Theorem 4.2.2 and Example 4.4.3.

Transitivity. Assume that A |
w

^CB
D and B |

w

^C
D. We may assume that A =

ABC,B = CB and D = CD. By Monotonicity, it is sufficient to show that A |
w

^C
D.

We clearly have A |
ACF
^C

D by Transitivity of |
ACF
^ . We show that G(A + D) =

G(A) + G(D). By A |
w

^B
D we have G(A + BD) = G(A) + G(BD). It follows that

G(A+D) is included in (A+D) \ (G(A) +G(BD)), which, by modularity, is equal to

G(A) + (A+D) \G(BD) = G(A) +G(A \BD +D).

As A |
ACF
^B

D, A \BD = B. By B |
w

^C
D, G(B +D) = G(B) +G(D) hence

G(A+D) = G(A) +G(B) +G(D) = G(A) +G(D).

Local Character. We start with a claim.
Claim. Let A,B be subsets of (K,G) with B subgroup of (K,+), then there exists C ✓ B
with |C|  |A| such that

G(A+B) = G(A+ C) +G(B).

Proof of the claim. For each a 2 A define C(a) to be the set of those b 2 B such that
a+ b 2 G. Take c(a) 2 C(a) for each a such that C(a) is nonempty, and set

C = {c(a) | a 2 A and C(a) 6= ;} .
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Now if g 2 G(A+B) then g = a+ b with a 2 A, b 2 B. We have C(a) nonempty so we
can write for c = c(a)

g = (a+ c) + (b� c).

It follows that b � c 2 G(B) hence g 2 G(A + C) + G(B). The reverse inclusion is
trivial.

Let a be a finite tuple and B an algebraically closed set. We construct two sequences
(Ai)i<! and (Di)i<! such that the following holds for all n < !:

(1) An ✓ An+1 ✓ Ba and Dn ✓ An

(2) G(An +B) ✓ G(An+1) +G(B)

(3) An |
ACF
^Dn

B

(4) |An|  @0

Using Local Character for |
ACF
^ there exists a countable set D0 ✓ B such that

a |
ACF
^ D0B. We define A0 = aD0. Assume that Dn and An has been constructed and

that |An|  @0. By the claim there exists C ✓ B with |C|  @0 such that G(An +B) =

G(An + C) + G(B). Using Local Character1 of |
ACF
^ on the set AnC there exists

Dn+1 ✓ B with |Dn+1|  @0 such that AnC |
ACF
^Dn+1

B. We set An+1 = AnCDn+1.
Note that An + C ✓ An+1 so G(An +B) ✓ G(An+1) +G(B).

Now set A! =
S

i<!
Ai and D! =

S
i<!

Di. We have |A!|  @0 and |D!|  @0. We
claim that

A! |
w

^
D!

B.

If u is a finite tuple from A!, then u ✓ An for some n, so as An |
ACF
^Dn

B we have
u |

ACF
^Dn

B. Now as D! ✓ B, we use Base Monotonicity of |
ACF
^ to conclude that

u |
ACF
^D!

B. As this holds for every finite tuple u from A!, we conclude that

A! |
ACF
^
D!

B.

It remains to show that G(A! + B) = G(A!) + G(B). If g 2 G(A! + B) then there is
some n such that g 2 An +B and so

g 2 G(An +B) ✓ G(An+1) +G(B) ✓ G(A!) +G(B).

The reverse inclusion being trivial, we conclude that G(A! + B) = G(A!) + G(B), so
A! |

w

^D!
B. As a ✓ A! we conclude by Monotonicity of |

w

^ .
1Here we use a stronger version of Local Character which holds in any simple (countable) theory

(see [Cas11, Proposition 5.5]): for all countable set A and arbitrary set B there exists B0 ✓ B with
|B0|  @0 with A |̂

B0
B.
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Proposition 5.2.3. Assume that C = C. If a |
w

^ C
b, then for all C-indiscernible se-

quence (bi)i<! in tp(b/C) such that bi |
a

^ C
(bj)j<i there exists a0 such that a0bi ⌘C ab

for all i < !. In particular, the following are equivalent, for C algebraically closed and
a |

ACF
^ C

b.

(1) a |
w

^ C
b;

(2) for all C-indiscernible sequence (bi)i<! in tp(b/C) such that, bi |
a

^ C
(bj)j<i and

G(Cbi + Cbk) = G(Cbi) +G(Cbk) there exists a0 such that a0bi ⌘C ab for all i;

(3) for some C-indiscernible sequence (bi)i<! in tp(b/C) such that, bi |
a

^ C
(bj)j<i and

G(Cbi + Cbk) = G(Cbi) +G(Cbk) there exists a0 such that a0bi ⌘C ab for all i.

Proof. The first assertion holds because |
w

^ satisfies |
a

^ -amalgamation over alge-
braically closed sets (Theorem 5.2.2). The proof is a classical induction similar to the
proof of Lemma 7.1.9 or [CK17, Proposition 4.11].

(1) implies (2) is a particular case of the first assertion. (2) implies (3) follows from
the fact that such sequence exists, which follows from Full Existence of |

w

^ . We show
that (3) implies (1). Assume that a 6 |

w

^C
b and let ⇤(x, b, c) be as in Lemma 4.1.6. If

(3) holds, then in particular {⇤(x, bi, c) | i < !} is consistent, for some (bi)i<! such that
bi ⌘C b and bi |

a

^C
bj . This contradicts Lemma 4.1.6.

In particular, we have the following combinatorial characterization of |
w

^ over alge-
braically closed sets.

Corollary 5.2.4. The following are equivalent, for C algebraically closed

(1) a |
w

^ C
b;

(2) for all C-indiscernible sequence (bi)i<! in tp(b/C) such that, bi |
w

^ C
(bj)j<i there

exists a0 such that a0bi ⌘C ab for all i;

(3) for some C-indiscernible sequence (bi)i<! in tp(b/C) such that, bi |
w

^ C
(bj)j<i there

exists a0 such that a0bi ⌘C ab for all i.

Proof. (1) implies (2) follows from Proposition 5.2.3, and (2) implies (3) holds since |
w

^
satisfies Full Existence. Assume that (3) holds for some a0 and indiscernible sequence
(bi)i<! such that bi |

w

^C
(bj)j<ifor all i < !. In particular, (bi)i<! is a Morley sequence

in the sense of ACFp, and a0bi ⌘ACF
C

ab for all i < !. As |
ACF
^ is forking independence

in the sense of ACFp, we have a |
ACF

^C
b. By Proposition 5.2.3 we have a |

w

^C
b.

The Kim-Pillay theorem (see Fact 1.4.6) states that if a relation |^ satisfies Invariance,
Symmetry, Monotonicity, Base Monotonicity, Transitivity, Full Existence,
Local Character, |^-amalgamation over models and Finite Character2, then
the theory is simple and this relation is forking independence. From Theorem 5.2.2 and

2This property is trivial for |w^ and |st^ .
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Proposition 4.4.2, the weak independence |
w

^ satisfies all the previous properties except
Base Monotonicity. This is similar to the case of Kn,m-free bipartite graph [CK17,
Remark 4.17].
The property |^-amalgamation over models is a special case of Stationnarity over
algebraically closed sets, hence from Lemma 4.3.3, the strong independence |

st

^ satisfies
every property of the Kim-Pillay characterization except Local Character otherwise,
ACFG would be simple. Example 7.1.4 shows directly that Local Character is not
satisfied by |

st

^ , nor by any relation stronger than |
w

^ which satisfies Base Monotonic-
ity. As we saw in Lemma 4.3.3, ACFG is mock stable in the sense of Adler.

5.3 Some structural features of (K,G)

Let P (X) be a polynomial in variables X = X1, . . . , Xn with coefficients in K. We say
that P is Fp-flat over K if whenever u is a zero of P in some field extension of K, there
exists a non trivial Fp-linear combination of u that falls in K.

Lemma 5.3.1. Let (K,G) be an @0-saturated model of ACFG, and P (X1, . . . , Xn) a
polynomial non-Fp-flat over K. Then for every I ⇢ {1, . . . , n} there exists a zero a of P
in K such that ai 2 G () i 2 I.

Proof. Let I ⇢ {1, . . . , n}. As P is non-Fp-flat, there exists a zero t of P in an extension
of K such that no non nontrivial Fp-combination of t falls in K. It follows that (K(t), G+

hti | i 2 Ii) is an LG-extension of (K,G). Indeed (G+hti | i 2 Ii)\K = G. Furthermore
tj 2 (G+ hti | i 2 Ii) if and only if j 2 I. As (K,G) is existentially closed in (K(t), G+

hti | i 2 Ii), we have that

(K,G) |= 9x(P (x) = 0 ^

^

i2I
xi 2 G ^

^

j /2I

xj /2 G).

Lemma 5.3.2. A polynomial P in K[X] is Fp-flat over K if and only if all its irreducible
factors in K[X] are of the form c(�1X1+ · · ·+�nXn� b) for some �1, . . . ,�n in Fp \{0}

and b, c 2 K.

Proof. Assume that P is Fp-flat over K. If |X| = 1, then P satisfies the conclusion.
Assume that |X| > 1. Let t2, . . . , tn be algebraically independent over K, and consider
P (X1, t2, . . . , tn). This polynomial has zeros in K(t2, . . . , tn) hence by Fp-flatness each
root u satisfies �1u + �2t2 + · · · + �ntn = b for some non-zero tuple �1, . . . ,�n from
Fp and b 2 K. By hypothesis on t2, . . . , tn we have that �1 6= 0. It follows that
X1��

�1
1 (�2t2+· · ·+�ntn�b) divides P (X1, t2, . . . , tn) hence �1X1+· · ·+�nXn�b divides

P , as K[X1, t2, . . . , tn] ⇠= K[X]. If �i = 0 for some i, then the tuple (0, . . . , t, . . . , 0) with
t transcendental over K at the i-th coordinate, is a zero of P that contradicts the Fp-
flatness. It follows that P is of the desired form. The other direction is trivial.
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Example 5.3.3 (Fp-flatness might depends on p). Consider the polynomial P = X2
+Y 2,

with b 2 K. Then P is Fp-flat over any algebraically closed field if and only if �1 is a
square in Fp. From [Fre01, Exercice 1.9.24], when p > 2 this is equivalent to p 2 4Z+1.
Using Lemmas 5.3.1 and 5.3.2 it follows that whenever (K,G) |= ACFG, p > 2,

• if p /2 4Z+ 1 there exists g 2 G and u 2 K \G such that g2 + u2 = 0;

• if p 2 4Z+1 such couple (u, g) does not exists in (K,G), as every couple of solution
to X2

+ Y 2
= 0 are Fp-linearly dependent.

Proposition 5.3.4. Let (K,G) be a model of ACFG. The following holds:

(1) K = G ·G = G · (K \G) = (K \G) · (K \G);

(2) G is stably embedded in K;

(3) For a /2 Fp and P 2 K[X] \ (K + Fp ·X), we have K = G+ aG = (K \G) + aG =

G+ P (G).

Proof. (1) For all b 2 K the polynomial XY � b is not Fp-flat by Lemma 5.3.2, so we
conclude using Lemma 5.3.1.
(2) From (1), every element in K is product of two elements in G, so any LG-formula
�(x, a1, . . . , an) is equivalent to �(x, g1h1, . . . , gnhn) with gi, hi 2 G.
(3) For all P 2 K[X] \ (K + Fp ·X), b 2 K, the polynomial Y +P (X)� b is not Fp-flat,
similarly to (1).

Proposition 5.3.5. Let ⇣1, . . . , ⇣n be Lring-definable endomorphisms of (K,+), Fp-
linearly independent. Then

K/(⇣�1
1 (G) \ · · · \ ⇣�1

n (G)) ⇠= K/⇣�1
1 (G)⇥ · · ·⇥K/⇣�1

n (G).

Proof. Using the first isomorphism theorem, it is sufficient to prove that the function
⇣ : K ! K/⇣�1

1 (G) ⇥ · · · ⇥K/⇣�1
n (G) defined by ⇣(u) = (u + ⇣�1

1 (G), . . . , u + ⇣�1
n (G))

is onto. Let c1, . . . , cn 2 K, we want to show that there exists c 2 K such that for all i
⇣i(c�ci) 2 G. Let t be a transcendental element over K, by model completeness of ACFp,
⇣1, . . . , ⇣n are Fp-linearly independent definable endomorphisms of (Kt,+). Consider the
LG-structure

(Kt,G+ h⇣i(t� ci) | i  ni).

We have (G+ h⇣i(t� ci) | i  ni)\K = G+ h⇣i(t� ci) | i  ni\K. For �1, . . . ,�n 2 Fp,
if
P

i
�i⇣i(t � ci) 2 K then

P
i
�i⇣i(t) 2 K. By Fact 1.5.12, there is some k such that

t 7! (
P

i
�i⇣i(t))

p
k

is polynomial, hence as t is transcendental over K, (
P

i
�i⇣i)

p
k
= 0,

so
P

i
�i⇣i = 0. As ⇣1, . . . , ⇣n are Fp-linearly independent, �1 = · · · = �n = 0. It

follows that (G + h⇣i(t� ci) | i  ni) \K = G, so (Kt,G + h⇣i(t� ci) | i  ni) extends
(K,G). As (K,G) is existentially closed in (Kt,G + h⇣i(t� ci) | i  ni) we have that
(K,G) |= 9x

V
i
⇣i(x� ci) 2 G, hence ⇣ is onto.
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If ⇣1, . . . , ⇣n are Fp-linearly independent Lring-definable isomorphisms of (K,+), the
previous result can be used to find canonical parameters for the quotient K/(⇣�1

1 (G) \

· · · \ ⇣�1
n (G)) provided one have canonical parameters for the quotient K/G, see Exam-

ple 6.0.1.

5.4 Models of ACFG in Fp

From Theorem 3.1.2, for any quantifier free Lring-formula �(x, y), there exists an Lring-
formula ✓�(y) such that for K |= ACFp sufficiently saturated and b tuple in K such
that K |= ✓�(b) if and only if there exists a realisation a of �(x, b) which is Fp-linearly
independent over Fp(b). By quantifier elimination in ACFp, the formula ✓� can be choosen
quantifier-free.

Lemma 5.4.1. If Fpn |= ✓�(b) then for all m � n there exists k > m such that

Fpk |= 9x�(x, b) ^ x is Fp-linearly independent over Fpm .

Proof. Assume that Fpn |= ✓�(b). Then as ✓� is quantifier free, Fp |= ✓�(b). It follows that
for some elementary extension K of Fp, there is some realisation a of �(x, b) which is Fp-
linearly independent over Fp. In particular for every non trivial polynomial P (Z, Y ) 2

Fp[Z, Y ] (where Z is a single variable and Y a tuple of variables with |Y | = |y|), no
nontrivial Fp-linear combination of a is a root of P (Z, b). As Fp ⌘

ACF K, the following
sentence holds in Fp:

8y(✓�(y) ! (9x�(x, y)^"no nontrivial Fp-linear combination of x is a root of P (Z, y)")).

In particular, for the polynomial Xp
m
�X for some m we have

Fp |= 9x�(x, b) ^ no non-trivial Fp-linear combination of x falls in Fpm .

Hence for some k > m,n there exists a tuple a from Fpk such that

Fp |= �(a, b) ^ a is Fp-linearly independent over Fpm .

As �(x, y) is quantifier-free, we also have that

Fpk |= �(a, b) ^ a is Fp-linearly independent over Fpm .

Proposition 5.4.2. For any n 2 N and any G0 additive subgroup of Fpn there exists a
subgroup G of Fp such that G \ Fpn = G0 and (Fp, G) |= ACFG.

Proof. Start with the following claim.
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Claim. Let n 2 N, let s 2 N, let k1, . . . , ks 2 N and let �1(x1, y1), . . . ,�s(xs, ys) be
quantifier free formulae in Lring. For i  s, let Bi =

n
b 2 F|yi|

pn | b |= ✓�i(y)
o

. Then there
exists m > n such that for all i  s and b 2 Bi there exists some |xi|-tuples ai,1, . . . , ai,ki
(depending on b) from Fpm such that

(1) (ai,j
k
)is,jki,k|xi| is a Fp-linearly independent tuple over Fpn

(2) Fpm |= �i(ai,1, b), . . . ,Fpm |= �i(ai,ki , b).

Proof of the Claim. We do it step by step, as there are only a finite number of tuples to
add. Start with �1(x1, y1). Take a first b 2 B1. As Fpn |= ✓�1(b), we use Lemma 5.4.1
with m = n to get a first m1 > n such that there exists a1 2 F|x1|

pm
1 such that |= �1(a1, b)

and a1 is Fp-linearly independent over Fpn . Using again Lemma 5.4.1 with m = m1 there
exists m2 > m1 and a second a2 2 F|x1|

pm2 such that Fpm2 |= �1(a2, b) and a2 is Fp-linearly
independent over Fpm1 . In particular a2 is Fp-linearly independent from a1 over Fpn . So
we can construct as many (finitely) solution to �1(x1, b) as we want which are Fp-linearly
independent over Fpn . Once we have enough Fp-linearly independent solutions of �1(x, b),
we can do the same trick with another b0 2 B1, and add as many (finitely) solution as
we want, Fp-linearly independent from one another and from the ones corresponding
to b, in a finite extension of Fpn . Once we have done it for all elements of B1, we do
the same with every element b 2 B2, continuing to use Lemma 5.4.1 to get solutions of
�2(x2, b) Fp-linearly independent from one another and from the previous ones. As every
Bi is finite and they are in finite number, we can finish to add Fp-linearly independent
solutions of �i in a finite number of steps and the claim is proven.

From Proposition 5.1.1, the axioms for ACFG are given by the following scheme: for
all quantifier free Lring-formula �(x, y), for all 0  k  |x| and 0  k0  |y|

8y ((✓�(y) ^ hy1, . . . , yk0i \G = {0}) ! (9x�(x, y) ^ hx, y1, . . . , yk0i \G = hx1, . . . , xki))

with the following convention: a1, . . . , a0 = ;. We will denote the previous sentence by
�(�, k, k0). Now we construct by induction a model of ACFG starting from (Fpn , G0).
Let (�i(xi, yi))i<! be an enumeration of all quantifier-free formula in Lring. We construct
an increasing sequence (nj)j<! starting with n0 = n and additive subgroups Gj of F

p
nj

such that for all s < !, for �1(x1, y1), . . . ,�s(xs, ys), for all 1  l  s, for all 0  k  |xl|
and 0  k0  |yl| the following holds for all |yl|-tuples b from Fpns

If Fpns |= ✓�l(b)^ hb1, . . . , bk0i \Gs = {0} then there exists al,k an |xl|-tuple from Fp
ns+1

such that Fp
ns+1 |= �(al,k, b) ^ hal,k, b1, . . . , bk0i \Gs+1 = hal,k1 , . . . , al,k

k
i. (?)

Assume that for some s < ! we have n0, . . . , ns and G0 ✓ Fpn0 , . . . , Gs ✓ Fpns con-
structed as above. For every i  s, we define as above Bi =

n
b 2 F|yi|

pns | b |= ✓�i(y)
o

,
and we apply the claim with ki = |xi| + 1, to get some ns+1 > ns. For each 1  i  s
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and b 2 Bi we have |xi| + 1 many |xi|-tuples ai,1(b), . . . , ai,ki(b) from Fp
ns+1 all Fp-

independents over Fpns and such that for all j, we have Fp
ns+1 |= �i(ai,j(b), b). Now

define Gs+1 to be

Gs �

M

1is

M

b2Bi

hai,21 (b)i � hai,31 (b), ai,32 (b)i � · · ·� hai,ki1 (b), . . . ,�ai,ki
ki

(b)i.

We extend Gs by the low triangle of the (|xi| + 1) ⇥ |xi| matrix (ai,j
k
(b))1jki,1k|xi|

for each i < s and b 2 Bi: 0

BBBBBBB@

ai,11 ai,12 . . . ai,1|xi|
ai,21 ai,22 . . . ai,2|xi|
ai,31 ai,32 . . . ai,2|xi|
... . . .

ai,ki1 ai,ki2 . . . ai,ki|xi|

1

CCCCCCCA

.

Now we have for each 1  i  s and any 0  k  |xi| and 0  k0  |yi|, if
b 2 Bi, then there exists ai,k(b) 2 F|xi|

p
ns+1 such that Fp

ns+1 |= �i(ai,k(b), b). By construc-
tion if hb1, . . . , bk0i \ Gs = {0}, and by Fp-linear independence of all the ai,k, we have
hai,k, b1, . . . , bk0i \Gs+1 = hai,k1 , . . . , ai,k

k
i. By induction we construct a familly (Fp

ni , Gi)

satisfying (?). Now let
G =

[

i<!

Gi ✓ Fp.

By construction, we have that (Fp, G) is a model of ACFG.

Recall from Section 1.6 that Sg(Fp) endowed with the Chabauty topology is a Cantor
space. Let

C =
�
G 2 Sg(Fp) | (Fp, G) |= ACFG

 
.

Recall that a set is G� if it is a countable intersection of open sets.

Proposition 5.4.3. C is a dense G� of Sg(Fp).

Proof. We first show that it is dense. By Lemma 1.6.1, the topology on Sg(Fp) is gen-
erated by balls of the form B(G0,Fpn) =

�
H 2 Sg(Fp) | H \ Fpn = G0

 
where G0 is a

subgroup of Fpn . By Proposition 5.4.2, evey such ball contains an element of C, hence C

is dense. We show that it is a G�. First, from Proposition 5.1.1, ACFG is axiomatised by
adding to the theory ACFG the following LG-sentences, for all tuples of variable x0 ⇢ x,
y0 ⇢ y and Lring-formula �(x, y)

8y(hy0i \G = {0} ^ ✓�(y)) ! (9x�(x, y) ^ hxy0i \G = hx0i)

which is equivalent to

8y9x
⇥
¬✓�(y)) _ hy0i \G 6= {0} _ (�(x, y) ^ hxy0i \G = hx0i)

⇤
.
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Let �(x, y), x0 ✓ x and y0 ✓ y be given. Let b be a |y|-tuple, and consider the set

Ob =

[

a2Fp
|x|

,Fp|=�(a,b)

�
H | hb0i \H 6= {0}

 
[
�
H | hab0i \H = ha0i

 
.

The set {H | hb0i \H 6= {0}} is equal to
S

u2hb0i\{0} {H | u 2 H} which is clearly open.
From Lemma 1.6.1, {H | hab0i \H = ha0i} is also open, so Ob is open. Now it is an easy
checking that

C =

\

�(x,y),x0✓x,y0✓y

\

b2Fp
|y|

,Fp|=✓�(b)

Ob.

Hence C is G�.

Remark 5.4.4 (Ultraproduct model of ACFG). From the proof of Proposition 5.4.2, start-
ing from G0 ✓ Fpn0 , there exists a strictly increasing sequence (ni)i<! of integers and
an increasing sequence of groups Gi ✓ Fp

ni satisfying (?). Let U be a nonprincipal ul-
trafilter on !, it does not take long to see that the ultraproduct

Q
U
(Fp, Gi)) is a model

of ACFG, in which the group is pseudo-finite. The construction of the G0
i
s in the proof

of Proposition 5.4.2 is rather artificial. Is there more "natural" generic subgroups of Fp?
Given an arbitrary set {Gi | i < !} of subgroups of Fp and a non principal ultrafilter U

on !, how likely is it that
Q

U
(Fp, Gi)) is a model of ACFG?

Remark 5.4.5 (Characteristic 0). Let P be the set of prime numbers and U a non-
principal ultrafilter on P. For each q 2 P let Gq be a subgroup of Fq such that (Fq, Gq)

is a model of ACFG (here we mean ACFqG). Recall that C ⇠=
Q

q2P
Fq/U . Consider

the ultraproduct
(C, V ) ⇠=

Y

q2P

(Fq, Gq)/U .

It is clear that V is a subgroup of C. For each q 2 P,

StabFq
(Gq) :=

�
a 2 Fq | aGq ✓ Gq

 
= Fq,

this follows from Proposition 5.3.4 (3). Hence F = StabC(V ) is a pseudo-finite subfield
of C, and V is an F -vector space. It follows from Proposition 3.2.7 that (C, V ) is not
existentially closed in the class of LG-structures consisting of a field of characteristic 0

in which G is an additive subgroup. Nonetheless, some properties such as the ones in
Proposition 5.3.4 will be satisfied by (C, V ) (replacing Fp by F ).

Remark 5.4.6. Observe that the proof of Lemma 5.4.1 gives the following: if F is an
infinite locally finite field3, and that for some universal Lring-formula �(x, y) there exists
an existential formula ✓�(y) such that for all tuple b, we have F |= ✓�(b) if and only
if there exists a realisation a of �(x, b) in an elementary extension of F such that a is
Fp-linearly independent over F ; then for all finite subfields F0 ⇢ F1 of F , if F0 |= ✓�(b)

3A locally finite field is a field such that every finitely generated subfield is finite. Equivalently it is
embeddable in Fp.
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there exists a finite subfield F2 of F and a tuple a from F2 realizing �(x, b) which is
Fp-linearly independent over F1. By the same method as in the proof of Theorem 5.4.2,
we may construct an increasing sequence of finite fields (Fi)i<! and finite subgroups
Gi ✓ Fi such that for an enumeration of universal formula �(x, y) and existential formula
✓�(y), if (Fi, Gi) satisfies the premise of the axiom, then the conclusion is satisfied in
(Fi+1, Gi+1). Now consider the theory Psfc (see Subsection 1.5.2), it is model-complete,
hence every formula is equivalent to an existential formula and a universal formula,
with some constants. It is then possible to choose constants c(i) in Fi such that Xn

+

cn�1,n(i)Xn�1
+ · · · + c0,n(i) is irreducible over Fi, for all n. Then one can check that

a non principal ultraproduct of (Fi, c(i))i<! is a model of Psfc, hence the ultraproductQ
U
(Fi, ci, Gi) is a model of PsfcG (see Example 3.2.3).

76



CHAPTER 6

Imaginaries in ACFG

Let (K,G) be a saturated model of ACFG. It is easy to see that for all a 2 K \ G,
there exists b 2 K \G algebraically independent from a over Fp such that a� b 2 G (see
Lemma 6.1.1). Let ↵ = a/G = b/G 2 (K,G)

eq. If it exists, a canonical parameter for ↵
in K would be definable over both a and b, hence it would be definable over an element
of Fp. This would give an embedding of K/G into the countable set dcl

eq
(;) which is

absurd in a saturated model (K,G) for cardinality reasons.
Let (K,G) be a model of ACFG, there is a canonical projection

⇡ : K ! K/G.

Consider the 2-sorted structure, (K,K/G) with the Lring-structure on K, the group
structure on K/G (in the language of abelian groups) and the group epimorphism ⇡ :

K ! K/G. We forget about the predicate G as it is 0-definable in (K,K/G). The
structure (K,K/G) is bi-interpretable with (K,G). We fix (K,G) and (K,K/G) for the
rest of this chapter.
In this chapter we show that (K,K/G) has weak elimination of imaginaries, hence imag-
inaries of (K,G) can be weakly eliminated up to the quotient K/G.

Some definable imaginaries in (K,G) can be easily eliminated in the structure (K,K/G).

Example 6.0.1. Let ⇣ : K ! K be a Lring-definable group endomorphism. Then
in (K,K/G)

eq, every element in K/⇣�1
(G) is interdefinable with an element in K/G.

Indeed, for any element a 2 K and any automorphism � of (K,K/G), �(a)�a 2 ⇣�1
(G)

if and only if � fixes ⇡(⇣(a)), hence ⇡(⇣(a)) is a canonical parameter for the class of a
modulo ⇣�1

(G).
Let ⇣1, · · · , ⇣n be Fp-linearly independent ;-Lring-definable group endomorphisms

K ! K. Let ⇡⇣ : K ! K/⇣�1
1 (G) \ · · · \ ⇣�1

n (G) and consider an element ↵ of the
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sort K/⇣�1
1 (G) \ · · · \ ⇣�1

n (G) in (K,K/G)
eq. From Proposition 5.3.5 the natural map

K/⇣�1
1 (G) \ · · · \ ⇣�1

n (G) ! K/⇣�1
1 (G)⇥ · · ·⇥K/⇣�1

n (G)

is an isomorphism. Let a be such that ⇡⇣(a) = ↵. For each 1  i  n let ↵i = ⇡(⇣�1
i

(a)) 2
K/G. Then the tuple ↵1, · · · ,↵n is a canonical parameter for ↵.

If quotients of the form K/⇣�1
(G) can be fully eliminated, what about quotients of

the form K/⇣(G)? In that case the kernel of ⇣ is a finite vector space, hence a canonical
parameter for ↵ 2 K/⇣(G) is a finite set of the form ⇡(a+ker(⇣)) which is not necessarily
eliminable in (K,K/G) as shows Example 6.3.5. We even show in Example 6.3.6 that
adding canonical parameters for the sort K/G is not sufficient to eliminate all finite
imaginaries of the structure (K,K/G).

In this chapter, greek letters �, ↵ denote subsets or tuples (which might be infinite)
from K/G. Any tuple in the structure (K,K/G) will be denoted by a�, with a a tuple
from K, � a tuple from K/G. We also extend ⇡ for (finite or infinite) tuples by ⇡(a) :=
(⇡(ai))i.
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6.1 First steps with imaginaries

Let � be a field automorphism of K. It is clear that the following are equivalent:

• � is an L
G-automorphism of K;

• there exists �̃ : K/G ! K/G such that ⇡ � � = �̃ � ⇡.

(K,G) (K,G)

K/G K/G

�

⇡ ⇡

�̃

An automorphism of the structure (K,K/G) is a pair (�, �̃) as above. It follows that for
a, b, C from K, we have

a ⌘
(K,G)
C

b () a ⌘
(K,K/G)
C

b.

In this chapter, the relation ⌘ means having the same type in the structure (K,K/G).

Lemma 6.1.1. Let a, b be two tuples of the same length from K. Let C,D ✓ K and
assume that

• ⇡(a) is an Fp-independent tuple over ⇡(C)

• ⇡(b) is an Fp-independent tuple over ⇡(C)

Then there exists a0 ⌘C a such that a0 |
ACF
^ C

D and ⇡(a0) = ⇡(b).

Proof. Let x |
ACF
^C

K such that x ⌘
ACF
C

a, and f : Cx ! Ca a field isomorphism over
C sending x to a. Let GCx = f�1

(G(Ca)). Consider now the subgroup of CDbx defined
by

H = GCx +G(CbD) + hxi � bi | i  |x|i.

We show that the type in the sense of ACFG defined by the pair (CDbx,H) is consistent.
As x |

ACF
^C

K we have CDbx \K = CDb. In order to prove that H \CDb = G(CDb),
it suffices to show that

CDb \ (GCx + hxi � bi | i  |x|i) ✓ G(C).

Assume that gCx +
P

i
�i(xi � bi) 2 CDb, where gCx 2 GCx. It follows that gCx +P

i
�ixi 2 CDb. On the other hand gCx +

P
i
�ixi 2 Cx. As x |

ACF
^C

bD we have
Cx \ CDb = C hence gCx +

P
i
�ixi 2 C. Apply ⇡ � f to get that

P
i
�i⇡(ai) 2 ⇡(C)

hence by hypothesis �i = 0 for all i  |x|. It follows that gCx 2 C and so gCx 2 G(C).
We have showed that CDb\(GCx+hxi � bi | i  |x|i) ✓ G(C). The type is consistent by
Proposition 2.3.6, so realised by say a0. As x |

ACF
^C

D we have a0 |
ACF
^C

D. In order to
show that a0 ⌘C a we have to check that H \Cx = GCx, this is similar to the argument
above, using this time that ⇡(b) is Fp-independent over ⇡(C). We have a0

i
� bi 2 G hence

⇡(a0
i
) = ⇡(bi), for all i  |x|.
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Lemma 6.1.2 (Minimal representative). Let a, C be in K such that ⇡(a) is an Fp-
independent tuple over ⇡(C). Then there exists a0 of same length as a, algebraically
independent over Cb such that

• ⇡(a) = ⇡(a0)

• ⇡(Ca0) = h⇡(C)⇡(a)i

• a0 |
ACF
^ C

b.

Proof. It is again a type to realize. Consider x of same length as a and algebraically
independent over Cba. Let V be a Fp-vector space complement to C�hxi in Cx and set

H = G(Cab) + hx� ai+ V.

We check that the pair (Cabx,H) defines a consistent type over Cab. First H \ Cab =
G(Cab)+ (hx� ai+V )\Cab. For v 2 V , if

P
i
�i(xi�ai)+ v 2 Cab then

P
i
�ixi+ v 2

Cab. As Cab \ Cx = C,
P

i
�ixi + v 2 C hence v = 0 and, as x is Fp-independent

over C, �i = 0 for all i  |x|. The type is consistent by Proposition 2.3.6. We show
that H \ Cx = G(C) + V . First H \ Cx = V + Cx \ (G(Cab) + hx� ai). Let g +P

i
�i(xi � ai) 2 (G(Cab) + hx� ai) \ Cx, then g +

P
i
�iai 2 Cab \ Cx = C and

so applying ⇡ gives
P

i
�i⇡(ai) 2 ⇡(C) hence �i = 0 for all i  |x|. It follows that

Cx \ (G(Cab) + hx� ai) = G(C) hence H \ Cx = G(C) + V . Assume that a0 realises
this type, it is clear that ⇡(a) = ⇡(a0) and a0 |

ACF
^C

b. By construction there exists
V 0

✓ Ca0 such that Ca0 = C � hai � V 0 and G(Ca0) = G(C) � V 0, so it follows that
⇡(Ca0) = ⇡(C)� h⇡(a0)i.

In particular if ↵ is an Fp-independent tuple over ⇡(C) then there exists some alge-
braically independent tuple a over C such that ⇡(a) = ↵ and ⇡(Ca) = h⇡(C)↵i. We call
such a tuple a minimal representative of ↵ over C. Lemma 6.1.2 states that minimal
representatives always exists and that they can be taken independent in the sense of
fields from any parameters.

Corollary 6.1.3. Let ↵ and � be tuples in K/G of the same length, � tuple from K/G
and C ✓ K. If ↵ and � are Fp-independent tuples over h⇡(C)�i then ↵ ⌘C� �.

Proof. We may assume that � is linearly independent over ⇡(C) and let r� be a minimal
representative of � over C. Let a and b be representatives of ↵ and � over Cr� . Using
Lemma 6.1.1, there exists a0 ⌘Cr� a such that ⇡(a0) = ⇡(b) = �. Let � be an automor-
phism of (K,K/G) over Cr� sending a on a0. It is clear that � fixes � and sends ↵ to �
hence ↵ ⌘C� �.

Remark 6.1.4. A consequence of Corollary 6.1.3 is that the induced structure on K/G is
the one of a pure Fp-vector space.

We will describe the algebraic closure acl in the structure (K,K/G). It is classical
that every formula in the language of (K,K/G) (or of (K,G)

eq) without parameters and
with free variables in the home sort K is equivalent to an L

G-formula. In particular
acl(C) \K = C for all C ✓ K.
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Corollary 6.1.5. Let C ✓ K and � ✓ K/G, then

• acl(C�) \K = C

• acl(C�) \K/G = h⇡(C)�i.

Proof. For the first assertion, we may assume that � is an Fp-independent tuple over
⇡(C). Let u be in acl(C�) \K witnessed by an algebraic formula �(x, c, �) with c 2 C.
Using twice Lemma 6.1.2, let r� be a minimal representative of � over C, and r0� a
minimal representative of � over C such that r0� |

ACF
^C

r� . As u satisfies �(x, c,⇡(r�))
and �(x, c,⇡(r0�)), u belongs to Cr� \ Cr0� = C (note that we don’t use the minimality
here). The reverse inclusion being trivial, it follows that acl(C�) \K = C.

For the second assertion, assume that ↵ /2 h⇡(C)�i. By Corollary 6.1.3, any element
in K/G \ h⇡(C)�i has the same type as ↵ over C� hence ↵ /2 acl(C�). The reverse
inclusion being trivial, it follows that acl(C�) \K/G = h⇡(C)�i.

6.2 Independence in (K,K/G)

Recall the weak independence in (K,G):

a |
w

^
C

b () a |
ACF
^
C

b and G(Ca+ Cb) = G(Ca) +G(Cb)

It is an easy checking that under the assumption that Ca \ Cb = C the following two
assertions are equivalent:

• G(Ca+ Cb) = G(Ca) +G(Cb)

• ⇡(Ca) \ ⇡(Cb) = ⇡(C)

We define the following relation in (K,K/G):

a↵ |
w

^
C�

b� () a |
ACF
^
C

b and h⇡(Ca)↵�i \ h⇡(Cb)��i = h⇡(C)�i

It is the right candidate for Kim-independence in (K,K/G). We study only the restric-
tion of this relation to sets a↵, b�, C� with ↵�� ✓ ⇡(Ca) \ ⇡(Cb). This restriction can
be described only in terms of the structure (K,G) as we will see now.

An infinite tuple � of elements of Fp is almost trivial if �i = 0 for cofinitely many
i’s. If � is an infinite tuple, an element u 2 h�i is an almost trivial linear combination of
�i’s, i.e. there exists � almost trivial such that u =

P
i
�i�i. Given two tuples a and b,

the tuple consisting of the coordinates ai � bi is denoted by a� b.

Lemma 6.2.1. Let a, b be tuples such that � is a (finite or infinite) tuple from ⇡(a)\⇡(b).
Assume that a \ b = C, then the following are equivalent:
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(1) ⇡(a) \ ⇡(b) = h⇡(C)�i

(2) G(a+ b) = G(a) +G(b) + hra � rbi for some (all) representatives ra, rb of � in a
and b respectively.

Proof. (1) implies (2). Let ua 2 a and ub 2 b such that ua � ub 2 G. Then ⇡(ua) =

⇡(ub) 2 ⇡(C) + h�i so there exists uc 2 C and � 2 F|�|
p such that for some (any)

representatives ra and rb of � in a and b respectively, there exists ga 2 G(a), gb 2 G(b)

and an almost trivial sequence � 2 F|�|
p with

ua = ga + uc +
X

i

�ir
a

i

ub = gb + uc +
X

i

�ir
b

i .

It follows that ua � ub 2 G(a) +G(b) + hra � rbi.
(2) implies (1). If ua 2 a and ub 2 b are such that ⇡(ua) = ⇡(ub), then ua�ub 2 G(a+b)

hence ua � ub = ga + gb +
P

i
�i(rai � rb

i
) (for an almost trivial sequence � 2 F|�|

p ). It
follows that ua � ga �

P
i
�irai 2 a \ b = c, so ⇡(ua) 2 ⇡(C) + h�i.

Lemma 6.2.2 (Maximal representative). Let � be a tuple Fp-independent over ⇡(C) and
d a tuple from K such that ⇡(d) = �. Then there exists (K 0, G0

) � (K,G) and a tuple r�
of length |�| in K 0, algebraically independent over K such that

G(Kr�) = G(K) + hr� � di.

Furthermore the following hold for all tuples a, b from K containing C such that � 2

⇡(a) \ ⇡(b):

(1) if C = C then a ⌘C� b if and only if a ⌘
Cr�

b;

(2) a |
w

^ C�
b if and only if a |

w

^ Cr�
b.

Proof. Let x be an algebraically independent tuple over K of size |d|, and define H on
K(x) to be G(K)+hx� di. It is easy to see that (K(x), H) defines a consistent type over
K so let r� be a realization of this type in an elementary extension (K 0, G0

) of (K,G).
We may assume that (K 0, G0

) is -saturated and -homogeneous for some big enough .
Claim. if C = C and r0� ⌘C� r� with r0� |

ACF
^C

b and G(Cbr0�) = G(b)+hr0� � rbi for some

rb 2 ⇡�1
(�) \ b

|�|, then any L
G-isomorphism over C� that sends an enumeration R0

� of
Cr0� to an enumeration R� of Cr� (and sends r0� to r�) extends to an L

G-isomorphism
between R0

�b and R�b which fixes b.

Proof of the Claim. . Let � be an automorphism of (K 0,K 0/G0
) over C� sending r0� to r� .

Then it sends any enumeration R0
� of Cr0� to an enumeration R� of Cr� . We may assume

that b = b. By stationarity of the type tpACF
(b/C), the field isomorphism � � CR0

�
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extends to �̃ : bR0
� ! bR� with �̃ fixing b. We show that �̃ is an L

G-isomorphism. First
observe that since G(Kr�) = G(K)+hr� � rbi then G(br�) = G(b)+hr� � rbi. As �̃ fixes
b and sends r0� to r� it is clear that �̃ send G(br0�) to G(br�) so �̃ is an L

G-isomorphism.
Now this isomorphism extends to an automorphism of (K 0, G0

) and an automorphism of
(K 0,K 0/G0

) that fixes � as it send r0� to r� .

(1). Assume that a ⌘C� b and let � be an automorphism of (K 0,K 0/G0
) over C�

sending a on b. As before, we have that G(ar�) = G(a) + hr� � rai and G(br�) =

G(b) + hr� � rbi, for some (any) representatives ra, rb of � in a, b respectively. Let
R� be an enumeration of Cr� and R0

� = �(R�), r0� = �(r�). As r� |
ACF
^C

a, we have
r0� |

ACF
^C

b. Furthermore G(ar�) = G(a)+ hr� � rai and aR� ⌘C� bR0
� , then G(Cbr0�) =

G(b) + hr0� � rbi. By the claim, ��1 � Cr0� extends Cr0�b with the identity on b hence
R� ⌘Cb� R0

� . It follows that aR� ⌘C� bR� . The other direction is trivial.
(2). From left to right. It is clear that a |

ACF
^Cr�

b. We want to show that G(ar� +

br�) = G(ar�) + G(br�). Observe that G(abr�) = G(ab) + hra � r�i for any tuple ra

from a with ⇡(ra). Let u 2 ar� and v 2 br� . If u + v 2 G there exists gab 2 G(ab)

and � 2 F|x|
p such that u + v = gab +

P
i
�i(rai � r�i) for an almost trivial tuple �.

It follows that gab 2 (ar� + br�) \ ab = a + b by Lemma 1.5.11. As a |
w

^C�
b and

using Lemma 6.2.1, we have that G(a + b) = G(a) + G(b) + hra � rbi. We deduce that
gab = ga+gb+

P
i
µi(rai �rb

i
), for an almost trivial tuple µ. For all i, ra

i
�r�i 2 G(ar�) and

r�i�rb
i
2 G(br�) hence gab = ga+gb+

P
i
µi(rai �r�i)+

P
i
µi(r�i�rb

i
) 2 G(ar�)+G(br�).

It follows that u + v 2 G(ar�) + G(br�). The other inclusion being trivial we have
G(ar� + br�) = G(ar�) +G(br�).

From right to left. First, r� |
ACF
^C

b hence by Transitivity and Monotonicity
a |

ACF
^C

b. By hypothesis, G(ar� + br�) = G(ar�) + G(br�). Furthermore G(ar�) =

G(a) + hr� � rai and G(br�) = G(b) + hr� � rbi. It is easy to see that

(G(a) +G(b) + hr� � rai+ hr� � rbi) \ (a+ b) = G(a) +G(b) + hrb � rai.

It follows that a |
w

^C�
b.

Remark 6.2.3. Let |
ST

^ be the following relation, defined for � 2 ⇡(Ca) \ ⇡(Cb):

a |
ST

^
C�

b () a |
ACF
^
C

b and G(Cab) = G(Ca) +G(Cb) + hra� � rb�i

for some (any) representatives ra� , rb� of � in Ca, Cb respectively.

A maximal representative of � over C with respect to b is a representative r� such that
r� |

ST

^C�
b. The previous result implies that this relation satisfies Full Existence and

Stationnarity over algebraically closed sets. This relation clearly extends the strong
independence in (K,G).

Theorem 6.2.4. The relation |
w

^ satisfies the following properties.
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(1) (Full Existence) Let a, b, C = C in K and � 2 K/G such that � 2 ⇡(Ca) \ ⇡(Cb)
and � Fp-independent over ⇡(C). Then there exists a0 ⌘C� a such that a0 |

w

^ C�
b.

(2) (Transitivity) If a↵ |
w

^ C�
b� and a↵ |

w

^ Cb��
d� then a↵ |

w

^ C�
bd��

(3) (Independence theorem) Let c1, c2, a, b, C = C in K and � 2 K/G such that � 2

⇡(Ca) \ ⇡(Cb) \ ⇡(Cc1) \ ⇡(Cc2) and � Fp-independent over ⇡(C).
If c1 ⌘C� c2 and c1 |

w

^ C�
a, c2 |

w

^ C�
b, a |

ACF
^ C

b, then there exists c such that
c ⌘Ca� c1, c ⌘Cb� c2 and c |

w

^ C�
a, b.

Proof. Transitivity is just checking from the definition of |
w

^ . For Full Existence, assume
the hypothesis and let r� be a maximal representative as in Lemma 6.2.2. By Full
Existence of |

w

^ in (K,G) there exists a0 ⌘Cr� a such that a0 |
w

^Cr�
b. Using again

Lemma 6.2.2, a0 ⌘C� a and a0 |
w

^C�
b. For Independence theorem, we use the same

strategy. Assume the hypothesis and let r� be a maximal representative of � as in
Lemma 6.2.2. From Lemma 6.2.2, we have that c1 ⌘

Cr�
c2 and c1 |

w

^Cr�
a, c2 |

w

^Cr�
b,

a |
ACF
^Cr�

b. As |
w

^ in (K,G) satisfies |
a

^ -amalgamation over algebraically closed sets
there exists c such that c ⌘

Cr�a
c1, c ⌘Cr�b

c2 and c |
w

^Cr�
a, b. It follows that c ⌘Ca� c1,

c ⌘Cb� c2, and by Lemma 6.2.2, c |
w

^C�
a, b.

Remark 6.2.5. Notice that |
w

^ satisfies |
a

^ -amalgamation over algebraically closed fields
in (K,G). In Theorem 6.2.4, we can weaken the hypothesis a |

ACF
^C

b to a |
a

^C
b be-

cause if a |
a

^C
b and r |

ACF
^C

ab, then a |
a

^Cr
b (this result is contained in the proof of

Lemma 7.2.2).

6.3 Weak elimination of imaginaries in (K,K/G)

The following Lemma is a rewriting of the classical argument for the proof of elimination
of imaginaries that appears for instance in [CP98] and [KR18]. It is similar to [CK17,
Proposition 4.25], the only difference being that in our case, |^ is defined only on some
subsets, and the base set might contain imaginaries, but the proof is the same.

Lemma 6.3.1. Let M be a -homogeneous and -saturated structure. Let E ⇢ M
eq.

Assume that there exists a binary relation |^E
on some tuples from M such that

• (Invariance) If a |^E
b and ab ⌘E a0b0 then a0 |^E

b0

• (Extension) If a |^E
b and d tuple from M then there exists a0 ⌘Eb a and a0 |^E

bd

• (Independent consistency) If a1 |^E
a2, b |^E

a2 and a2 ⌘E b, then there exists a
such that a ⌘Ea1 a2, a ⌘Ea2 b.

Let e 2 M
eq. If there exists a 0-definable function f in M

eq and a1, a2 in M such that
f(a1) = f(a2) = e and a1 |^E

a2 then e 2 dcl
eq
(E).
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Proof. If e is not in dcl
eq
(E), then there exists e0 6= e such that e0 ⌘E e. Let � be

an automorphism of M
eq over E sending e on e0. Let b1b2 = �(a1a2). By Invariance,

b1 |^E
b2 and f(b1) = f(b2) = e0. By Extension there exists b ⌘Eb1 b2 such that b |^E

a2.
By Independent Consistency, there exists a such that a ⌘Ea1 a2, a ⌘Ea2 b. From
a ⌘Ea1 a2 follows that f(a) = f(a1) = e and from a ⌘Ea2 b follows that f(a) 6= e, a
contradiction.

Remark 6.3.2. Recall that Extension follows from Full Existence, Symmetry and Transi-
tivity. Independent consistency is a consequence of the independence theorem. It follows
from Theorem 6.2.4 that for all C = C and � Fp-independent over ⇡(C), the restriction
of |

w

^C�
to tuples a such that � 2 ⇡(Ca) satisfies the hypothesis of the previous Lemma.

The following classical fact follows from a group theoretic Lemma due to P.M. Neu-
mann ([Neu76]). It appears first in [EH93, Lemma 1.4].

Fact 6.3.3. Let M be a saturated model, X a 0-definable set, e 2 M , E = acl(e) \X
and a tuple a from X. Then there is a tuple b from X such that

a ⌘Ee b and acl(Ea) \ acl(Eb) \X = E.

Theorem 6.3.4. Let e 2 (K,G)
eq then there exists a tuple c� from (K,K/G) such

that c� 2 acl
eq
(e) and e 2 dcl

eq
(c�). It follows that (K,K/G) has weak elimination of

imaginaries.

Proof. We work in (K,G)
eq, seeing (K,K/G) as a 0-definable subset. Suppose that e

is an imaginary element, there is a tuple a from K and a 0-definable function f such
that e = f(a). We set Ch⇡(C)�i = acl

eq
(e) \ (K,K/G). We may assume that � is Fp-

linearly independent over ⇡(C). As � ✓ acl
eq
(e) \K/G ✓ acl

eq
(a) \K/G we have that

acl
eq
(Ca�) \ (K,K/G) = Ca⇡(Ca) and � ✓ ⇡(Ca). By Fact 6.3.3 there exists b ⌘C�e a

such that
acl

eq
(Ca�) \ acl

eq
(Cb�) \ (K,K/G) = Ch⇡(C)�i.

Again, acleq(Cb�) \ (K,K/G) = Cb⇡(Cb) and � ✓ ⇡(Cb). Furthermore f(b) = e and

(Ca⇡(Ca)) \ (Cb⇡(Cb)) = Ch⇡(C)�i.

We construct a sequence (ai)i<! such that

an+1 |
w

^
C�an

a1, . . . , an�1 and anan+1 ⌘C� ab.

Start by a1 = a and a2 = b. Assume that a1, . . . , an has already been constructed.
We have that an�1 ⌘C� an so let � be a c�-automorphism of the monster such that
�(an�1) = an. By Full Existence (Theorem 6.2.4) there exists an+1 ⌘Can� �(an) such
that an+1 |

w

^Can�
a1, . . . , an�1. It follows that

anan+1 ⌘C� an�(an) ⌘C� an�1an.
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Let (ai)i<! be such a sequence. In particular the following holds for all i < j < k

ak |
ACF
^
Caj

ai, Cai \ Caj = C and ⇡(Cai) \ ⇡(Caj) = h⇡(C)�i.

By Ramsey and compactness we may assume that (ai)i<! is indiscernible over C�. As
the three properties above holds for the whole sequence, it is in the Erenfeucht-Mostowski
type of the sequence, and hence is still true for the indiscernible sequence. Note that
f(ai) = e. We have that (ai)i<! is totally indiscernible over C in the sense of ACF

hence a1a2a3 ⌘
ACF
C

a1a3a2. Furthermore we have a1 |
ACF
^Ca2

a3, hence by Invariance
a1 |

ACF
^Ca3

a2. By elimination of imaginaries in ACF it follows that a1 |
ACF
^C

a2, since
Ca \ Cb = C. As ⇡(Ca1) \ ⇡(Ca2) = h⇡(C)�i, we have that

a1 |
w

^
C�

a2.

As f(a1) = f(a2) = e, we deduce from Lemma 6.3.1 that e 2 dcl
eq
(C�).

Example 6.3.5 ((K,K/G) does not eliminate finite imaginaries). The structure on K/G
is the one of an Fp-vector space (with twisted algebraic and definable closures, acl(↵) =
h⇡(Fp)↵i and dcl(↵) = h⇡(dcl(Fp))↵i). This follows from Corollaries 6.1.3 and 6.1.5.
Consider the unordered pair {↵,�} for two singletons ↵,� 2 K/G, linearly independent
over ⇡(Fp). Assume that there exists a tuple d� such that for all automorphism � of
(K,K/G)

�(d�) = d� () �({↵,�}) = {↵,�} .

As d� and ↵� are interalgebraic, we have first that d ⇢ Fp and hence ↵,� 2 acl(�) \
K/G = dcl(�) \ K/G = h�i. As ↵,� are linearly independent over acl(;), we have
↵� ⌘; �↵ so let � be an automorphism of (K,K/G) sending ↵� on �↵. As � fixes �, it
fixes h�i hence ↵ = �, a contradiction.

Example 6.3.6 (K ⇥ (K/G)
eq does not eliminate finite imaginaries). Let t be a tran-

scendental element over Fp. We assume that G(Fp(t)) = Fp(t) (in a model (K,G) of
ACFG such that G(Fp) = Fp). Let ↵,� 2 K/G be Fp-independent, and let e be the
unordered pair

�p
t↵,�

p
t�
 
. We have the following:

(1) dcl
eq
(e) \K = dcl(t)

(2) dcl
eq
(e) \ (K/G)

eq
= dcl

eq
({↵,�}) \ (K/G)

eq

(1) The right to left inclusion is clear. Let u 2 dcl
eq
(e)\K, in particular u 2 dcl

eq
(t,↵�)\

K ✓ acl
eq
(t,↵�) \K = F(t). Assume that u /2 dcl(t). There exists u0 6= u with u0 ⌘t u.

Let ↵0,�0 such that u0↵0�0 ⌘t u↵�. As ↵,� and ↵0,�0 are Fp-lineary independent over
⇡(F(t, u)) = ⇡(F(t)) = {0}, we have that ↵� ⌘Fp(t)

↵0�0 (Corollary 6.1.3). It follows that
u0 ⌘t,↵,� u hence u0 ⌘e u so u /2 dcl

eq
(e), a contradiction.

(2) The right to left inclusion is clear. Let {�1, . . . , �n} be an element of dcl
eq
(e) \

86



(K/G)
eq. For all i, �i is algebraic over t↵�, by Corollary 6.1.5 �i 2 h⇡(Fp(t)),↵,�i =

h↵,�i. It follows that permutations of the set
�p

t↵,�
p
t�
 

that permutes {�1, . . . , �n}
are exactly permutations of the set {↵,�} that permutes {�1, . . . , �n} hence {�1, . . . , �n} 2

dcl
eq
({↵,�}). In fact, such a set {�1, . . . , �n} is the union of two sets of the same cardinal

(possibly intersecting), every element in one set is of the form �↵+ µ� and has a “dual”
element µ↵+ �� in the other set.

If e is interdefinable with an element from K ⇥ (K/G)
eq, by (1) and (2), we may

assume that e 2 dcl
eq
(t {↵,�}). By hypothesis ↵� ⌘Fp(t)

�↵, hence an automorphism
sending

p
t,�

p
t↵� to

p
t,�

p
t�↵ fixes t {↵,�} and moves e to

�p
t�,�

p
t↵
 
, hence

e /2 dcl
eq
(t {↵,�}), a contradiction.
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CHAPTER 7

Forking and thorn-forking in ACFG

In this chapter, we give a description of forking and thorn-forking in the theory ACFG.
We also link these notions with other classical relations or other independence relations
encountered in the previous chapters. The results of this chapter are summarized by the
diagram Figure 7.1, in which all arrows are strict.
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Figure 7.1: Interactions of independence relations in ACFG.
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7.1 Forcing base monotonicity and extension

In this subsection, given a ternary relation |^ in an arbitrary theory, we introduce the
relations |

m

^ and |
⇤
^ , following the work of Adler in [Adl09a].

Definition 7.1.1 (Monotonised). Let |^ be any ternary relation, we define |
m

^ to be
the relation defined by

A |
m

^
C

B () 8D ✓ CB A |^
CD

BC.

We call |
m

^ the monotonised of |^.

Note that the relation |
M

^ in [Adl09a, Section 4] is the relation |
a

^
m in our context.

Lemma 7.1.2. The relation |
m

^ satisfies Base Monotonicity. Furthermore, for each
of the following point

• Invariance

• Monotonicity

• Transitivity

if |^ satisfies it then so does |
m

^ .

Proof. Let A,B,C,D such that A |^
m

C
BD. Then for all D0

✓ acl(BCD) we have that
A |^CD0 B so in particular for all D0

✓ acl(BCD) containing D we have A |^CD0 B
hence for all D00

✓ acl(BCD) we have A |^CDD00 B hence A |^
m

CD
B. To prove that

Invariance is preserved, note that there exists an isomorphism � : ABC ! A0B0C 0

which extends to acl(ABC) ! acl(A0B0C 0
) and so induces an isomorphism ABCD !

A0B0C 0�(D) for all D ✓ acl(BC). For Monotonicity, it is an easy checking. For
Transitivity Assume that B |

m

^C
A and A0

|
m

^CB
A, and take D ✓ acl(AC). We have

in particular that B |^CD
A and A0

|^CBD
A hence using Transitivity of |^ we have

A0B |^CD
A. This holds for any D ✓ acl(AC) hence A0B |

m

^C
A.

Let |^, |^
0 be two ternary relations, such that |^

0 is stronger than |^. If |^
0 satisfies

Base Monotonicity then |^
0 is stronger than |

m

^ . Note that |^ may be symmetric
and |

m

^ not (see Corollary 7.2.3). However in some cases, the monotonised is symmetric,
as shows the following example.

Example 7.1.3. We work here in ACF. We have

A |
a

^
m

C
B () A |

ACF
^
C

B.

Indeed the right to left implication follows from |
ACF
^ ! |

a

^ and the fact that |
ACF
^

satisfies Base Monotonicity. From left to right, assume that A 6 |
ACF

^C
B, we may
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assume that A,B,C are algebraically closed, and C = A\B. There exists b1, . . . , bs 2 B
algebraically independent over C such that for D = {b2, . . . , bs}, then we have b1 2

(AD \B) \ CD so A 6 |
a

^
m

C
B.

This result translates as follows: in ACF, |
f

^ = |
a

^
m. It raises the following question:

when do we recover forking independence from the monotonised of the relation |
a

^ ?
Does the Symmetry of the monotonised of a symmetric relation imply nice features
on the theory? Observe that the proof above shows that in any pregeometry (S, cl),
the independence relation associated with the pregeometry is obtained by forcing Base
Monotonicity on the relation A |^C

B () cl(AC) \ cl(BC) = cl(C).

The following example shows that the monotonised does not preserve Local Char-
acter. Also it implies that |

st

^ doesn’t satisfy Local Character since |
st

^ ! |
w

^
m.

Example 7.1.4. In ACFG, the relation |
w

^
m does not satisfy Local Character.

Let  be any uncountable cardinal and consider the set A = {ti, t0i | i < } and an element
t such that t(ti, t0i)i< are algebraically independent over K. Let F = Fp(t, A) and define
H over F as G(Fp) + ht · ti + t0

i
| i < i. The pair (F,H) defines a consistent type over

;, as Fp \ H = G(Fp) and F \ K = Fp, so we assume that t, A are realisation of the
type in K. By contradiction suppose that there exists A0 ⇢ A with |A0|  @0 such that
t |

w

^
m

A0
A. By definition, for all D ✓ A we have t |

w

^A0D
A. Let D = {ti | i < } \ A0.

We have that
G(tDA0 +A) = G(tDA0) +G(A).

We compute the Fp-dimension over G(Fp) on each side of the previous equation. On one
hand, we have t · ti + t0

i
2 G(tDA0+A) for all i < , as they are Fp-linearly independent

over Fp we have Fp-dim(G(tDA0 +A)/G(Fp)) � . For all i < , t · ti + t0
i
2 G(tDA0) if

and only if t0
i
2 tDA0 if and only if t0

i
2 A0, because if t0

i
is algebraic over t, A0, t1, . . . , tk

then t is in A0 otherwise this contradicts that t, A are algebraically independent. We
conclude that Fp-dim(G(tDA0)/G(Fp))  |A0|  @0. As G(A) = G(Fp) we have that
Fp-dim([G(tDA0) +G(A)]/G(Fp))  @0 so the equality cannot hold.

Definition 7.1.5 (Adler, [Adl09a] Section 3). For |^ any ternary relation, |
⇤
^ is defined

as follows:
A |

⇤
^
C

B () 8B̂ ◆ B 9A0
⌘BC A A0

|^
C

B̂.

Fact 7.1.6 ( [Adl09a] Lemma 3.1). If |^ satisfies Invariance and Monotonicity then
|
⇤
^ satisfies Invariance, Monotonicity and Extension. Furthermore, for each of
the following point

• Base Monotonicity

• Transitivity

• Full Existence

if |^ satisfies it then so does |
⇤
^ .
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Recall from Section 1.2 that a |
u

^C
b if and only if tp(a/Cb) is finitely satisfiable in

C.
Remark 7.1.7. Let (bi)i< be a C-indiscernible infinite sequence with  > !. Then for
all � ↵ � !

b<� |
u

^
Cb<↵

b� .

Furthermore, for  big enough, the sequence (bi)i< is indiscernible over acl(C) (see
[Cas11, Corollary 1.7, 2.]).
Remark 7.1.8. By Lemma 1.2.5 and Fact 7.1.6, if |^ satisfies Invariance, Monotonicity,
then |

⇤
^ satisfies Invariance, Monotonicity, Extension and Closure over al-

gebraically closed sets. If |^ satisfies also Base Monotonicity, then so does |
⇤
^

hence |
⇤
^ satisfies Closure over any sets. In particular, by Lemma 7.1.2 if |^ satisfies

Invariance and Monotonicity, then |
m

^
⇤ satisfies Invariance, Monotonicity,

Closure, Base Monotonicity, Extension. Assume that |^ satisfies Full Exis-
tence and Transitivity, then |

⇤
^ satisfies the following a |

⇤
^C

b ! acl(Ca) |
⇤
^C

b. In-
deed, assume that a |

⇤
^C

b, then by Fact 7.1.6, |
⇤
^ satisfies Full Existence so we have

acl(Ca) |
⇤
^Ca

b. By Fact 7.1.6, |
⇤
^ also satisfies Transitivity, hence acl(Ca) |

⇤
^C

b.
By Lemma 7.1.2 and Fact 7.1.6, if |^ satisfies Transitivity then so does |

m

^
⇤. It fol-

lows that if |^ satisfies Invariance, Monotonicity, Transitivity and if |
m

^ satisfies
Full Existence, then

a |^
C

b ! acl(Ca) |
m

^
⇤
acl(C)

acl(Cb).

Lemma 7.1.9. Let |^ be a ternary relation, which satisfies

• Invariance, Monotonicity;

• |
u

^ -amalgamation over algebraically closed sets.

Then |
m

^
⇤
! |

f

^ .

Proof. We show that |
m

^
⇤
! |

d

^ , the result follows from the fact that |
f

^ = |
d

^
⇤

(Section 1.2). By Lemma 7.1.2, Fact 7.1.6, Remark 7.1.8, and the hypothesis on |^,
|
m

^
⇤ satisfies Invariance, Monotonicity, Base Monotonicity, Extension and

Closure. Assume a |
m

^
⇤
C
b, for any a, b, C. Let (bi)i< be a C-indiscernible sequence with

b = b0, for a big enough . By Remark 7.1.7, b<i |
u

^Cb<!
bi for all i � !. By Fact 1.2.3,

and Lemma 1.2.5, |
u

^ satisfies Closure and Monotonicity, hence b<i |
u

^ acl(Cb<!)
bi.

Also (bi)i�! is Cb<!-indiscernible, so if  is big enough, by Remark 7.1.7 we have that
bi ⌘acl(Cb<!) b!. There exists a C-automorphisme sending b to b! hence there exists some
a! such that a!b! ⌘C ab. By Invariance, we have a! |

m

^
⇤
C
b!, so by Closure we have

a! |
m

^
⇤
acl(C)

acl(Cb!), hence by Extension there exists a0! such that a0! ⌘acl(Cb!) a! and
a0! |

m

^
⇤
acl(C)

b!b<!. It follows from Closure and Base Monotonicity that

a0! |^
acl(Cb<!)

b!.
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We also have
a0!b! ⌘C a!b! ⌘C ab.

For each i � ! there exists an acl(Cb<!)-automorphism �i sending b! to bi, so setting
a0
i
= �i(a0!) we have:

8i � ! a0ibi ⌘acl(Cb<!) a
0
!b! and a0i |^

acl(Cb<!)

bi.

We show that there exists a00 such that a00bi ⌘acl(Cb<!) a!b! for all !  i < ! + !.
By induction and compactness, it is sufficient to show that for all !  i < ! + !, there
exists a00

i
such that for all !  k  i we have a00

i
bk ⌘acl(Cb<!) a!b! and a00

i
|^acl(Cb<!)

bi.
For the case i = ! take a00! = a0!. Assume that a00

i
has been constructed, we have

a0i+1 |^
acl(Cb<!)

bi+1 and bi |
u

^
acl(Cb<!)

bi+1 and a00i |^
acl(Cb<!)

bi.

As a0
i+1 ⌘acl(Cb<!) a00

i
, by |

u

^ -amalgamation over algebraically closed sets, there
exists a00

i+1 such that

(1) a00
i+1bi+1 ⌘acl(Cb<!) a

0
i+1bi+1

(2) a00
i+1bi ⌘acl(Cb<!) a

00
i
bi

(3) a00
i+1 |^acl(Cb<!)

bi+1.

By induction and compactness there exists a00 be such that a00bi ⌘acl(Cb<!) a!b! for all
!  i < ! + !. By indiscernibility of (bi)i< there exists a000 such that for all i < 
a000bi ⌘C ab, hence a |

d

^C
b.

Remark 7.1.10. It is important to observe that since |
u

^ is not in general a symmetric
relation, the parameters a and b in the statement of |

u

^ -amalgamation do not play a
symmetrical role. If a relation satisfies |

u

^ -amalgamation, we mean that tp(c1/Ca) and
tp(c2/Cb) can be amalgamated whenever a |

u

^C
b or b |

u

^C
a.

Proposition 7.1.11. Let |^ be a relation such that

(1) |^ is weaker than |
d

^ ;

(2) |^ satisfies Invariance, Monotonicity, |
u

^ -amalgamation over algebraically
closed sets;

(3) |
m

^ satisfies Extension over algebraically closed sets;

Then |
m

^ = |
f

^ = |
d

^ .

Proof. The relation |
d

^ satisfies Base Monotonicity by Fact 1.2.3 hence from (1) we
have |

d

^ ! |
m

^ . By hypothesis (3), |
m

^ = |
m

^
⇤, hence by (2) and Lemma 7.1.9 we have

|
d

^ = |
m

^ = |
f

^ .
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7.2 Forking in ACFG

We show that forking in ACFG is obtained by forcing the property Base Monotonicity
on Kim-independence.

We work in a big model (K,G) of ACFG.

Lemma 7.2.1. Let A,B,C be three additive subgroups of K, then A \ (B + C) =

A \ [B + C \ (A+B)].

Proof. Let a 2 A \ (B + C). There exist b 2 B and c 2 C, such that a = b + c. Then
c = a � b 2 C \ (A + B) hence a 2 A \ [B + C \ (A+B)]. The other inclusion is
trivial.

Lemma 7.2.2 (Mixed Transitivity on the left). Let A,B,C,D be algebraically closed sets,
with A,B,D containing C and B ✓ D. If A |

w

^
m

C
B and A |

st

^ B
D then A |

w

^
m

C
D.

Proof. Let A,B,C,D be as in the hypothesis. Let E ✓ D containing C, we want to
show that A |

w

^E
D. We may assume that E is algebraically closed. We clearly have

A |
ACF
^E

D, so we have to show that

G(AE +D) = G(AE) +G(D).

From A |
ACF
^C

E,B we have AE \ AB |
ACF
^E

E,B and AE \ AB |
ACF
^B

E,B. By elimi-
nation of imaginaries in ACF, AE \ AB |

ACF
^E\B E,B. By Lemma 1.5.11, it follows that

AE \AB = A(E \B).

Claim. (AE +D) \ (AB +D) = A(E \B) +D.

Proof of the claim. By modularity, we have that (AE + D) \ (AB + D) = D + AE \

(AB +D). By Lemma 7.2.1 we have that

AE \ (AB +D) = AE \
�
AB + (AE +AB) \D

�
.

By Lemma 1.5.11, we have (AE +AB) \D = E +B, hence

AE \ (AB +D) = AE \ (AB + E +B)

= AE \ (AB + E)

= AE \AB + E by modularity

= A(E \B) + E.

It follows that (AE +D) \ (AB +D) = A(E \B) +D + E = A(E \B) +D.

By hypothesis, G(AD) = G(AB) +G(D), so, by the claim

G(AE +D) = G(AE +D) \ (G(AB) +G(D)) = G
⇣
A(E \B) +D

⌘
\G(AB) +G(D).
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Furthermore G
⇣
A(E \B) +D

⌘
\G(AB) = G

⇣
A(E \B) +D \AB

⌘
= G

⇣
A(E \B) +B

⌘
.

As A |
w

^
m

C
B we have G(A(E \B) +B) = G(A(E \B)) +G(B). We conclude that

G(AE +D) = G(A(E \B)) +G(B) +G(D) = G(A(E \B)) +G(D).

Corollary 7.2.3. In ACFG, |
w

^
m satisfies Extension. In particular, in |

w

^
m

= |
f

^ =

|
d

^ .

Proof. Assume that a |
w

^
m

C
b and d is given. By Full Existence of |

st

^ there ex-
ists a0 ⌘Cb a such that a0 |

st

^Cb
d. Also a0 |

w

^
m

C
b hence by Lemma 7.2.2 a0 |

w

^
m

C
b, d,

which shows Extension for |
w

^
m. In particular |

w

^ satisfies hypothesis (3) of Proposi-
tion 7.1.11. We check that it satisfies the rest of the hypotheses of Proposition 7.1.11. (1)
follows from Corollary 5.2.4. From Theorem 5.2.2, |

w

^ satisfies the properties Invariance,
Monotonicity and |

u

^ -amalgamation over algebraically closed sets (since |
u

^ ! |
a

^ ,
by Fact 1.2.3), so |

w

^ satisfies (2).

7.3 Thorn-Forking in ACFG

Let (K,G) be a monster model of ACFG. Let |
aeq

^ be the relation |
a

^ in the sense of
(K,G)

eq (Section 1.2). The thorn-forking independence relation |
i
^ is the relation defined

over subsets of (K,G)
eq by |

i
^ = ( |

aeq

^ )
m⇤. We will only consider the restrictions of

|
aeq

^ and |
i
^ to the home sort, which we denote respectively by |

aeq

^ � K and |
i
^ � K. By

Corollary 6.1.5 and Theorem 6.3.4, for a, b, C ⇢ K

a |
aeq

^
C

b () Ca \ Cb = C and ⇡(Ca) \ ⇡(Cb) = ⇡(C).

Fact 7.3.1 ( [Adl09a] Theorem 4.3). The following are equivalent.

• T is rosy

• |
i
^ in T eq satisfies Local Character.

Proposition 7.3.2. Let (K,G) be a model of ACFG. Then |
i
^ � K = |

w

^
m

= |
f

^ = |
d

^ .
In particular ACFG is not rosy.

Proof. Assume that a |
i
^C

b. In particular a |
aeq

^
m

C
b so for all C ✓ D ✓ Cb we have

Da \ Cb = D hence by Example 7.1.3 we have

a |
ACF
^
C

b.

On the other hand, we have ⇡(Ca) \ ⇡(Cb) = ⇡(C), hence by Section 6.1

a |
w

^
C

b.
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It follows that |
i
^ � K ! |

w

^
m. By Fact 1.2.3, |

d

^ ! |
aeq

^ � K, hence as |
f

^ satisfies Base
Monotonicity and Extension it follows that |

f

^ ! |
i
^ � K. Hence by Corollary 7.2.3

we conclude that |
i
^ � K = |

w

^
m

= |
f

^ = |
d

^ . As ACFG is not simple, |
f

^ does not
satisfy Local Character, so |

i
^ � K does not satisfy Local Character hence

neither does |
i
^ . By Fact 7.3.1, ACFG is not rosy.

Remark 7.3.3. There is another way of proving that ACFG is not rosy which does not use
the description of forking in ACFG but only the fact that |

i
^ � K ! |

w

^
m. Indeed |

w

^
m

does not satisfy Local Character from Example 7.1.4 hence neither does |
i
^ � K and

hence neither does |
i
^ .

Remark 7.3.4. It is worth mentioning that in the definition of |
i
^ , the relation |

aeq

^
cannot be replaced by |

a

^ . Indeed, in the structure (K,G), by Example 7.1.3 |
a

^
m

=

|
ACF
^ and then as Extension clearly holds for |

ACF
^ , we have |

a

^
M⇤

= |
ACF
^ . This

relation satisfies Local Character. This means that |
a

^
M⇤ is not the restriction of

|
aeq

^
m⇤ to the home sort. This is what Adler mention in [Adl09a, Example 4.5].

7.4 Forking and thorn-forking in other generic constructions

Forking and dividing. In the three following examples:

(1) Generic L -structure T ;
L

[KR17, Proposition 3.18];

(2) Generic Kn,m-free bipartite graph [CK17, Corollary 4.12];

(3) omega-free PAC fields [Cha02, Theorem 3.3];

we also have that forking and dividing coincides for types, and coincides with the mono-
tonised of Kim-independence. In (1) and (2) the strategy is the following: first prove that
|
d

^ = |
K

^
m and then show that |

d

^ satisfies Extension. The latter is obtained using
Full Existence of the strong independence relation and a similar mixed transitivity
result. This is discussed in [KR18, Subsection 3.3]. We followed a close strategy: using
Lemma 7.1.9 (based on the approach of (3)), have that |

w

^
M⇤ strengthens |

d

^ . Then
we use a mixed transitivity result and Full Existence of the strong independence to
show that |

K

^
m satisfies Extension. These results suggest that Proposition 7.1.11 can

be used to show that in other examples of NSOP1 theories, forking and dividing agrees
on types, for instance in Steiner triple system [BC18], or bilinear form over an infinite
dimensional vector space over an algebraically closed field [Gra99] [CR16].

Strong independence and Mixed Transitivity. There is also a notion of strong
independence in the three previous examples which is symmetric and stationary over
algebraically closed sets. Concerning (3) the strong independence satisfies also the other
axioms for mock stability [KK11, Example 0.1 (3)]. In (2), it also satisfies Full Ex-
istence, Monotonicity and Transitivity [CK17, Proposition 4.20]. In (1), it is
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defined in [KR18, Remark 3.19], as a remark, to state a mixed transitivity result, but
nothing about it is proven. It is likely that (1) and (2), are also mock stable, witnessed
by the strong independence. Informally, the strong independence is in general defined to
hold between two sets when they are the most unrelated to each other with respect to
the ambient theory. Another way of seeing this relation is by saying that the two sets can
be somehow “freely amalgamated ”. The definition given in [KR17, Remark 3.19] make
this precise, for C ✓ A\B, we have A |

⌦
^C

B if and only if the substructure spanned by
ABC is isomorphic to the fibered coproduct of the structures spanned by A and B over
the substructure spanned by C. This definition coincides with our definition of strong
independence in ACFG.

Question 1. Is there a model-theoretic definition of the strong independence that encom-
passes the strong independence in the three examples above and in ACFG?

The mixed transitivity result (Lemma 7.2.2) is starting to be reccurent in NSOP1

examples. It holds in example (1) ([KR18, Remark 3.19]) and in (2) ([CK17, Lemma
4.23]). Note that a similar mixed transitivity appears in a SOP3 (hence SOP1) example:
the generic Kn-free graph ([Con17a]), this was observed in [KR18, Remark 3.19].

The mixed transitivity result holds as well in omega-free PAC fields. Let |
w

^ be the
weak independence and |

st

^ the strong independence in the sens of [Cha02, (1.2)]. Then
for all A,B,C,D acl-closed in an omega free PAC field, with C ✓ A \B and B ✓ D we
have:

If A |
w

^
m

C
B and A |

st

^B
D then A |

w

^
m

C
D.

This is contained in the proof1 of [Cha02, (3.1) Proposition].

Thorn-forking. The three other examples are also not rosy. For (1), it is [KR17,
Subsection 3.3], for (2), it is [CK17, Proposition 4.28] and for (3), it is [Cha08, Subsection
3.5]. Also, for both (1) and (2) we have |

f

^ = |
d

^ = |
i
^ , and they both weakly eliminate

imaginaries.
The following questions have been asked for the last two or three years by specialists

in regards to the observations above.

Question 2. (Q1) Does forking equals dividing for types in every NSOP1 theory?

(Q2) Does the mixed transitivity result holds in every NSOP1 theory?

(Q3) Is there an NSOP1 not simple rosy theory?
1In the proof of [Cha02, (3.1) Proposition], D contains B,  is over C and F \ (C (D))s = C (D),

hence  (D) and C satisfies condition (I3) over B, so A1 =  (A0) and C satisfies condition (I3) over E.
As A1 and C satisfies condition (I1) over E, A1 and C are strongly independent over E. Also A1 and
B satisfy condition (I1) and (I2) over E. The rest of the proof consist in proving that A1 and C satisfy
condition (I2) over E.
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|
ACF

^

|
i

^ � K |
a

^
m

|
st

^ |
w

^
sm

|
w

^
m

|
w

^ |
a

^

|
d

^ |
K

^ |
aeq

^ � K.

|
f

^

Figure 7.2: Interactions of independence relations in ACFG.

Remark 7.4.1. In omega-free PAC fields [Cha02], the strong independence |
st

^ and the
weak independence |

w

^ are linked by the following relation for A,B,C acl-closed, A\B =

C:
A |

st

^
C

B () for all C ✓ D ✓ A and C ✓ D0
✓ B A |

w

^
DD0

B.

In ACFG this is not the case. Let (K,G) be a model of ACFG and for conveniance
assume that G(Fp) = {0}. Let t and t0 be algebraically independent over Fp, let u =

t · t0. Assume that G(Fp(t, t0)) = hui. Then by Lemma 1.5.8, u /2 Fp(t) + Fp(t0), so
G(Fp(t)) +G(Fp(t0)) = {0} so t 6 |

st

^ t0. We show that for all D ✓ Fp(t) and D0
✓ Fp(t0)

we have t |
w

^DD0 t
0. Let D and D0 be as such. There are three cases to consider (the

middle case is symmetric):

t · t0 2 D0t and t · t0 2 Dt0 G(D0t) = hui G(Dt0) = hui G(D0t+Dt0) = hui

t · t0 2 D0t and t · t0 /2 Dt0 G(D0t) = hui G(Dt0) = {0} G(D0t+Dt0) = hui

t · t0 /2 D0t and t · t0 /2 Dt0 G(D0t) = {0} G(Dt0) = {0} G(D0t+Dt0) = {0}

In every cases we have G(D0t+Dt0) = G(D0t) +G(Dt0). As t |
ACF
^DD0 t

0 is clear we have
t |

w

^DD0 t
0.

Summary on independence relations in ACFG. Every arrow in Figure 7.2 is strict,
from that point of view, ACFG is different from (1), (2) and (3).

Denote by A |
w

^
sM

C
B the relation for all C ✓ D ✓ AC and C ✓ D0

✓ BC

A |
w

^DD0 B. Remark 7.4.1 states that |
st

^ is strictly stronger than |
K

^
sM , in (3), this is

not the case. In (1), we have that |
a

^ = |
aeq

^ = |
K

^ is strictly weaker than |
a

^
m

= |
d

^ =

|
f

^ = |
i
^ . In (2), |

a

^ = |
aeq

^ is strictly weaker than |
K

^ and |
K

^
m

= |
d

^ = |
f

^ = |
i
^ .
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Part B

Expanding the integers by p-adic
valuations
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CHAPTER 8

Quantifier elimination and dp-rank

For a prime number p, let vp : Z ! N [ {1} be the p-adic valuation, namely, vp(a) =
sup{k 2 N : pk|a}. Let ; 6= P ✓ N be a (possibly infinite) set of primes, and let LP

be the language {+, 0} [ {|p : p 2 P}, where each |p is a binary relation. We expand
(Z,+, 0) to an LP -structure ZP by interpreting a|pb as vp(a)  vp(b) for each p 2 P . We
denote by TP := Th(ZP ). For convenience, we enumerate P by P = {p↵ : ↵ < |P |},
and p without a subscript usually denotes some p 2 P . If P = {p} we write Tp instead
of T{p}, etc.

In this chapter, we prove (see Theorem 8.2.1) that TP eliminates quantifiers in a
natural definitional expansion: LE

P
= LP [ {�, 1} [ {Dn : n � 1} where � and 1 are

interpreted in the obvious way, and for each n � 1, Dn is an unary relation symbol
interpreted as {na : a 2 Z}.

Using quantifier elimination, we are able to determine the dp-rank of TP , and we
prove (Theorem 8.3.2) that for P 6= ;, dp-rk(TP ) = |P |. In particular, for a single prime
p we have that Tp is dp-minimal, i.e. dp-rank(Tp) = 1.

Contents
8.1 Axioms and basic sentences of TP . . . . . . . . . . . . . . . . . 122
8.2 Quantifier elimination in TP . . . . . . . . . . . . . . . . . . . . 126
8.3 dp-rank of TP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
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8.1 Axioms and basic sentences of TP

For convenience, in this section and in section 8.2 we work with the valuation functions
vp instead of the relations |p. Let us define a multi-sorted language LM

P
for the valuations

vp on (Z,+, 0) for p 2 P as follows: let Z be the main sort with a function symbol +
and a constant symbol 0, interpreted as in (Z,+, 0). For each p 2 P we add a distinct
sort �p together with the symbols <p, 0p, Sp and 1p, interpreted as a distinct copy
of (N [ {1} , <, 0, S,1) where S is the successor function. Finally, we add a function
symbol vp : Z ! �p, interpreted as the p-adic valuation1. When confusion is possible, we
denote by vp the usual valuation in the metatheory, to distinguish it from the function
symbol vp. We omit the subscript p in <p, 0p, Sp, 1p and �p when no confusion is
possible.

We use the following standard notation. Let k 2 N be a nonnegative integer.

• In the Z sort, k denotes 1 + 1 + · · ·+ 1| {z }
k times

if k > 0 and 0 if k = 0. Also, �k denotes

�k.

• For an element a from Z, ka denotes a+ a+ · · ·+ a| {z }
k times

if k > 0 and 0 if k = 0, (�k)a

denotes �(ka), similarly for a variable x in place of a.

• For an element � from �p, � + k denotes S(S(. . . (�) . . . ))| {z }
k times

, similarly for a variable

u in place of �, and k is an abbreviation for 0 + k.

The group (Z,+, 0) with valuations vp for p 2 P can be seen as an LP -structure and
an LM

P
-structure which are interdefinable (with imaginaries) so they essentially define

the same sets. We will therefore not distinguish between the LP -structure and the LM

P
-

structure on (Z,+, 0), except when dealing with dp-rank, where we always refer to the
one-sorted language LP .

For quantifier elimination we define LM,E

P
= LM

P
[ {�, 1} [ {Dn : n � 1} as be-

fore. Quantifier elimination in LE

P
follows from quantifier elimination in LM,E

P
. We will,

therefore, prove quantifier elimination for the theory TP considered as an LM,E

P
-theory.

For a 2 Z and p 2 P , let (ai)i2N be the p-adic representation of a, i.e. a =
P

i2N aipi

and each ai is in {0, . . . , p� 1}. For � 2 N, the prefix of a of length � is the sequence
sequence (ai)i<� . The ball of radius � and center a is the set of all integers with same
prefix of length � as a.

Proposition 8.1.1. The following sentences are true in ZP and therefore are in TP :

(1) Any axiomatization for Th(Z,+,�, 0, 1, {Dn}n�1) in the Z sort.
1It could be interesting to consider the language with just one sort (N,<, 0, S,1) for valuation,

instead of one for each p 2 P . Since different valuations are allowed to interact with each other, the
resulting structures might be much more complicated.
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(2) For each p, any axiomatization of Th(N [ {1}, <, 0, S,1) in the sort (�p, <p

, 0p, Sp,1p).

(3) For each p : 8x(vp(x) � 0 ^ (vp(x) = 1 $ x = 0)).

(4) For each p : 8x, y(vp(x+ y) � min(vp(x), vp(y))).

(5) For each p : 8x, y(vp(x) 6= vp(y) ! vp(x+ y) = min(vp(x), vp(y))).

(6) For each p and 0 6= n 2 Z : 8x(vp(nx) = vp(x) + vp(n)).

(7) For each p : vp(p) = 1.

(8) For each p and k 2 N : Every ball in vp of radius � consists of exactly pk disjoint
balls of radius � + k.

Proof. (1)-(7) are obvious. For (8), let a 2 Z and � 2 N. The ball in vp of radius �
around a is the set of integers such that, in p-adic representation, their prefix of length
� is the same as the prefix of a of length �. There are p possibilities for each digit, so
pk possibilities for the k digits with indices �, . . . , �+ k� 1, which exactly correspond to
the balls of radius � + k contained in the original ball.

Let T 0
P

be the theory implied by the axioms (1)-(8). All of the following propositions
are first order, and we prove them using only T 0

P
. Let M be some fixed model of T 0

P
,

with Z the Z-sort and �p the �p-sort.

Lemma 8.1.2. For each p:

(1) 8x, y(vp(x� y) � min(vp(x), vp(y))).

(2) 8u8y9x(vp(x� y) = u). In particular, vp is surjective.

(3) For each n 6= 0, vp(n) = vp(n).

(4) For each k � 1 : 8x(vp(x) � k $ Dpk(x)).

Proof. We only prove item (2), the others are easy to check. By Axiom (8) with k = 1,
there are x1, x2 such that vp(x1�y) � u, vp(x2�y) � u, and vp(x1�x2) < u+1. Hence by
(1) above, u+1 > vp(x1�x2) = vp((x1�y)�(x2�y)) � min(vp(x1�y), vp(x2�y)) � u.
So either vp(x1 � y) = u or vp(x2 � y) = u.

The following lemmas are easy exercises.

Lemma 8.1.3.

(1) Let n1, . . . , nl 2 N, and let N 2 N be such that ni|N for all 1  i  l. Let
b1, . . . , bn be element of Z. Then every boolean combination of formulas of the form
Dni(kix� bi) is equivalent to a disjunction (possibly empty, i.e. a contradiction) of
formulas of the form DN (x� rj), where for each j, rj 2 {0, 1, . . . , N � 1}.
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(2) Let m 2 N and let m0, k 2 N be such that m = pk · m0 and gcd(m0, p) = 1. Let
r 2 Z, and let r1 = r mod m0, r2 = r mod pk. Then the formula Dm(x � r) is
equivalent to Dm0(x� r1) ^ (vp(x� r2) � k).

Lemma 8.1.4. For a1 and a2 in Z.

(1) For every k � 1, the formula vp(x� a1) < vp(x� a2) + k is equivalent to

vp(x� a2) < vp(a2 � a1)_ vp(x� a2) > vp(a2 � a1)_ vp(x� a1) < vp(a2 � a1) + k.

(2) For every k � 0, the formula vp(x�a1)+k < vp(x�a2) is equivalent to vp(x�a2) >
vp(a2 � a1) + k.

Lemma 8.1.5. For a fixed p 2 P , a0, a1 in Z and �0, �1 2 �p.

(1) Every formula of the form vp(x � a0) � �0 ^ vp(x � a1) < �1 where �0 � �1, is
either inconsistent (if vp(a0 � a1) � �1) or equivalent to just vp(x � a0) � �0 (if
vp(a0 � a1) < �1).

(2) Every formula of the form vp(x � a0) � �0 ^ vp(x � a1) < �1 where �0 < �1 and
vp(a0 � a1) < �0 is equivalent to just vp(x� a0) � �0.

Lemma 8.1.6. Every two balls in �p are either disjoint, or one is contained in the other.
More generally, for (ai)i 2 Z, (�i)i 2 �p, every conjunction of formulas of the form
vp(x� ai) � �i is either inconsistent, or equivalent to a single formula vp(x� ai0) � �i0 ,
where �i0 = max{�i}.

Definition 8.1.7. For a, b 2 Z, �, � 2 �p, define (a, �) p (b, �) if �  � and vp(a�b) � �.
Define (a, �) ⇠p (b, �) if (a, �) p (b, �) and (a, �) �p (b, �).

(a, �) p (b, �) means that �  � and, in p-adic representation, the prefix of a of
length � is contained in the prefix of b of length �. This is equivalent to saying that the
ball of radius � around a (namely, {x : vp(x � a) � �}) contains the ball of radius �
around b.

Note that p and ⇠p are defined by quantifier-free formulas, and so do not depend
on the model containing the elements under consideration.

Lemma 8.1.8. The parameters ai are in Z and �i are in �p for some p 2 P .

(1) Every formula of the form vp(x�a0) � �0^
V

n

m=1 vp(x�am) < �m is equivalent to
the formula vp(x�a0) � �0^

V
m2C vp(x�am) < �m, for every C ✓ {1, . . . , n} such

that {(am, �m) : m 2 C} contains at least one element from each ⇠p-equivalence
class of p-minimal elements among {(am, �m) : 1  m  n} (i.e. representatives
for all the maximal balls). In particular, this is true for C consisting of one element
from each such class, i.e. for C an antichain.
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(2) Assume that (a0, �0), . . . , (an, �n) are such that for all 1  m  n we have �m > �0,
vp(am � a0) � �0, and km := �m � �0 is a standard integer. Assume further that
{(am, �m) : 1  m  n} is an antichain with respect to p. Then every formula of
the form vp(x� a0) � �0 ^

V
n

m=1 vp(x� am) < �m is equivalent to a formula of the
form

W
l

i=1 vp(x � bi) � �N with N such that �N = max {�m : 1  m  n}, where
for all i, vp(bi � a0) � �0 and for i 6= j, vp(bi � bj) < �N , and where
l = pkN �

P
m
pkN�km � 0 (it may be that l = 0, i.e. a contradiction). In particular,

l does not depend on the model M of T 0
P

containing the ai’s and �i’s.

Proof. We prove (1). Let C be such. For each 1  m  n there is an m0 such that
(am0 , �m0)  (am, �m) and (am0 , �m0) is minimal among the (ai, �i)’s. So 8x(vp(x�am0) <
�m0 ! vp(x � am) < �m). As {(ai, �i) : i 2 C} contains one element from each ⇠-
equivalence class of -minimal elements, we may assume m0

2 C.
We prove (2). Assume without loss of generality that �1  �2  · · ·  �n. Let
b0, . . . , bpkn�1 be the x0, . . . , xpk�1 from Axiom 8 for kn, �0, a0. Then vp(x � a0) � �0

is equivalent to
W

p
kn�1

i=0 (vp(x � bi) � �n). For every m � 1, let cm,0, . . . , cm,pkn�km�1

be the x0, . . . , xpk�1 from Axiom 8 for kn � km, �m, am. Then vp(x � am) � �m is
equivalent to

W
p
kn�km�1

i=0 (vp(x � cm,i) � �n). For every m, vp(a0 � am) � �0, so for
every 0  i  pkn�km � 1, vp(cm,i � a0) � �0. Hence by the choice of {bj}j , there is a
unique sm,i < pkn such that vp(cm,i � bsm,i) � �n. So vp(x � am) � �m is equivalent to
W

p
kn�km�1

i=0 (vp(x� bsm,i) � �n).
By the choice of {cm,i}i,

V
i 6=j

(vp(cm,i � cm,j) < �n), so also
V

i 6=j
(vp(bsm,i � bsm,j ) <

�n). In particular, i 7! sm,i is injective for a fixed m, hence Fm := {sm,i : 0  i 

pkn�km � 1} is of size pkn�km .
The sets {Fm}

n

m=1 must be mutually disjoint. Otherwise, there are m1 < m2 and i, j
such that sm1,i = sm2,j . Since vp(cm1,i � bsm1,i

) � �n and vp(cm2,j � bsm2,j
) � �n we get

vp(cm1,i � cm2,j) � �n � �m1 . Since vp(cm1,i � am1) � �m1 and vp(cm2,j � am2) � �m2 �

�m1 , we get vp(am1 � am2) � �m1 , a contradiction to the antichain assumption.
Let F :=

S
n

m=1 Fm. By the above, | F |=
P

m
pkn�km and

8x

 
(vp(x� a0) � �0 ^

n^

m=1

vp(x� am) < �m) $ (

_

i/2F

vp(x� bi) � �n) )

!
.

Lemma 8.1.9. For all elements ai, ai,j in Z and �i in �p for some p 2 P , we have the
following.

(1) If b is a solution to vp(x � a0) � �0 ^
V

n

i=1 vp(x � ai) < �i and vp(b0 � b) � � :=

max{�0, . . . , �n} then b0 is also a solution.

(2) Every formula of the form vp(x� a0) � �0 ^
V

n

m=1 vp(x� am) < �m where for each
1  m  n, �m � �0 + n, has a solution.
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(3) If p1, . . . , pl 2 P are different primes not dividing m and �i 2 �pi , then every
formula of the form
(
V

l

k=1 vpk(x� ak) � �k) ^Dm(x� r) has an infinite number of solutions.

(4) If p1, . . . , pl 2 P are different primes not dividing m and �k,j 2 �pk , then every
formula of the form

l^

k=1

 
vpk(x� ak,0) � �k,0 ^

nk̂

i=1

vpk(x� ak,i) < �k,i

!
^Dm(x� r)

where for each 1  k  l and 1  i  nk, �k,i � �k,0 + nk, has an infinite number
of solutions. In particular, this holds if each �k,i � �k,0 is a nonstandard integer.

Proof. The proofs of (1) and (3) are left as an easy exercice. We prove (2). By Axiom
8 for k = n, there are b0, . . . , bpn�1 such that for all i, vp(bi � a0) � �0, and for all i 6= j,
vp(bi � bj) < �0 + n. Then some bi must satisfy

V
n

m=1 vp(x� am) < �m, otherwise, since
pn > n, by the Pigeonhole Principle there are i 6= j and m such that vp(bi � am) � �m
and vp(bj � am) � �m, and therefore also vp(bi � bj) � �m � �0 + n, a contradiction.
We prove (4). For each 1  k  l, by (2) the formula vpk(x�ak,0) � �k,0^ (

V
nk
i=1 vpk(x�

ak,i) < �k,i) has a solution bk. Let �k := max{�k,0, . . . , �k,nk
}. By (3) the formula

(
V

l

k=1 vpk(x� bk) � �k)^Dm(x� r) has an infinite number of solutions {b0
j
}j�1. By (1),

every b0
j

is a solution to

l^

k=1

 
vpk(x� ak,0) � �k,0 ^

nk̂

i=1

vpk(x� ak,i) < �k,i

!
^Dm(x� r)

8.2 Quantifier elimination in TP

Theorem 8.2.1. For every nonempty set P of primes, the theory TP eliminates quanti-
fiers in the language LE

P
.

Proof. As mentioned previously, we will in fact prove quantifier elimination for T 0
P
✓ TP .

It is enough to prove that for all models M1 and M2 of T 0
P
, with a common substructure

A, and for all formulas �(x) in a single variable x over A which are a conjunction of atomic
or negated atomic formulas, we have M1 ✏ 9x�(x) ) M2 ✏ 9x�(x). Let M1, M2, A
and �(x) be such, and let b 2 M1 be such that M1 ✏ �(b).
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As vp is surjective for all p 2 P , we may assume that x is of the Z sort. Since �
contains only finitely many symbols from LP , we may assume for simplicity of notation
that P is finite. So �(x) is equivalent2 to a conjunction of formulas of the forms:

(1) nix = ai, for some ni 6= 0.

(2) nix 6= ai, for some ni 6= 0.

(3) Dmi(nix� ai), for some ni 6= 0.

(4) ¬Dmi(nix� ai), for some ni 6= 0.

(5) vp↵(ni,1x� ai,1) < vp↵(ni,2x� ai,2) + ki, for some p↵ 2 P , ni,1 6= 0 or ni,2 6= 0, and
ki 2 N.

(6) vp↵(ni,1x� ai,1) + ki < vp↵(ni,2x� ai,2), for some p↵ 2 P , ni,1 6= 0 or ni,2 6= 0, and
ki 2 N.

(7) vp↵(nix� ai) � �i, for some p↵ 2 P and ni 6= 0.

(8) vp↵(nix� ai) < �i, for some p↵ 2 P and ni 6= 0.

By multiplicativity of the valuations we may assume that for all formulas of forms
(5) or (6), either ni,1 = ni,2, ni,1 = 0 or ni,2 = 0. Therefore, by Lemma 8.1.4, we may
assume that every formula of form (5) or (6) is equivalent to a formula of form (7) or (8).

By Lemma 8.1.3, the conjunction of all the formulas of the forms (3) or (4) is equiv-
alent to a formula of the form

_

j

0

@Dmj (x� rj) ^
^

↵<|P |

vp↵(x� sj,↵) � kj,↵

1

A

where for all j and ↵, gcd(mj , p↵) = 1. As M1 ✏ �(b), this disjunction is not empty.
Let Dm(x� r) ^

V
↵<|P | vp↵(x� s↵) � k↵ be one of the disjuncts which are satisfied by

b. It is enough to find b0 2 M2 which satisfies this disjunct, along with all the formulas
of other forms. Note that vp↵(x� s↵) � k↵ is of form (7), so altogether we want to find
b0 2 M2 which satisfies a conjunction of formulas of the forms:

(1) nix = ai, ni 6= 0.

(2) nix 6= ai, ni 6= 0.
2The negation of a formula of form (5) is vp↵(ni,1x�ai,1) � vp↵(ni,2x�ai,2)+k, which is equivalent

to vp↵(ni,2x� ai,2) + k � 1 < vp↵(ni,1x� ai,1) if k > 0, which is of form (6), and to vp↵(ni,2x� ai,2) <
vp↵(ni,1x � ai,1) + 1 if k = 0, which is of form (5). Similarly for the negation of a formula of form
(6). Also, (7) and (8) are in essence special cases of (5) or (6), but they are required because in A the
valuation may be not surjective.
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(3) Dm(x� r), where for all ↵ < |P |, gcd(m, p↵) = 1 (only a single such formula).

(4) vp↵(nix� ai) � �i, ↵ < |P |, ni 6= 0.

(5) vp↵(nix� ai) < �i, ↵ < |P |, ni 6= 0.

It is standard that we may assume that the conjunction does not contain formulas of
the form (1). For each formula of the form (2), there is at most one element which does
not satisfy it. So it is enough to prove that there are infinitely many elements in M2

which satisfy all the formulas of forms (3), (4) or (5).
Let n :=

Q
i
ni. By multiplicativity of the valuations, the conjunction of formulas of

forms (3), (4) or (5) is equivalent to the conjunction of:

(1) vp↵(nx�
n

ni
ai) � �i + vp↵(

n

ni
).

(2) vp↵(nx�
n

ni
ai) < �i + vp↵(

n

ni
).

(3) Dnm(nx� nr).

By substituting y = nx, it is equivalent to satisfy:

(1) vp↵(y �
n

ni
ai) � �i + vp↵(

n

ni
).

(2) vp↵(y �
n

ni
ai) < �i + vp↵(

n

ni
).

(3) Dnm(y � nr).

(4) Dn(y).

Notice that formula (4) is already implied by formula (3). Again by Lemma 8.1.3, we may
exchange Dnm(y� nr) by a formula Dm0(y� r0), where for all ↵ < |P |, gcd(m0, p↵) = 1.
Also, by Lemma 8.1.6 we may assume that for each ↵ < |P |, there is only one formula of
form (1). Altogether, it is enough to prove that in M2 there are infinitely many elements
which satisfy the conjunction of the following formulas:

(1) vp↵(x� a↵,0) � �↵,0 for all ↵ < |P |.

(2) vp↵(x� a↵,i) < �↵,i for all ↵ < |P |, 1  i  n↵. ~

(3) Dm(x� r), where for all ↵ < |P |, gcd(m, p↵) = 1 (only a single such formula).

By Lemma 8.1.5 (and since this formula is consistent in M1) we may assume that for
all ↵ < |P |, 1  i  n↵ we have �↵,0 < �↵,i and vp↵(a↵,0 � a↵,i) � �↵,0. By Lemma 8.1.8
(1), we may assume that for each ↵ < |P |, the set

{(a↵,i, �↵,i) : 1  i  n↵ , �↵,i � �↵,0 is a standard integer}

is an antichain with respect to p↵ (Definition 8.1.7).
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For each ↵ < |P |, let S↵ = {0  i  n↵ : �↵,i � �↵,0 is a standard integer} and
�0
↵,0 = max{�↵,i : i 2 S↵}. For s = 1, 2 and for each ↵ < |P |, by Lemma 8.1.8 (2) the

conjunction vp↵(x � a↵,0) � �↵,0 ^
V

i2S↵
vp↵(x � a↵,i) < �↵,i is equivalent in Ms to a

formula of the form
W

l↵
i=1 vp↵(x� as

↵,0,i) � �0
↵,0, where for all i, as

↵,0,i 2 Ms and l↵ does
not depend on s. Note that as

↵,0,i may not be in A. Furthermore, by Lemma 8.1.8 (2),
vp↵(a

s

↵,0,i � a↵,0) � �↵,0 and for i 6= j, vp↵(as↵,0,i � as
↵,0,j) < �0

↵,0.
Together, the conjunction of the formulas in ~ is equivalent in Ms to the disjunction

 s =
W

l

k=1  s,k, where for each k,  s,k is the conjunction of the following formulas:

(1) vp↵(x� as
↵,0,k) � �0

↵,0 , for all ↵ < |P |.

(2) vp↵(x� a↵,i) < �↵,i, for all ↵ < |P |, i /2 S↵ (so �↵,0 < �↵,i and �↵,i � �↵,0 is not a
standard integer).

(3) Dm(x� r), where for all ↵ < |P |, gcd(m, p↵) = 1 (only a single such formula).

Furthermore, l =
Q
↵<|P | l↵ does not depend on s.

Since  1 is consistent in M1 (satisfied by nb), the disjunction for s = 1 is not empty,
i.e., l � 1. And since l does not depend on s, the disjunction for s = 2 is also not
empty. Consider one such disjunct,  2,k. By Lemma 8.1.9 (4), it has an infinite number
of solutions. This completes the proof.

Corollary 8.2.2. T 0
P

is a complete theory. Hence T 0
P
= TP .

Proof. By quantifier elimination, it is enough to show that T 0
P

decides every atomic
sentence. These are just the sentences equivalent to one of the forms: n1 = n2 in any
sort, k1 <p k2 in �p, Dm(n) in the Z sort and vp(n1) < vp(n2) in the Z sort, all of which
are clearly decided by T 0

P
.

Remark 8.2.3. Suppose M |= TP and �(x) is a consistent formula in a single variable
with parameters from M. Then by quantifier elimination and Lemmas 8.1.3 and 8.1.4,
�(x) is equivalent to a disjunction of formulas, which are either of the form x = a or of
the form

Dm(x� r) ^
^

j

nx 6= aj ^
^

p2F

0

@vp(npx� ap,0) � �p,0 ^

lp^

i=1

vp(npx� ap,i) < �p,i

1

A ,

where F ✓ P is finite. Moreover, one may assume gcd(np, p) = 1.

For p a single prime number and M |= Tp, the following lemma says that the definable
subgroups of (M,+) are only those of the form mM \ {a 2 M : v(a) � �}, for m 2 Z
and � 2 � and for each such defining formula, there are only finitely many possible m’s
when varying the parameters of the formula.

Lemma 8.2.4 (Uniformly definable subgroups). For a single prime p, let �(x, y) be any
LM
p -formula, and let ✓(y) be the formula for “(�(x, y) , +) is a subgroup”. Then there are
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n1, . . . , nk � 1, having gcd(ni, p) = 1 for each i, such that the following sentence is true
in Tp:

8y

 
✓(y) !

k_

i=1

9w8x(�(x, y) $ (Dni(x) ^ (vp(x) � vp(w)))

!
.

Proof. It is enough to work in Z. By quantifier elimination (and Lemma 8.1.3 (2)), �(x, y)
is equivalent to a formula of the form

W
i

V
j
�i,j(x, y), where for each i, j, �i,j(x, y) is one

of the following:

(1) ti,j(x, y) = 0, where ti,j(x, y) is a {+,�, 1}-term, i.e., of the form ki,jx+ li,jy+ ri,j
for ki,j , li,j , ri,j 2 Z.

(2) ti,j(x, y) 6= 0, where ti,j(x, y) is a {+,�, 1}-term.

(3) v(ti,j(x, y)) � v(si,j(x, y)), where ti,j(x, y), si,j(x, y) are {+,�, 1}-terms (note that
v(ti,j(x, y)) < v(si,j(x, y)) is equivalent to v(p · ti,j(x, y))  v(si,j(x, y)), which is of
the same form).

(4) Dmi,j (ti,j(x, y)), where ti,j(x, y) is a {+,�, 1}-term and gcd(mi,j , p) = 1.

For each i, let Ji = {j : �i,j(x, y) is of the form Dmi,j (ti,j(x, y))}, and let mi =
Q

j2Ji mi,j .
As in the proof of Lemma 8.1.3 (1), the satisfaction of the formula Dmi,j (ti,j(x, y)) de-
pends only on the reminders of x and y mod mi,j , which are determined by the reminders
of x and y mod mi. So there is a set Ri ✓ {0, 1, . . . ,mi � 1}

2 such that
V

j2Ji �i,j(x, y)
is equivalent to

W
(r,s)2Ri

(Dmi(x� r)^Dmi(y� s)). Therefore, �(x, y) is equivalent to a
formula of the form

W
i
(Dmi(x� ri) ^Dmi(y � si) ^

V
j
�i,j(x, y)), where gcd(mi, p) = 1

and for each i, j, �i,j(x, y) is one of the following:

(1) ti,j(x, y) = 0, where ti,j(x, y) is a {+,�, 1}-term.

(2) ti,j(x, y) 6= 0, where ti,j(x, y) is a {+,�, 1}-term.

(3) v(ti,j(x, y)) � v(si,j(x, y)), where ti,j(x, y), si,j(x, y) are {+,�, 1}-terms.

For each i, let �i(x, y) be the i’th disjunct, i.e., the formula Dmi(x� ri)^Dmi(y� si)^V
j
�i,j(x, y).
Let b 2 Z be such that �(Z, b) is a subgroup. If �(Z, b) is finite, it must be {0}. To

account for this case, we may take n1 = 1, and for w = 0 we have that �(x, b) is equivalent
to Dn1(x) ^ (vp(x) � vp(0)). If �(Z, b) is infinite, then �(Z, b) = nZ for some n � 1.
Moreover, there must be an i0 such that �i0(Z, b) is infinite. So Dmi0

(b � si0) holds,
hence �i0(x, b) is equivalent to just Dmi0

(x � ri0) ^
V

j
�i0,j(x, b). As �(Z, b) is infinite,

it is clear that no formula �i0,j(x, y) is of the form (1), hence �i0(x, b) is equivalent to
Dmi0

(x� ri0) ^
V

j
�i0,j(x, b), where for each j, �i0,j(x, b) is one of the following:

(1) ki0,jx 6= ci0,j .

(2) v(k0
i0,j

x� c0
i0,j

) � v(k00
i0,j

x� c00
i0,j

).
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Applying Lemma 8.1.4 to formulas as in (2), we may assume that �i0(x, b) is equiva-
lent to Dmi0

(x� ri0) ^
V

j
�i0,j(x, b), where for each j, �i0,j(x, b) is one of the following:

(1) ki0,jx 6= ci0,j .

(2) v(ki0,jx� ci0,j) � �i0,j .

(3) v(ki0,jx� ci0,j) < �i0,j .

The formula v(ki0,jx� ci0,j) � �i0,j defines a coset of p�i0,jZ, and the formula v(ki0,jx�

ci0,j) < �i0,j defines a finite union of cosets of p�i0,jZ. Let

J = {j : �i0,j(x, b) is of form 2 or 3}

and let � = max{�i0,j : j 2 J}. Then for every j 2 J , every coset of p�i0,jZ is a finite
union of cosets of p�Z. So

T
j2J �i0,j(Z, b) is a finite intersection of finite unions of cosets

of p�Z, and hence is itself just a finite union of cosets of p�Z (since every two cosets are
either equal or disjoint). Therefore, �i0(Z, b) is a set of the form U\F , where F is a finite
set (the set of points excluded by the inequalities ki0,jx 6= ci0,j), and U is a finite union
of the form

S
N

j=1((mi0Z+ri0)\(p�Z+cj)). For each j, (mi0Z+ri0)\(p�Z+cj) is a coset
of mi0p

�Z (it is not empty, since gcd(mi0 , p) = 1), so U is of the form
S

N

j=1(mi0p
�Z+dj).

As �i0(Z, b) is infinite, this union is not empty.
Now, (mi0p

�Z + d1)\F ✓ U\F = �i0(Z, b) ✓ �(Z, b) = nZ, so n divides mi0p
� since

F is finite. Write n = n0p� with gcd(n0, p) = 1. Then n0
|mi0 , and in particular, n0

 mi0 .
So �(x, b) is equivalent to Dn(x), which is equivalent to Dn0(x)^v(x) � �, and n0

 mi0 .
Recall that i0 depends on b, but there are only finitely many i’s, so m = max{mi}

exists, and hence, for any b such that �(x, b) is a subgroup, there is an n0
 m with

gcd(n0, p) = 1, and there is a � such that �(x, b) is equivalent to Dn0(x) ^ v(x) � �, and
we are done.

8.3 dp-rank of TP

Quantifier elimination now enables us to determine the dp-rank of TP . Recall from
Section 1.4.3 the definition of dp-rk. In this section, we work in the one-sorted language
LE

P
.

Proposition 8.3.1. For any prime p, Tp is dp-minimal (in the one-sorted language LE

P
).

Proof. We set L = LE
p and T = Tp. Let L� contain the symbols of L, except for the

divisibility relations {Dn}n�1. Let Z
� be the reduct of Zp to L�. Let Q�

p be Qp as an
L�-structure. It is a reduct of the structure (Qp,+,�, ·, 0, 1, |p), which is dp-minimal (see
[DGL11, Theorem 6.6]), and therefore is also dp-minimal. Note that Z� is a substructure
of Q�

p .
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Let L0
= L[ {Z}. Interpret Z in Qp as Z, and interpret each Dn such that Dn \Z is

the usual divisibility relation and Dn \ (Qp\Z) = ;, thus making it an L0-structure Q0
p.

Let M be an !1-saturated model of Th(Q0
p), and let A = Z(M) be the interpretation of

Z in it. Then A is an !1-saturated model of T .
Suppose that T is not dp-minimal. Then, by Fact 1.4.16, there is an ict-pattern

of length 2, hence there are formulas �(x, y),  (x, z) in L with |x| = 1, and elements
(bi : i < !), (cj : j < !), (ai,j : i, j < !) in A such that �(ai,j , bi0) if and only if
i = i0 and  (ai,j , cj0) if and only if j = j0. By Theorem 8.2.1 we may assume that �,  
are quantifier-free and in disjunctive normal form. Let N be the largest n such that Dn

appears in � or  . Color each pair (i, j) such that i > j by ai,j mod N !. By Ramsey
Theorem, we may assume that all the elements ai,j with i > j have the same residue
modulo N !, and so modulo all n  N .

Write � as
W

k

V
l
(�0

k,l
^ �00

k,l
) and  as

W
k

V
l
( 0

k,l
^  00

k,l
), where �0

k,l
,  0

k,l
are atomic

or negated atomic L�-formulas and �00
k,l

,  00
k,l

are atomic or negated atomic formulas
containing no relations other than {Dn}n�1. For each k, denote by �k,  k the formulasV

l
(�0

k,l
^ �00

k,l
) and

V
l
( 0

k,l
^  00

k,l
) respectively.

For every i > j we have �(ai,j , bi), so there is a ki,j such that �ki,j (ai,j , bi). Again
by Ramsey Theorem, we may assume that all the ki,j ’s are equal to some k0, so for
every i > j we have �k0(ai,j , bi). For every i0 6= i we have ¬�(ai0,j , bi), so in particular
¬�k0(ai0,j , bi). Similarly, we may assume that for some k1, for every i > j we have
 k1(ai,j0 , cj) if and only if j = j0.

Let �0
k
,  0

k
be the formulas obtained from �k,  k respectively, by deleting all the

formulas �00
k,l

,  00
k,l

. So �0
k
,  0

k
are L�-formulas.

For every m 2 N, let Im = {m + 1, . . . , 2m}, Jm = {1, . . . ,m}. For every (i, j) 2

Im ⇥ Jm, we have �k0(ai,j , bi) and therefore also �0
k0
(ai,j , bi). Let i 6= i0 2 Im, and

suppose for a contradiction that �0
k0
(ai0,j , bi), i.e.

V
l
(�0

k0,l
(ai0,j , bi)). But we know that

¬�k0(ai0,j , bi), so for some l0 we have ¬�0
k0,l0

(ai0,j , bi) _ ¬�00
k0,l0

(ai0,j , bi). Therefore, we
get ¬�00

k0,l0
(ai0,j , bi). But from �k0(ai,j , bi) we also get �00

k0,l0
(ai,j , bi). Together, this

contradicts the fact that all the elements ai,j with i > j have the same residue modulo
all n  N .

Altogether, in A, for every (i, j) 2 Im ⇥ Jm we have �0
k0
(ai,j , bi0) if and only if i = i0,

and similarly also  0
k1
(ai,j , cj0) if and only if j = j0. Since �0

k0
,  0

k1
are quantifier-free,

and A is a substructure of M, this holds also in M. As m is arbitrary, this contradicts
the dp-minimality of Th(Q�

p ).

Theorem 8.3.2. For every nonempty set P of primes, dp-rank(TP ) = |P |.

Proof. dp-rank(TP )  |P | follows from Proposition 8.3.1 and Lemma 1.4.17 for LE

P
=S

↵<|P | L
E
p↵

. For ↵ < |P | let �↵(x, y) be the formula x|p↵y ^ y|p↵x (i.e. vp↵(x) = vp↵(y)),
and for ↵ < |P |, i 2 N let a↵,i be such that vp↵(a↵,i) = i. Let F ✓ |P | be finite.
By Lemma 8.1.9 (4), for every ⌘ : F ! N there is a b⌘ such that for every ↵ 2 F ,
vp↵(b⌘) = vp↵(a↵,⌘(↵)). If P is finite, just take F = |P |. Otherwise, by compactness,
there are such b⌘ for F = |P | as well. These �↵(x, y), a↵,i and b⌘ form an ict-pattern of
length |P |, hence, by Fact 1.4.16 dp-rank(TP ) � |P |.
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CHAPTER 9

Minimality phenomena

In this chapter, we show that there is no intermediate structures between (Z,+, 0) and
(Z,+, 0, <), and between (Z,+, 0) and (Z,+, 0, |p). Those are two minimal expansions
of (Z,+, 0). We also introduce a fine notion of reduct which allows us to extend these
minimality results to elementary extensions. We finish by some counter-examples of
minimality in elementary extensions.
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9.1 Minimality and Conant’s example

Definition 9.1.1. Let L1 and L2 be two first-order languages, and let M1 be an L1-
structure and M2 an L2-structure, both with the same underlying universe M . Let
A ✓ M be a set of parameters.

(1) We say that M1 is an A-reduct of M2, and M2 is an A-expansion of M1, if for
every n � 1, every subset of Mn which is L1-definable over ; (equivalently, over
A) is also L2-definable over A. When A = M we just say that M1 is a reduct of
M2, and M2 is an expansion of M1. We will mostly use this with either A = ; or
A = M .

(2) We say that M1 and M2 are A-interdefinable if M1 is an A-reduct of M2 and
M2 is an A-reduct of M1. When A = M we just say that M1 and M2 are
interdefinable.

(3) Let A ✓ B ✓ M be another set of parameters. We say that M1 is a B-proper
A-reduct of M2, and M2 is a B-proper A-expansion of M1, if M1 is an A-reduct
of M2, but M2 is not a B-reduct of M1. When B = M we just say proper instead
of B-proper. We will mostly use this with either B = M or B = ;.

Let M1 be an L1-structure and M2 an L2-structure, both with the same underlying
universe M , and suppose that M1 is a ;-reduct of M2. Then we can replace L2 by
L2 [ L1, interpreting each L1-symbol in M2 as it is interpreted in M1. As we have
not added new ;-definable sets, this new structure is ;-interdefinable with the original
M2. Therefore we may always assume for simplicity of notation that L1 ✓ L2 and
M1 = M2|L1 .

A-reducts are preserved by elementary extensions and elementary substructures con-
taining A, in the following sense:

Lemma 9.1.2. Let M � N be two L-structures with universes M and N respectively.
Let A ✓ M and let N 0 be an A-reduct of N with language L0. Let M0 be the structure
obtained by restricting the relations and functions of N 0 to M . Then:

(1) M
0 is well-defined, it is an A-reduct of M, and M

0
� N

0.

(2) N
0 is an A-proper A-reduct of N if and only if M0 is an A-proper A-reduct of M.

(3) N
0 is a proper A-reduct of N if and only if M0 is a proper A-reduct of M.

The proof of the previous Lemma is trivial.
Remark 9.1.3. Lemma 9.1.2 is not necessarily true if A 6✓ M . If N 0 contains a constant
c /2 M , or a n-ary function f such that f(Mn

) 6✓ M , then M
0 is not well-defined.

Even when it is well-defined, the rest is still not necessarily true. For example, let
M = (Z,+, 0, 1, <), and let N = (N,+, 0, 1, <) be a nontrivial elementary extension
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of M. Let b 2 N be a positive infinite element, and let N
0
= (N,+, 0, 1, [0, b]). Then

M
0
= (Z,+, 0, 1,N) 6� N

0 (as [0, b] contains an element x = b such that x 2 [0, b] but
x + 1 /2 [0, b]). Also, M0 is interdefinable with M, but we will see that N

0 is a proper
reduct of N .

Definition 9.1.4. Let F be a family of first-order structures, and let M 2 F . We say
that M is A-minimal in F if there are no A-proper A-reducts of M in F . We say that
M is A-maximal in F if there are no A-proper A-expansions of M in F . When A = M
we just say that M is minimal or maximal, respectively.

Based on a result by Palacín and Sklinos [PS18], Conant and Pillay proved in [CP18]
the following:

Fact 9.1.5 ([CP18] Theorem 1.2). (Z,+, 0, 1) has no proper stable expansions of finite
dp-rank.

In other words, (Z,+, 0, 1) is maximal among the stable structures of finite dp-rank.

Remark 9.1.6. This theorem is no longer true if we replace (Z,+, 0, 1) by an elementarily
equivalent structure (N,+, 0, 1). Let (N,+, 0, 1, |p) be a nontrivial elementary extension
of (Z,+, 0, 1, |p), let b 2 N be such that � := vp(b) is nonstandard, and let B = {a 2 N :

b|pa} = {a 2 N : vp(a) � �}. Then (N,+, 0, 1, B) is a proper expansion of (N,+, 0, 1)
of dp-rank 1, and in Proposition 9.3.2 we show that it is also stable.

In this section, we give another proof of the following fact, due to Conant.

Fact 9.1.7 ([Con18] Theorem 1.1). (Z,+, 0, 1, <) is minimal among the proper expan-
sions of (Z,+, 0, 1).

Remark 9.1.8. This is no longer true if we replace (Z,+, 0, 1, <) by an elementarily equiv-
alent structure. Let (N,+, 0, 1, <) be a nontrivial elementary extension of (Z,+, 0, 1, <),
let b 2 N be a positive infinite element, and let B = [0, b]. Then (N,+, 0, 1, B) is a
proper expansion of (N,+, 0, 1), and in Proposition 9.3.5 we show that it is also a proper
reduct of (N,+, 0, 1, <). Note that the formula y � x 2 B defines the ordering on B, so
this structure is unstable. We will see (Remark 9.1.11) that every structure which is a
proper expansion of (N,+, 0, 1) and a reduct of (N,+, 0, 1, <), and which has a definable
one-dimensional set which is not definable in (N,+, 0, 1), defines a set of the form [0, b]
for a positive infinite b. Hence a stable intermediate structure between (N,+, 0, 1, <)

and (N,+, 0, 1), if such exists, cannot contain new definable sets of dimension one.

Nevertheless, a weaker version of Fact 9.1.7 does hold as well for elementarily equiv-
alent structures.

Corollary 9.1.9. Let (N,+, 0, 1, <) be an elementary extension of (Z,+, 0, 1, <). Then
(N,+, 0, 1, <) is ;-minimal among the ;-proper ;-expansions of (N,+, 0, 1).

Proof of Corollary 9.1.9 from Fact 9.1.7. As (Z,+, 0, 1, <) is a ;-expansion of (Z,+, 0, 1),
by Fact 9.1.7 it is obviously minimal among the proper ;-expansions of (Z,+, 0, 1). In

119



(Z,+, 0, 1), every element is ;-definable, so a proper ;-expansion of (Z,+, 0, 1) is the same
as a ;-proper ;-expansion of (Z,+, 0, 1). Now if N is a ;-proper ;-reduct of (Z,+, 0, 1, <),
and a ;-proper ;-expansion of (Z,+, 0, 1), then also in N every element is ;-definable,
so N is a proper reduct of (Z,+, 0, 1, <). Hence (Z,+, 0, 1, <) is ;-minimal among the
;-proper ;-expansions of (Z,+, 0, 1). By Lemma 9.1.2, we conclude.

Lemma 1.4.3 allows us to give a simple proof for the unstable case of Corollary 9.1.9:

Theorem 9.1.10 (Conant, Unstable case of Corollary 9.1.9). Let (N,+, 0, 1, <) be an
elementary extension of (Z,+, 0, 1, <). Then (N,+, 0, 1, <) is ;-minimal among the un-
stable ;-proper ;-expansions of (N,+, 0, 1).

Proof. Let N be any unstable structure with universe N , which is a ;-proper ;-expansion
of (N,+, 0, 1) and a ;-reduct of (N,+, 0, 1, <). We show that N is ;-interdefinable with
(N,+, 0, 1, <). It is enough to show that x � 0 is definable over ; in N . Let L be the
language of N , L�

= {+, 0, 1} and L< = {+, 0, 1, <}. We may expand all these languages
by adding the symbols {�}[{Dn : n � 1}, as all of them are already definable over ; in
all three languages. As N is a ;-expansion of (N,+, 0, 1) and a ;-reduct of (N,+, 0, 1, <),
we may replace L with L[L� and L< with L<[L[L� without adding new ;-definable
sets to any structure. So we may assume that L�

✓ L ✓ L<.
Let M be a monster model for Th(Z,+, 0, 1, <), so M|L is a monster for Th(N ). As

(N,+, 0, 1) is stable but N is not, by Lemma 1.4.3 there exist an L-formula �(x, y) over
; with |x| = 1 and b 2 M such that �(x, b) is not L�-definable with parameters in M.
By quantifier elimination in Th(Z,+, 0, 1, <) and Lemma 8.1.3 (1) (which is a theorem
of Th(Z,+, 0, 1)), �(x, b) is equivalent to a formula of the form

_

i

(Dmi(x� ki) ^ x 2 [ci, c
0
i])

where ci, c0i 2 M [ {�1,+1} and [ci, c0i] denotes the closed interval except if one of the
bound is infinite, in which case it is open on the infinite side. Let m =

Q
i
mi. As each

formula of the form Dmi(x � k) is equivalent to a disjunction of formulas of the form
Dm(x� k0), we can rewrite this as

_

i

(Dm(x� ki) ^ x 2 [ci, c
0
i])

(with possibly different ki’s and numbering). By grouping together disjuncts with the
same ki, we can rewrite this as

_

i

(Dm(x� ki) ^
_

j

x 2 [ci,j , c
0
i,j ])

where for i1 6= i2, ki1 6⌘ ki2 mod m. As this formula is equivalent to �(x, b), which is not
L�-definable with parameters in M, there must be an i0 such that Dm(x� ki0)^

W
j
x 2

[ci0,j , c
0
i0,j

] is not L�-definable with parameters in M. This latter formula, which we
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denote by �i0(x, b), is equivalent to �(x, b) ^ Dm(x � ki0), and so is L-definable. Let
 (x, b) be the formula �i0(mx + ki0 , b). Then  (x, b) is L-definable and equivalent to
just

W
j
mx+ ki0 2 [ci0,j , c

0
i0,j

]. This substitution is reversible as �i0(x, b) is equivalent to
Dm(x�ki0)^ (

x�ki0
m

, b), therefore also  (x, b) is not L�-definable with parameters in M.
Each formula of the form mx+k 2 [c, c0] is equivalent to the formula x 2 [b

c�k

m
c, d c

0�k

m
e],

so we can rewrite  (x, b) as
W

n

i=1 x 2 [ci, c0i]. By reordering and combining intersecting
intervals, we may assume that the intervals are disjoint and increasing, i.e., for all i < n,
c0
i
 ci+1.

Now we show how from  (x, b) we can get an L-definable formula equivalent to [0, a],
for a a positive nonstandard integer in M. For each i, if [ci, c0i] defines in M a finite
set then it is L�-definable, and so  (x, b) ^ ¬x 2 [ci, c0i] is also L-definable but not L�-
definable (since ( (x, b)^¬x 2 [ci, c0i])_ x 2 [ci, c0i] is again equivalent to  (x, b)). So we
may assume that for all i, [ci, c0i] is infinite. Note that as  (x, b) is not L�-definable, it
cannot be empty.

We want  (x, b) to have a lower bound, i.e., �1 < c1. If c1 = �1 but c0n 6= +1,
then we can just replace  (x, b) with  (�x, b). If both c1 = �1 and c0n = +1, we can
replace  (x, b) with ¬ (x, b) and again remove all finite intervals. In both cases,  (x, b)
is still L-definable but not L�-definable, so it is still a nonempty disjunction of infinite
disjoint intervals.

By replacing  (x, b) with  (x + c1 + 1, b) we may assume that c1 = 0, so the left-
most interval is [0, c01]. If c01 6= +1 let a0 = c01, otherwise let a0 2 M be any positive
nonstandard integer. Let ✓(x, b0) denote the formula  (x, b) ^  (a0 � x, b). Then ✓(x, b0)
is L-definable and equivalent to the infinite interval [0, a0]. The proof of the following
claim is an obvious consequence of quantifier elimination for Presburger arithmetic and
is left to the reader.

Claim 1. For every c � 0 there exist a > c and b such that ✓(x, b) is equivalent to the
interval [0, a].

In particular, as N is a small subset of M, there exists c 2 M bigger than all elements
of N . By the claim, there exist ã > c and b̃ such that ✓(x, b̃) is equivalent to the interval
[0, ã], and so ✓(N, b̃) = {s 2 N : s � 0}.

Let �(y, z) be the formula �1(y, z) ^ �2(y, z) ^ �3(y, z) where:

• �1(y, z) is the formula ✓(0, z) ^ ✓(y, z) ^ ¬✓(�1, z) ^ ¬✓(y + 1, z) ^ ¬✓(2y, z).

• �2(y, z) is the formula 8w((w 6= 0 ^ ✓(w, z)) ! ✓(w � 1, z)).

• �3(y, z) is the formula 8w((w 6= y ^ ✓(w, z)) ! ✓(w + 1, z)).

So �(y, z) is L-definable over ;.

Claim 2. For every a, b 2 M, M ✏ �(a, b) if and only if a > 0 and ✓(M, b) = [0, a].
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Proof of the claim. This can be formulated as a first order sentence in L< without pa-
rameters:

M ✏ 8y, z(�(y, z) $ (y > 0 ^ 8x(✓(x, z) $ 0  x  y))),

so it is enough to prove this for Z. Let a, b 2 Z. If a > 0 and ✓(Z, b) = [0, a], then
clearly Z ✏ �(a, b). Suppose Z ✏ �(a, b), and set A := ✓(Z, b). By �1, 0, a 2 A and
�1, a + 1, 2a /2 A. Suppose towards contradiction that a < 0. Then from �2 it follows
by induction that (�1, a] ✓ A. But then 2a 2 A, a contradiction. So a � 0. If a = 0

then again 2a 2 A is a contradiction. So a > 0. From �2 it follows by induction that
[0, a] ✓ A. Also, from a+1 /2 A and �2 it follows by induction that [a+1,1)\A = ;, and
from �1 /2 A and �3 it follows by induction that (�1,�1] \A = ;. So A = [0, a].

Now, let �(x) be the formula

9y, z(�(y, z) ^ ✓(x, z)).

Then �(x) is L-definable over ;, and we claim that it defines x � 0 in N : For s 2 N ,
if N ✏ �(s) then there are a, b 2 N such that N ✏ �(a, b) ^ ✓(s, b), so by Claim 2,
s 2 [0, a] hence s � 0. On the other hand, suppose s � 0. By the choice of ã, b̃,
M ✏ �(ã, b̃) ^ ✓(s, b̃), so M ✏ �(s), and by elementarity, N ✏ �(s). Therefore, x � 0 is
definable over ; in N .

Remark 9.1.11. The part in the proof where we start with an L-formula �(x, y) over ;

with |x| = 1 and b 2 M such that �(x, b) is not L�-definable with parameters in M,
and show that there exists a formula ✓(x, b0) which is L-definable and equivalent to the
infinite interval [0, a0], works the same for any structure N which is a proper expansion
of (N,+, 0, 1) and a reduct of (N,+, 0, 1, <). N does not have to be a ;-expansion of
(N,+, 0, 1) or a ;-reduct of (N,+, 0, 1, <), nor unstable, as long as such �(x, y) and b exist
(being a ;-reduct is needed in the proof for �(x, y) to also be ;-definable in L<). So in
any structure N which is a proper expansion of (N,+, 0, 1) and a reduct of (N,+, 0, 1, <),
and which has a definable one-dimensional set which is not definable in (N,+, 0, 1), there
exists a definable infinite interval, and hence it is unstable.

Combined with Fact 9.1.5, we recover Corollary 9.1.9 and Fact 9.1.7.

Proof of Corollary 9.1.9 from Theorem 9.1.10. Suppose for a contradiction that there
exists a structure N with universe N , which is a ;-proper ;-expansion of (N,+, 0, 1)
and a ;-proper ;-reduct of (N,+, 0, 1, <). So N is dp-minimal, and by Theorem 9.1.10,
it must also be stable. By Lemma 9.1.2, relativization to Z gives us a structure Z � N

which is a ;-proper ;-expansion of (Z,+, 0, 1) and a ;-proper ;-reduct of (Z,+, 0, 1, <).
As every element of (Z,+, 0, 1) is ;-definable, a reduct of (Z,+, 0, 1) is in fact a ;-reduct,
and so a ;-proper ;-expansion of (Z,+, 0, 1) is in fact a proper ;-expansion of (Z,+, 0, 1),
which is of course a proper expansion. So Z is a stable dp-minimal proper expansion of
(Z,+, 0, 1), a contradiction to Fact 9.1.5.
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Proof of Fact 9.1.7 from Corollary 9.1.9. Suppose for a contradiction that there exists a
structure Z with universe Z, which is a proper expansion of (Z,+, 0, 1) and a proper
reduct of (Z,+, 0, 1, <). In Z, +, 0, and 1 are definable, but not necessarily ;-definable.
We expand Z to a structure Z

0 by adding +, 0, and 1 to the language. So Z
0 is a

proper ;-expansion of (Z,+, 0, 1), and still a proper reduct of (Z,+, 0, 1, <). As every
element of (Z,+, 0, 1, <) is ;-definable, a reduct of (Z,+, 0, 1, <) is in fact a ;-reduct. So
Z

0 is a proper ;-expansion of (Z,+, 0, 1), and a proper ;-reduct of (Z,+, 0, 1, <). As a
proper ;-expansion/reduct is obviously a ;-proper ;-expansion/reduct, this contradicts
Corollary 9.1.9.

9.2 The main result: (Z,+, 0, |p) is a minimal expansion of
(Z,+, 0)

In this section, we focus on a single valuation. Let p be any prime. Unless stated
otherwise, we work in a monster model M = (M,+, 0, |p) of Tp, and denote its value set
by �. We may omit the subscript p when it is clear from the context. Recall that � is
an elementary extension of (N, <, 0, S).

9.2.1 Preparatory lemmas

For a 2 M , � 2 �, we denote by B(a, �) the definable set {x : v(x � a) � �} and
call it the ball of radius � around a. If � = 1 then B(a, �) is just {a}, and we call
such balls trivial. Unless stated otherwise, balls are assumed to be nontrivial. Of course,
a 2 B(a, �), and if b 2 B(a, �) then B(b, �) = B(a, �). Also, by Lemma 8.1.2 (2), if
� 6= � then B(a, �) 6= B(a, �). So the radius of a ball is well defined. We denote the
radius of a ball B by rad(B).

We call a swiss cheese any non-empty set F that can be written as F = B0\
S

n

i=1Bi,
where {Bi}

n

i=0 are balls. Note that this representation is not unique. As the intersection
of any two balls is either empty or equals one of them, we may always assume that
{Bi}

n

i=1 are nonempty, pairwise disjoint and contained in B0.

Remark 9.2.1. Rephrasing Lemma 8.1.9 (2), if B0, B1, . . . , Bn are balls such that for
all i � 1, rad(Bi) � rad(B0) + n, then B0\

S
n

i=1Bi 6= ;. In particular, this holds if
|rad(Bi)� rad(B0)| /2 N.

Proposition 9.2.2. Let ; 6= F = B0\
S

n

i=1Bi be a swiss cheese. Then there exists a
unique ball B0

0 such that F ✓ B0
0 and B0

0 is minimal with respect to this property. This B0
0

satisfies B0
0 ✓ B0, |rad(B0

0) � rad(B0)| 2 N, and it is also the unique ball B ✓ B0 such
that there are at least two distinct balls B00

1 and B00
2 , satisfying rad(B00

j
) = rad(B0

0) + 1

and B00
j
\ F 6= ; for j = 1, 2.
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Proof. Let I1 = {1  i  n : |rad(Bi) � rad(B0)| 2 N}, I2 = {1, . . . , n}\I1. By
applying Lemma 8.1.8 (2) to B0\

S
i2I1 Bi 6= ;, we see that B0\

S
i2I1 Bi =

F
l

j=1B
00
j
,

where l � 1 and for all j, B00
j

✓ B0 and rad(B00
j
) = max{rad(Bi) : i 2 I1}. So

F =
F

l

j=1(B
00
j
\
S

i2I2 Bi). By Remark 9.2.1, for each j, B00
j
\
S

i2I2 Bi 6= ;. If C is a
ball such that F ✓ C, then for each j, B00

j
\
S

i2I2 Bi ✓ C, and we claim that in fact
B00

j
✓ C. Indeed, by Axiom 8, B00

j
=
F

p

t=1B
00
j,t

with rad(B00
j,t
) = rad(B00

j
) + 1, and again

by Remark 9.2.1, for each t, B00
j,t
\
S

i2I2 Bi 6= ;. So C \ B00
j,t

6= ; but C 6✓ B00
j,t

(as also
for s 6= t, C \ B00

j,s
6= ;), therefore B00

j,t
✓ C. This holds for all t, hence B00

j
✓ C. In

particular, B00
1 ✓ C. As |rad(B00

1 ) � rad(B0)| 2 N, there are only finitely many balls B
such that B00

1 ✓ B ✓ B0, so we may choose B0
0 to be a minimal one (with respect to

inclusion) among those that also satisfy F ✓ B (exists, since B0 satisfies this). By this
choice, B0

0 ✓ B0 and |rad(B0
0) � rad(B0)| 2 N. If B is another ball such that F ✓ B,

then F ✓ B \ B0
0, and B \ B0

0 6= ; is also a ball. Also, as we have shown, B00
1 ✓ B, so

B00
1 ✓ B \ B0

0 ✓ B0. Hence by the choice of B0
0, B0

0 = B \ B0
0 ✓ B. This shows that B0

0

is the unique minimal ball containing F . Finally, let D be a ball and assume F ✓ D.
By Axiom 8 write D =

F
p

t=1D
00
t with rad(D00

t ) = rad(D) + 1. Then D is minimal if and
only if for all t, F 6✓ D00

t , iff there are t 6= s such that F \D00
t 6= ; and F \D00

s 6= ;.

Let F be a swiss cheese. By Proposition 9.2.2 we may write F = B0\
S

n

i=1Bi where
B0 is the unique minimal ball containing F . We may also assume that {Bi}

n

i=1 are
nonempty, pairwise disjoint and contained in B0. Unless stated otherwise, all representa-
tions are assumed to satisfy these conditions. We call B0 the outer ball of F , and define
the radius of F to be rad(F ) := rad(B0). We also call {Bi}

n

i=1 the holes of F . Note that
this representation is still not unique (unless there are no holes at all), as each hole may
always be split into p smaller holes, and sometimes there are sets of p holes which may
each be combined into a single hole. There is a canonical representation for F , namely,
the one with the minimal number of holes. But we will not use it. Rather, when dealing
with holes without mentioning a specific representation, either the intended representa-
tion is clear from the context (e.g., when using Remark 9.2.3 (2) or (3) to split a swiss
cheese with a given representation), or we may choose any representation and stick with
it.

We say that Bi is a proper hole of F if |rad(Bi)� rad(B0)| /2 N. We call F a proper
cheese if all of its holes are proper. Note that by Remark 9.2.1, being a proper cheese
does not depend on the representation of the holes.

Remark 9.2.3.

(1) If B0,B1, . . . , Bn are balls such that for all i � 1, Bi ✓ B0 and |rad(Bi)�rad(B0)| /2
N, then B0 is the outer ball of the swiss cheese F = B0\

S
n

i=1Bi, which is therefore
proper.

(2) Let F be a swiss cheese, and let k � 1. Then F may be written as a disjoint union
F =

F
l

i=1 Fi, where 1  l  pk, and for each i, Fi is a swiss cheese such that
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rad(Fi) � rad(F ) + k and |rad(Fi) � rad(F )| 2 N. Each hole of Fi is already a
hole of F , and each hole of F is a hole of at most one of the {Fi}i.
If F is proper, then l = pk and each Fi is a proper cheese of radius rad(Fi) =

rad(F ) + k. In this case, each hole of F is a hole of exactly one of the {Fi}i.

(3) Let F = B0\
S

n

i=1Bi be a swiss cheese, let I1 = {1  i  n : |rad(Bi)�rad(B0)| 2

N}, and let k0 = max{rad(Bi)� rad(B0) : i 2 I1} 2 N. Then for each k � k0, F
may be written as a disjoint union F =

F
l

i=1 Fi, where 1  l  pk, and for each
i, Fi is a proper swiss cheese of radius rad(Fi) = rad(F ) + k. Each hole of Fi is
already a proper hole of F , and each proper hole of F is a hole of exactly one of
the {Fi}i.

(4) Let F 0,F 00 be two swiss cheeses of radiuses �0,�00 respectively, and let � = max{�0, �00}.
Then F 0

\ F 00 is either empty, or also a swiss cheese of radius rad(F 0
\ F 00

) � �
such that |rad(F 0

\ F 00
)� �| 2 N.

(5) If both F 0,F 00 are proper and �0 = �00, and if F 0
\F 00 is not empty, then F 0,F 00 have

the same outer ball, and F 0
\ F 00 is also a proper cheese of the same outer ball.

Lemma 9.2.4. Let F ,F 0 be two swiss cheeses of radiuses �  �0 respectively. If F \F 0
6=

;, then F [ F 0 is also a swiss cheese, of radius exactly �. The set of holes of F [ F 0 is a
subset of the union of the set of holes of F and the set of holes of F 0.

Proof. Write F = B0\
S

n

i=1Bi, F 0
= B0

0\
S

m

j=1B
0
j
. If F \ F 0

6= ; then B0 \ B0
0 6= ;,

hence B0 ◆ B0
0. Therefore,

F 0
\F = F 0

\

 
B0\

n[

i=1

Bi

!
= F 0

\B0 [

 
F 0

\

n[

i=1

Bi

!
=

n[

i=1

F 0
\Bi.

For each i: if B0
0 \ Bi = ; then F 0

\ Bi = ;. Otherwise, as B0 ◆ B0
0, we also get

Bi ✓ B0
0 (Bi ◆ B0

0 is impossible, as it implies F \ F 0
= ;), and in this case, F 0

\ Bi =

Bi\
S

m

j=1(Bi \B0
j
). Together, we get

F [ F 0
= F [ (F 0

\F ) = B0\

0

@
[

i2I1

Bi [

[

i2I2

m[

j=1

(Bi \B0
j)

1

A

where I1 is the set of i such that B0
0 \ Bi = ; and I2 is the set of i such that Bi ✓ B0

0.
This is a swiss cheese, and as F ✓ F [ F 0

✓ B0 and rad(F ) = rad(B0) = �, also
rad(F [F 0

) = � and B0 is its outer ball. For each i such that Bi ✓ B0
0 and each j, either

Bi \B0
j
= ; (in which case Bi \B0

j
does not appear as a hole of F [F 0), or Bi \B0

j
= Bi

or Bi \B0
j
= B0

j
, so the last part holds.

Sometimes we want disjoint swiss cheeses to also have disjoint outer balls, but unfor-
tunately, that is not always possible. An example for this is a union of two swiss cheeses,
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F1 [ F2, with F2 ✓ B where B is one of the holes of F1. If |rad(B) � rad(F1)| 2 N, we
may rewrite F1 as a union of swiss cheeses of radius rad(B), and, together with F2, we
have a union of swiss cheeses with disjoint outer balls. But if |rad(B) � rad(F1)| /2 N,
we cannot do such a thing.

Definition 9.2.5. A pseudo swiss cheese is a definable set P such that there is a swiss
cheese F with outer ball B such that F ✓ P ✓ B. By the following remark, we may
call B the outer ball of P , and define the radius of P to be rad(P ) := rad(B). We also
call P pseudo proper cheese if there is a proper cheese F with outer ball B such that
F ✓ P ✓ B.

Remark 9.2.6. (1) In the previous definition, B is uniquely determined by P . Indeed,
suppose F1,F2 are two swiss cheeses with outer balls B1,B2 respectively, such that
F1 ✓ P ✓ B1 and F2 ✓ P ✓ B2. Then rad(B1) = rad(F1) � rad(B2) and
rad(B2) = rad(F2) � rad(B1), so rad(B1) = rad(B2). Also, P ✓ B1 \ B2 6= ;, so
we must have B1 = B2.

(2) For every k � 1, every proper pseudo swiss cheese of radius � can be written as a
union of exactly pk proper pseudo cheeses with disjoint outer balls of radius exactly
� + k.

(3) Note that the analogue to Remark 9.2.3 (2) is not true for pseudo swiss cheeses.
For example, let B be a ball of radius �, let {Bi}

p�1
i=0 be all the balls of radius �+1

contained in B, let {Bi,j}
p�1
j=0 be all the balls of radius �+2 contained in Bi, and let

C ✓ B0,1 be a ball of radius � > � such that |� � �| /2 N. Then P = C t
F

p�1
i=0 Bi,0

is a pseudo swiss cheese of radius �, but cannot be written as  p pseudo swiss
cheeses of radius � � + 1, because P \B0 is not a pseudo swiss cheese. Also, note
that the intersection of two pseudo swiss cheeses is not necessarily a single pseudo
swiss cheese. For example, take P \B0 from above.

Lemma 9.2.7.

(1) Let P1,P2 be two pseudo swiss cheeses with outer balls B1,B2 respectively, such that
rad(B1) � rad(B2). If B1 \ B2 6= ; then P1 [ P2 is also a pseudo swiss cheese,
with outer ball B2. If P2 is proper, then P1 [ P2 is also proper.

(2) Any finite union of pseudo swiss cheeses may be written as a union of pseudo swiss
cheeses having disjoint outer balls. Also, any finite union of pseudo proper cheeses
may be written as a union of pseudo proper cheeses having disjoint outer balls.

Proof. We prove (1). B1 \ B2 6= ; and rad(B1) � rad(B2), so B1 ✓ B2 and therefore
also P1 ✓ B2. Let F2 be a swiss cheese with outer ball B2 such that F2 ✓ P2 ✓ B2. Then
F2 ✓ P1 [ P2 ✓ B2. If P2 is proper, then we may take F2 to be proper, and so P1 [ P2

is also proper.
We prove (2). Let A =

S
n

i=1 Pi such that for each i, Pi is a pseudo swiss cheese with
outer ball Bi. Let {B0

j
}
m

j=1 be the set of all the maximal balls (with respect to inclusion)
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among {Bi}
n

i=1. Then {B0
j
}
m

j=1 are pairwise disjoint. For each 1  j  m, let Ij = {i :

Bi \ B0
j
6= ;} and P 0

j
=
S

i2Ij Pi. So {1, . . . , n} =
F

m

j=1 Ij and therefore A =
S

m

j=1 P
0
j
.

By (1), P 0
j

is a pseudo swiss cheese with outer ball B0
j
. If for each i, Pi is proper, then

by (1), for each j, P 0
j

is also proper.

Remark 9.2.8. The valuation vp induces a topology on M, generated by the balls. By
Lemma 8.1.9 (3), if gcd(m, p) = 1, then the sets defined by Dm(x� r) are dense in M.

Lemma 9.2.9. Let P be a pseudo swiss cheese with outer ball B and radius ↵, and
assume 0 2 B. Let G be a dense subgroup of M, and let A = P \G. Then there exists
N 2 N and a1, . . . , aN 2 B \G such that

S
N

i=1(A+ ai) = B \G.

Proof. Observe that B is a subgroup of M since 0 2 B. Let F be a swiss cheese with
outer ball B such that F ✓ P ✓ B. By Remark 9.2.3 (3), for some finite k we may
find a proper cheese F 0

✓ F of radius ↵ + k. Let s be the number of holes in F 0. By
Remark 9.2.3 (2), we may write F 0 as a union of exactly ps proper cheeses of radius
↵+ k + s. As ps > s, at least one of these proper cheeses must have no holes, i.e., must
be a ball, say D. Let x 2 D and D0 = D � x. Then D0 is a subgroup of B of index
N := pk+s. Let x1, . . . , xN be representatives of the cosets, so B =

S
N

i=1 xi + D0. For
each i, let ai 2 xi +D0 \G. As ai 2 B \G and A ✓ B \G, we have (A+ ai) ✓ B \G,
and therefore

S
N

i=1(A + ai) ✓ B \ G. On the other hand, as A ◆ D \ G, we also haveS
N

i=1(A+ ai) ◆ B \G.

Lemma 9.2.10. Let A = G \
F

n

i=1 Fi where G is a dense subgroup of M and {Fi}
n

i=1
are disjoint proper cheeses with nonstandard radiuses. Then there are N,m 2 N and
c1, . . . , cN 2 G such that

T
N

i=1(A� ci) = G\
F

m

i=1 Pi with Pi pseudo proper cheeses with
disjoint outer balls, all of the same nonstandard radius, and 0 2 P1.

Proof. It is of course enough to prove the lemma without the requirement 0 2 P1, as we
may then arrange that by shifting by some c 2 G \ P1.

Preparation step. By Remark 9.2.3 (2), if F is a proper cheese of infinite radius �
then, for all k � 0, F can be written as a disjoint union of proper cheeses of radius �+k.
So there exists �1, . . . , �n, in distinct archimedean classes of �, such that we can write

nG

i=1

Fi =

mG

i=1

siG

j=1

F i

j ,

where s1, . . . , sm � 1 and for all 1  i  m and 1  j  si, rad(F i

j
) = �i and F i

j
has a

swiss cheese representation in which the radiuses of all the holes are in

R := {↵ 2 � : for all 1  k  m, if |↵� �k| 2 N then ↵  �k} .

We call this representation of A a good representation of A with respect to {�i}
m

i=1.

If m = 1, we already have what we want, so we may assume that m > 1. For each
i, j, let Bi

j
be the outer ball of F i

j
. There are two cases:
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Case 1: For every 1 < l  m and every 1  u  sl there is some 1  v  s1 such
that B1

v \Bl
u 6= ;.

This means that {B1
j
}
s1
j=1 is the set of all the maximal balls with respect to inclusion

among {Bi

j
: 1  i  m, 1  j  si}. It follows that {B1

j
}
s1
j=1 are outer balls of pseudo

proper cheese containing all the F i

j
. Indeed, by the proof of Lemma 9.2.7 (2), we may

write
mG

i=1

siG

j=1

F i

j =

s1G

j=1

Pj ,

where for each j, Pj is a pseudo proper cheese such that F 1
j
✓ Pj ✓ B1

j
. So these are

pseudo proper cheeses with disjoint outer balls, all of the same radius �1. So in this case
we are done.

Case 2: There are 1 < l  m and 1  v  sl such that for every 1  j  s1,
B1

j
\Bl

v = ;.
Let a 2 F 1

1 \G and b 2 F l
v \G and set A0

= (A� a)\ (A� b). Then 0 2 A0
6= ;. We

show that A0 has a good representation with respect to a subset of {�i}mi=1, of the form

A0
= G \

m
0G

i=1

s
0
iG

j=1

F̃ i

j

such that either there are no more proper cheeses of radius �1, or the number s01 of proper
cheeses of radius �1 is strictly less than s1. By reiterating this process, it will terminate
either to the case in which every proper cheese is of the same radius or to Case 1, which
proves the Lemma.

Write A0
= G\(

F
m

i=1

F
si
j=1

F
m

q=1

F
si
r=1(F

i

j
�a)\(F q

r �b)). By the good representation,
for each i, j we write F i

j
= Bi

j
\
F

t
Bi

j,t
with rad(Bi

j,t
) 2 R.

For every i and j, k, if Bi

j
� a 6= Bi

k
� b, then (F i

j
� a) \ (F i

k
� b) = ;, and if

Bi

j
� a = Bi

k
� b, then (F i

j
� a) \ (F i

k
� b) is a proper cheese of radius �i � �1 such that

all its holes can be written with radiuses in R.
For every i < i0 and j, k, if (Bi

j
�a)\ (Bi

0
k
� b) = ;, then also (F i

j
�a)\ (F i

0
k
� b) = ;.

Otherwise, (Bi

j
� a) ◆ (Bi

0
k
� b) and

(F i

j � a) \ (F i
0

k
� b) = ((Bi

0
k
� b)\

G

t0

(Bi
0
k,t0 � b))\

G

t

(Bi

j,t � a).

For each t such that (Bi

j,t
� a) \ (Bi

0
k
� b) 6= ; there are three cases:

(1) rad(Bi
0
k
� b) > rad(Bi

j,t
�a). Then (Bi

0
k
� b) is included in the hole (Bi

j,t
�a) hence

(F i

j
� a) \ (F i

0
k
� b) = ;.
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(2) rad(Bi
0
k
� b)  rad(Bi

j,t
� a) and rad(Bi

j,t
� a) is at finite distance from �i0 . As

rad(Bi

j,t
� a) = rad(Bi

j,t
) 2 R, we get

rad(Bi
0
k
� b) = rad(Bi

0
k
) = �i0 � rad(Bi

j,t � a).

So rad(Bi
0
k
� b) = rad(Bi

j,t
� a), and so (Bi

0
k
� b) = (Bi

j,t
� a) and therefore

(F i

j
� a) \ (F i

0
k
� b) = ;.

(3) rad(Bi
0
k
� b)  rad(Bi

j,t
� a) and rad(Bi

j,t
� a) is not at finite distance from �i0 .

Then Bi

j,t
� a is a proper hole of (F i

j
� a) \ (F i

0
k
� b).

Therefore (F i

j
� a) \ (F i

0
k
� b) is either empty or a proper cheese of radius �i0 > �i � �1

such that all its holes can be written with radiuses in R.

So A0 has a good representation that is the intersection of G with a (nonempty)
disjoint union of proper cheeses, with radiuses among {�i}mi=1, such that all their holes
have radiuses in R. Now either s1 = 1, hence F 1

1 is the only cheese of radius �1 in the
good representation of A and hence in the good representation of A0 there are no more
proper cheese of radius �1. Otherwise we have a good representation with respect to a
subset of {�i}mi=1 of the form

A0
= G \

m
0G

i=1

s
0
iG

j=1

F̃ i

j

where s01, . . . , s
0
m0 � 1, and s01 is the number of cheese of radius �1. For every 1  l  s01,

there must be j, k such that F̃ 1
l
= (F 1

j
� a) \ (F 1

k
� b). As (F 1

j
� a) \ (F 1

k
� b) 6= ; ()

B1
j
� a = B1

k
� b, for every j there is at most one k such that (F 1

j
� a) \ (F 1

k
� b) 6= ;,

therefore s01  s1. Suppose towards contradiction that s01 = s1. Then for every j there is
exactly one k such that (F 1

j
� a) \ (F 1

k
� b) 6= ;, in particular, for j = 1 there is exactly

one l such that (F 1
1 � a) \ (F 1

l
� b) 6= ;, and so also B1

1 � a = B1
l
� b. By the choice

of a, b, we have 0 2 (B1
1 � a) \ (Bl

v � b) = (B1
l
� b) \ (Bl

v � b), so b 2 B1
l
\ Bl

v 6= ;, a
contradiction. Therefore s01 < s1.

Lemma 9.2.11. Let A = G\
F

n

i=1 Pi where G is a dense subgroup of M and {Pi}
n

i=1 are
pseudo proper cheeses with disjoint outer balls, all of the same nonstandard radius ↵, such
that 0 2 P1. Then there exists N 2 N and c1, . . . , cN 2 G such that

T
N

i=1(A�ci) = G\P
for some pseudo proper cheese P of nonstandard radius such that 0 2 P .

Proof. It is of course enough to prove the lemma without the requirement 0 2 P . We
proceed by induction on n. For n = 1 we have nothing to prove. Suppose that the lemma
holds for all n0 < n. For each 1  i  n let Bi be the outer ball of Pi, and let Fi be
a proper cheese with outer ball Bi such that Fi ✓ Pi ✓ Bi. Let S be the set of all the
balls of radius ↵, and let S0

= {Bi : 1  i  n}. Observe that (S,+) is an infinite
group with neutral element B1 (since 0 2 P1 ✓ B1), and in particular, S0 ( S. Let
C :=

S
S0

=
F

n

i=1Bi.
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Claim. If for every 1  i  n there is a 2 Bi such that S0
�a = S0, then S0 is a subgroup

of S.

Proof of the claim. If B,B0
2 S then rad(B) = rad(B0

), hence (B � a) \ B0
6= ; )

B � a = B0. Also, for all B00
2 S and a, a0 2 B00, a � a0 2 B1 and therefore B � a0 =

(B � a) + (a� a0) = B � a. From this and the hypothesis of the claim it follows that for
each 1  i  n, S0

� Bi := {B �Bi : B 2 S0
} = S0, which implies that S0 is a subgroup

of S.

There are two cases:

Case 1 : S0 is a subgroup of S. Then (C,+) is a subgroup of (M,+), and S0 is the
quotient group C/B1. As (C,+) is definable, by Lemma 8.2.4 it must be of the form
C = B(0,�) (as B1 6✓ mM for every m > 1 with gcd(m, p) = 1). In fact, since |S0

| = n,
it must be that � = ↵ � k, where k satisfies n = pk. In particular, � is nonstandard.
For each i, let Hi be (any choice for) the set of holes of Fi, and let H =

S
i
Hi. Then

we can rewrite
F

n

i=1 Fi as F = B(0,�)\
S

H, which is a single proper cheese, with outer
ball B(0,�). Let P =

F
n

i=1 Pi. Then F ✓ P ✓ B(0,�), so P is a pseudo proper cheese,
and we are done.

Case 2 : S0 is not a subgroup of S. Then by the claim, there is some 1  i0  n such
that for all a 2 Bi0 , S0

� a 6= S0 (in fact 1 < i0). Let a 2 G \ Pi0 ✓ Bi0 (which exists
because G is dense), and let A0

= A \ (A� a). Then 0 2 A0
6= ;.

Write A0
= G \ (

F
n

i=1

F
n

j=1 Pi \ (Pj � a)). Then

G \

nG

i=1

nG

j=1

Fi \ (Fj � a) ✓ A0
✓ G \

nG

i=1

nG

j=1

Bi \ (Bj � a).

For all 1  i, j  n, rad(Bi) = rad(Bj) = ↵ and therefore, as in Lemma 9.2.10, Bi\(Bj�

a) 6= ; () Bi = Bj�a () Fi\(Fj�a) 6= ;, and in this case, Fi\(Fj�a) is a proper
cheese with outer ball Bi. We also have that Fi\(Fj�a) ✓ Pi\(Pj�a) ✓ Bi\(Bj�a), so
Pi\(Pj�a) 6= ; () Bi\(Bj�a) 6= ;, and in this case, Pi\(Pj�a) is a pseudo proper
cheese with outer ball Bi. Therefore, G \ (

F
n

i=1

F
n

j=1Bi \ (Bj � a)) = G \ (
F

n
0

i=1B
0
i
),

G\ (
F

n

i=1

F
n

j=1 Fi\ (Fj �a)) = G\ (
F

n
0

i=1 F
0
i
), and A0

= G\ (
F

n
0

i=1 P
0
i
), where for each i,

B0
i
2 S0, F 0

i
is a proper swiss cheese with outer ball B0

i
, and P 0

i
is a pseudo proper cheese

such that F 0
i
✓ P 0

i
✓ B0

i
.

Moreover, for every i there is at most one j such that Bi \ (Bj � a) 6= ;, therefore
n0

 n. But by the choice of a, S0
�a 6= S0, so there is an 1  i  n such that Bi 6= Bj�a

for all 1  j  n. Therefore n0 < n, and by the induction hypothesis we are done.
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9.2.2 Proof of the theorem

The proof of Theorem 9.2.12 is similar to the proof of Theorem 9.1.10 but more involved
and relies on Subsection 9.2.1.

Theorem 9.2.12. Let (N,+, 0, 1, |p) be an elementary extension of (Z,+, 0, 1, |p). Then
(N,+, 0, 1, |p) is ;-minimal among the unstable ;-proper ;-expansions of (N,+, 0, 1).

Proof. Let N be any unstable structure with universe N , which is a ;-proper ;-expansion
of (N,+, 0, 1) and a ;-reduct of (N,+, 0, 1, |p). We show that N is ;-interdefinable with
(N,+, 0, 1, |p). It is enough to show that x|py is definable over ; in N . Let L be the
language of N and L�

= {+, 0, 1}. As in the proof of Theorem 9.1.10, we may assume
that all languages contain {�}[{Dn : n � 1}, and (by being a ;-reduct and ;-expansion)
that L�

✓ L ✓ LE
p .

Let M be a monster model for Tp, so M|L is a monster for Th(N ). As (N,+, 0, 1) is
stable but N is not, by Lemma 1.4.3 there exist an L-formula �(x, y) over ; with |x| = 1

and b 2 M such that �(x, b) is not L�-definable with parameters in M. By Theorem 8.2.1
(quantifier elimination) and Remark 8.2.3, �(x, b) is equivalent to a formula of the form

_

i

0

@Dm(x� ri) ^ kx 2 Fi ^

^

j

k0x 6= ai,j

1

A _

_

i0

x = ci0

where m, k, k0, ri 2 Z, gcd(m, p) = gcd(k, p) = 1, k0 = plk for some l � 0, ai,j , ci0 2 M

and each Fi is a swiss cheese in M.
The first step of the proof is to show the existence of an L-definable formula which is

equivalent to a formula of the form Dm(x)^x 2 B(0, �), i.e. Dm(x)^v(x) � �, for some
nonstandard � 2 � and integer m such that gcd(m, p) = 1. Let �0(x, b) be the formula

_

i

(Dm(x� ri) ^ kx 2 Fi).

The symmetric difference �(x, b)4�0(x, b) is finite, hence L�-definable, and therefore
�0(x, b) is also L-definable but not L�-definable. So we may replace �(x, b) by �0(x, b).
For each i, the formula Dm(x�ri) is equivalent to Dkm(kx�kri), so �(x, b) is equivalent
to the formula _

i

(Dkm(kx� kri) ^ kx 2 Fi).

Let �0(x, b) be the formula Dk(x) ^ �(
x

k
, b). Then �0(x, b) is L-definable and equivalent

to the formula _

i

(Dm0(x� r0i) ^ x 2 Fi)

where m0
= km and r0

i
= kri. This substitution is reversible as �(x, b) is equivalent to

�0(kx, b), therefore also �0(x, b) is not L�-definable. So again we may replace �(x, b) by
�0(x, b).
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We want each Fi to have a nonstandard radiuses. For each i, choose a representation
for Fi as a swiss cheese Fi = Bi,0\

S
ni
j=1Bi,j , where Bi,j = B(ai,j , �i,j). Let Ji = {1 

j  ni : �i,j /2 N}, i.e., the set of indices of the infinite holes, and let

B0
i,0 =

(
B(0, 0) �i,0 2 N
Bi,0 �i,0 /2 N

and B00
i,0 =

(
Bi,0 �i,0 2 N
B(0, 0) �i,0 /2 N

(note that B(0, 0) = M). Let F 0
i
= B0

i,0\
S

j2Ji Bi,j , and let F 00
i
= B00

i,0\
S

j /2Ji Bi,j . Then
Fi = F 0

i
\ F 00

i
, and so �(x, b) is equivalent to

_

i

(Dm0(x� r0i) ^ x 2 F 00
i ^ x 2 F 0

i ).

Each hole of F 0
i

has nonstandard radius, and its outer ball either has an infinite radius
or has radius 0. On the other hand, both the outer ball and all the holes of F 00

i
have

finite radiuses. In general, if B(a, �) has finite radius, then the formula x 2 B(a, �) is
equivalent to Dp� (x � a). So x 2 F 00

i
is equivalent to a boolean combination of such

formulas, and therefore, by Lemma 8.1.3 (1) (choosing the same m00 for all the i’s and
rearranging the disjunction), �(x, b) is equivalent to a formula of the form

_

i

(Dm00(x� r0i) ^ x 2 F 0
i )

where each hole of F 0
i

has a nonstandard radius, and its outer ball either has an nonstan-
dard radius or has radius 0. Note that now it may be that p|m00. By grouping together
disjuncts with the same r0

i
, we can rewrite this as
_

i

(Dm00(x� r0i) ^
_

j

x 2 F 0
i,j)

where for i1 6= i2, r0i1 6⌘ r0
i2

mod m00. As this formula is equivalent to �(x, b), which is not
L�-definable with parameters in M, there must be an i0 such that Dm00(x�r0

i0
)^
W

j
x 2

F 0
i0,j

is not L�-definable with parameters in M. This latter formula, which we denote
by �i0(x, b), is equivalent to �(x, b) ^ Dm00(x � r0

i0
), and so is L-definable. So we may

replace �(x, b) by �i0(x, b). For simplicity of notation we rewrite this as

Dm(x� r) ^
_

i

x 2 Fi.

By Lemma 9.2.4 we may assume that {Fi}i are pairwise disjoint, and still have that for
each i, all the holes of Fi have infinite radiuses and its outer ball either has an infinite
radius or has radius 0. By Remark 9.2.1 two proper cheeses having the same outer ball
must intersect. Applying this to all the Fi’s having radius 0 (which are all proper, as all
the holes are of infinite radius), we see that there can be at most one i such that Fi has
radius 0.
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We want all proper cheeses to have infinite radius. If there is i0 such that the proper
cheese Fi0 has radius 0, let �0(x, b) be the formula Dm(x�r)^¬�(x, b). Then �0(x, b) is L-
definable and, as �(x, b) is equivalent to Dm(x�r)^¬�0(x, b), it is also not L�-definable.
The formula �0(x, b) is equivalent to

Dm(x� r) ^
^

i

x 2 F c

i .

We may write Fi0 = B(0, 0)\
S

n

j=1Bj , where for each j, rad(Bj) is infinite. So
F c

i0
=
S

n

j=1Bj , and �0(x, b) is equivalent to

Dm(x� r) ^
n_

j=1

(x 2 Bj ^

^

i 6=i0

x 2 F c

i ).

For each i 6= i0, F c

i
is a finite union of swiss cheeses (specifically, a union of a single

swiss cheese of radius 0 and a finite number of balls). Therefore, by Remark 9.2.3 (4), for
each j, Bj \

T
i 6=i0

F c

i
is a finite union of swiss cheeses, each of radius at least rad(Bj),

so infinite. So �0(x, b) is equivalent to a formula of the form

Dm(x� r) ^
_

i

x 2 F 0
i

where each F 0
i

is a swiss cheese of infinite radius. Again by Lemma 9.2.4, we may
assume in addition that {F 0

i
}i are pairwise disjoint. As �0(x, b) is not L�-definable, the

disjunction cannot be empty. So we may replace �(x, b) by �0(x, b) and rename F 0
i

as Fi.
We may assume that for each i, Dm(x � r) ^ x 2 Fi defines a nonempty set, as

otherwise we may just drop the i’th disjunct. Write m = pkm0 with gcd(m0, p) = 1.
Then Dm(x � r) is equivalent to Dm0(x � r1) ^ (vp(x � r2) � k), where r1 = r mod m0

and r2 = r mod pk. So �(x, b) is equivalent to

Dm0(x� r1) ^
_

i

(vp(x� r2 � k) ^ x 2 Fi).

The formula vp(x � r2) � k defines the ball B(r2, k), of finite radius k, and for each i,
the outer ball of Fi has an infinite radius. As Dm(x � r) ^ x 2 Fi defines a nonempty
set, so too does vp(x � r2) � k ^ x 2 Fi, and hence the outer ball of Fi is contained in
B(r2, k). Therefore vp(x� r2) � k ^ x 2 Fi is equivalent to just x 2 Fi, and so �(x, b) is
equivalent to

Dm0(x� r1) ^
_

i

x 2 Fi.

By Remark 9.2.3 (3) we may assume that each Fi is a proper cheese. We replace �(x, b)
by �(x + r1, b), and rename m0 as m and each Fi � r1 as Fi. Altogether, �(x, b) is
equivalent to a formula of the form

Dm(x) ^
_

i

x 2 Fi

133



where gcd(m, p) = 1, and {Fi}i are disjoint proper cheeses having infinite radiuses. As
�(x, b) is not L�-definable, the disjunction cannot be empty.

By Remark 9.2.8, Dm(x) defines a dense subgroup of M. By successively applying
Lemmas 9.2.10, 9.2.11 and 9.2.9, we get an L-definable formula of the form

Dm(x) ^ x 2 B(0, �) (?)

with � nonstandard and gcd(m, p) = 1. We will now assume that �(x, b) is of this form.

To finish, we need the following:
Claim. Let  (x, z) be any Lp-formula with |x| = 1.

(1) Suppose there exists a 2 M with v(a) nonstandard, for which there exists b such
that  (x, b) is equivalent to v(x) � v(a). Then for any c such that v(c) is nonstan-
dard there is b0 2 M such that tp(b0/;) = tp(b/;) (in Lp) and  (x, b0) is equivalent
to v(x) � v(c).

(2) Let ✓(z) be an Lp-formula. Then there exists K 2 N such that for any a 2 M

with v(a) � K, if there exists b such that ✓(b) holds and  (x, b) is equivalent to
v(x) � v(a), then for any c such that v(c) � K there is b0 2 M such that ✓(b0) and
 (x, b0) is equivalent to v(x) � v(c). That is, let ↵(w) be the formula defined by

9z(✓(z) ^ 8x( (x, z) $ v(x) � v(w)))

and let �(w) be the formula defined by

↵(w) ! 8w0
(v(w0

) � K ! ↵(w0
)).

Then �(w) is satisfied by any a such that v(a) � K.

Proof of the claim. Proof of (1). We show that we can find a0 2 M such that tp(a0/;) =
tp(a/;) and v(a0) = v(c). Indeed, let ⌃(x) be the partial type tp(a/;) [ {v(x) = v(c)}.
We show that it is consistent. Let F ✓ ⌃(x) be a finite subset. As v(a) is nonstandard,
we may assume that F is of the form

{x 6= j : �n  j  n} [ {Dmk(x� rk) : 1  k  s} [ {v(x) = v(c)}.

Let m =
Q

k
mk, and write m = plm0 with gcd(m0, p) = 1. By ??, there exists ã 2 M

satisfying the formula Dm0(x�a)^(v(x) = v(c)). So v(ã) = v(c) is nonstandard. As v(a)
is also nonstandard, ã also satisfies Dpl(x� a), so it satisfies Dm(x� a), and therefore it
satisfies {Dmk(x � rk) : 1  k  s}. Also, as v(ã) is nonstandard, ã /2 Z. Together we
have that ã satisfies F .
So ⌃(x) is consistent. Let a0 2 M be a realization of ⌃(x). As tp(a0/;) = tp(a/;), there
is an automorphism of Lp-structures � 2 Aut(M/;) such that �(a) = a0. Let b0 = �(b).
So tp(b0/;) = tp(b/;) and  (x, b0) is equivalent to v(x) � v(a0). As v(a0) = v(c), we have
what we want.
Proof of (2). Let ⇠(w,w0

) be the formula defined by ↵(w) ! ↵(w0
). By (1), ⇠(a, c)

holds for any a, c such that v(a) and v(c) are nonstandard, so the result follows by
compactness.
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Now, let ✓(z) be the formula expressing that (�(x, z),+) is a subgroup. By Lemma 8.2.4
there are n1, . . . , nk, having gcd(ni, p) = 1 for each i, such that for all c 2 M for which
✓(c) holds, �(x, c) is equivalent to a formula of the form Dni(x) ^ v(x) � v(d) for some
i and some d 2 M. As (N,+, 0, |p) is an elementary substructure, if c 2 N then there
exists such d 2 N . Let n =

Q
i
ni, and let  (x, z) be the formula �(nx, z). Then for

all c 2 M for which ✓(c) holds,  (x, c) is equivalent to v(x) � v(d), for the same d
corresponding to �(x, c) (as v(n) = 0).

Let K 2 N be as given by the claim for  (x, z) and ✓(z), and let ↵(w) and �(w) be as
in the claim. We have that  (x, b) is equivalent to v(x) � �. In particular, the formula
⇢(z) defined by

✓(z) ^ 9w(v(w) � K ^ 8x( (x, z) $ v(x) � v(w)))

is satisfied by b. Since ⇢(z) contains no parameters, there exists c 2 N such that
(N,+, 0, |p) ✏ ⇢(c). So ✓(c) holds and there exists d 2 N such that v(d) � K and
 (x, c) is equivalent to v(x) � v(d). So (N,+, 0, |p) ✏ ↵(d). As v(d) � K, by the claim
we have M ✏ �(d). Since �(w) contains no parameters, also (N,+, 0, |p) ✏ �(d). Hence,
as vp is surjective, for every � 2 �(N) such that � � K there exists c� 2 N such that
✓(c�) holds and  (x, c�) is equivalent to v(x) � �.

Let �(x, y) be the formula

K�1̂

k=1

(Dpk(x) ! Dpk(y)) ^ 8z(✓(z) ! ( (x, z) !  (y, z))).

Then �(x, y) is L-definable over ;, and we claim that it defines v(x)  v(y) in N : Let
a1, a2 2 N , and suppose v(a1)  v(a2). Then of course

V
K�1
k=1 (Dpk(a1) ! Dpk(a2)).

Let c 2 N such that ✓(c). Then there exists d 2 N such that  (x, c) is equivalent
to v(x) � v(d), and therefore also  (a1, c) !  (a2, c). So we have �(a1, a2). On the
other hand, suppose �(a1, a2). If v(a1)  K � 1, then by

V
K�1
k=1 (Dpk(a1) ! Dpk(a2))

we get v(a1)  v(a2). Otherwise, we have that � := v(a1) � K and hence  (a1, c�).
From 8z(✓(z) ! ( (a1, z) !  (a2, z))), as ✓(c�) holds, we get in particular  (a1, c�) !
 (a2, c�), and therefore we get  (a2, c�), which means v(a2) � � = v(a1). Therefore,
v(x)  v(y) is definable over ; in N .

Combined with Fact 9.1.5 and Theorem 8.3.2, we obtain:

Theorem 9.2.13. Let (N,+, 0, 1, |p) be an elementary extension of (Z,+, 0, 1, |p). Then
(N,+, 0, 1, |p) is ;-minimal among the ;-proper ;-expansions of (N,+, 0, 1).

Proof. Identical to the proof of Corollary 9.1.9 from Theorem 9.1.10.

In particular:

Corollary 9.2.14. (Z,+, 0, 1, |p) is minimal among the proper expansions of (Z,+, 0, 1).

Proof. Identical to the proof of Fact 9.1.7 from Corollary 9.1.9.
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9.3 Intermediate structures in elementary extensions: some
counter-examples

In this section, we show that Fact 9.1.5, Fact 9.1.7 and Corollary 9.2.14 are no longer true
if we replace Z by an elementarily equivalent structure. In the case of Corollary 9.2.14,
there are both stable and unstable counterexamples. For Fact 9.1.7 there are unstable
counterexamples, but we do not know whether there are stable ones.

For each of the above, we give a family of counterexamples.
Remark 9.3.1. Let L ✓ L+ be two first-order languages, let �(x, y) be an L+-formula,
and let P be a new relation symbol. Let N be an L+-structure, let a, b 2 N be such
that tp(a/;) = tp(b/;) (in L+), and let A = �(N , a), B = �(N , b). Let N1,N2 be two
reducts of N , both in the language L[ {P}, such that N1|L = N2|L = N|L, P (N1) = A,
P (N2) = B. Then N1 ⌘ N2.

Proposition 9.3.2. Let (N,+, 0, 1, |p) be a nontrivial elementary extension of (Z,+, 0, 1, |p),
let � be a nonstandard element from �. Let B = {a 2 N : vp(a) � �}. Then
(N,+, 0, 1, B) is a stable proper expansion of (N,+, 0, 1) of dp-rank 1. In particular,
it is a proper reduct of (N,+, 0, 1, |p).

Proof. It is clear that (N,+, 0, 1, B) is a proper expansion of (N,+, 0, 1), and, as a
reduct of (N,+, 0, 1, |p), by Theorem 8.3.2 it is of dp-rank 1. It remains to show sta-
bility. This follows from a theorem of Wagner, see Remark 9.3.3, but we also give
a direct proof. First, we show that Th(N,+, 0, 1, B) does not depend on N or b, as
long as vp(b) is infinite, so it is enough to prove stability for just one particular choice
of (N,+, 0, 1, |p) and b. Let (N2,+, 0, 1, |p) ⌘ (N,+, 0, 1, |p), let c 2 N2 be such that
� := vp(c) is nonstandard, and let C = {a 2 N2 : c|pa} = {a 2 N2 : vp(a) � �}. Let
(M,+, 0, 1, |p) be a monster model, and let B0

= {a 2 M : b|pa}, C 0
= {a 2 M : c|pa}.

So B = B0
\ N , C = C 0

\ N2, and (N,+, 0, 1, B) � (M,+, 0, 1, B0
), (N2,+, 0, 1, C) �

(M,+, 0, 1, C 0
). By Claim 9.2.2 (1), there exists d 2 M such that tp(d/;) = tp(b/;) (in

{+, 0, 1, |p}) and vp(d) = vp(c). Let D0
= {a 2 M : d|pa}. Then D0

= C 0, and by
Remark 9.3.1, (M,+, 0, 1, D0

) ⌘ (M,+, 0, 1, B0
). So (N2,+, 0, 1, C) ⌘ (M,+, 0, 1, C 0

) =

(M,+, 0, 1, D0
) ⌘ (M,+, 0, 1, B0

) ⌘ (N,+, 0, 1, B).

Now, consider the valued ring (Z,+, ·, 0, 1, |p), and let M1 = (M,+, ·, 0, 1, |p) be a
monster model for its theory. Consider the partial type ⌃(x) = {pn|px : n 2 N} [

{8y(x|py $ 9z(y = x · z))}. Then for each n0 2 N, pn0 satisfies {pn|px : n  n0} [

{8y(x|py $ 9z(y = x·z))}, so ⌃ is consistent. Let b ✏ ⌃. Let M2 = (M,+, 0, 1, {r̃}r2M ),
where for each r 2 M , r̃ : M ! M is the function r̃(a) := r·a. So M2 is an M1-module in
the language of M1-modules (expanded by the constant 1), and therefore it is stable (see
e.g. [Poi00, Theorem 13.14]). Let B = {a 2 M : b|pa}, and let M3 = (M,+, 0, 1, B).
As b ✏ ⌃, B = {a 2 M : 9z(a = b · z)} = {a 2 M : 9z(a = b̃(z))}, so B is definable in
M2. Hence M3 is a reduct of M2, and therefore it is stable.
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Remark 9.3.3. In [Wag97, Example 0.3.1 and Theorem 4.2.8], Wagner defines an abelian
structure to be an abelian group together with some predicates for subgroups of powers of
this group. Every module is an abelian structure. Wagner proves that, as with modules,
in an abelian structure every definable set is equal to a boolean combination of cosets of
acl(;)-definable subgroups. As a consequence, every abelian structure is stable. Under
the assumptions of Proposition 9.3.2, B is a subgroup of N , so (N,+, 0, 1, B) is an abelian
structure. This immediately proves its stability.

Let (N,+, 0, 1, |p) be a nontrivial elementary extension of (Z,+, 0, 1, |p). For � 2 �

we define
C� =

�
(a, b) 2 N2

: vp(a)  � ^ vp(b)  � ^ vp(a)  vp(b)
 
.

Proposition 9.3.4. Let (N,+, 0, 1, |p) � (Z,+, 0, 1, |p) be a nontrivial elementary ex-
tension, let � 2 � be nonstandard. Then (N,+, 0, 1, C�) is an unstable proper expansion
of (N,+, 0, 1) and a proper reduct of (N,+, 0, 1, |p).

Proof. Let R be the relation symbol corresponding to C. It is clear that (N,+, 0, 1, C�)
is an unstable proper expansion of (N,+, 0, 1). We show that |p is not definable with
parameters in (N,+, 0, 1, C). First, exactly as in Proposition 9.3.2, Th(N,+, 0, 1, |p, C)

does not depend on N or c, as long as � is nonstandard. That is, if (N2,+, 0, 1, |p) ⌘

(N,+, 0, 1, |p), d 2 N2 is such that � := vp(d) is nonstandard, then (N,+, 0, 1, |p, C�) ⌘
(N,+, 0, 1, |p, C�). So it is enough to prove this for just one particular choice of (N,+, 0, 1, |p)
and �..

For each m 2 N, let

Cm = {(a, b) 2 Z2
: ¬Dpm+1(a) ^ ¬Dpm+1(b) ^

m^

i=1

(Dpi(a) ! Dpi(b))}

= {(a, b) 2 Z2
: a|pp

m
^ b|pp

m
^ a|pb}

and let Zm = (Z,+, 0, 1, |p, Cm). Let U be a non-principal ultrafilter on N, and let
N =

Q
U Zm = (N,+, 0, 1, |p, C) be the ultraproduct of {Zm}m with respect to U . Let

 (z) be the formula 8x, y(R(x, y) $ x|pz^y|pz^x|py). For each k 2 N, for every m � k,
Zm |= (9z (z))^8z( (z) ! pk|pz), and therefore also N |= (9z (x))^8z( (z) ! pk|pz).
Hence there exists c 2 N such that � := vp(c) is infinite and C = C� .

Suppose for a contradiction that |p is definable in (N,+, 0, 1, C). Then there is a
formula �(x, y, z) in the language of (N,+, 0, 1, C) with |x| = |y| = 1, and there is
d 2 N , such that N |= 8x, y(x|py $ �(x, y, d)). Let (dm)m2N be a representative for d
mod U . Then {m 2 N : Zm |= 8x, y(x|py $ �(x, y, dm))} 2 U . In particular, this set is
not empty, so there exists m 2 N such that Zm |= 8x, y(x|py $ �(x, y, dm)). Hence |p is
definable in (Z,+, 0, 1, Cm). But Cm is definable in (Z,+, 0, 1), a contradiction.

Proposition 9.3.5. Let (N,+, 0, 1, <) � (Z,+, 0, 1, <) be a non-trivial elementary ex-
tension, let b 2 N be a positive infinite element, and let B = [0, b]. Then (N,+, 0, 1, B)

is an unstable proper expansion of (N,+, 0, 1) and a proper reduct of (N,+, 0, 1, <).

137



Proof. Let P be the relation symbol corresponding to B. It is clear that (N,+, 0, 1, B)

is a proper expansion of (N,+, 0, 1). The formula P (y � x) defines the ordering on
B, so this structure is unstable. It remains to show that < is not definable with pa-
rameters in (N,+, 0, 1, B). First, we show that it is enough to prove this for a sin-
gle choice of N and b (though in this case, the theory does depend on tp(b/;)). Let
(N2,+, 0, 1, <) ⌘ (N,+, 0, 1, <), let c 2 N2 be a positive infinite element, and let
C = {a 2 N : 0  a  c} = [0, c]. Suppose that < is not definable with param-
eters in (N2,+, 0, 1, C). Let (M,+, 0, 1, <) be a monster model, and let B0

= {a 2

M : 0  a  b}, C 0
= {a 2 M : 0  a  c}. So B = B0

\ N , C = C 0
\ N2. By

Lemma 9.1.2 (with A = {c}), (N2,+, 0, 1, C) � (M,+, 0, 1, C 0
) and < is not definable

with parameters in (M,+, 0, 1, C 0
). Similarly, (N,+, 0, 1, B) � (M,+, 0, 1, B0

), and < is
definable with parameters in (N,+, 0, 1, B) if and only if it is definable with parameters
in (M,+, 0, 1, B0

). As c is a positive infinite element, tp(c/;) in {+, 0, 1, <} is unbounded
from above in (M,+, 0, 1, <). Let d 2 M such that d > b and tp(d/;) = tp(c/;). Let D0

=

{a 2 M : 0  a  d}. By Remark 9.3.1 (with L = L+
= {+, 0, 1, <}), (M,+, 0, 1, <

, C 0
) ⌘ (M,+, 0, 1, <,D0

), so in particular, < is not definable in (M,+, 0, 1, D0
). As

d > b, [0, b] = [0, d] \ [�d + b, b], and so the formula P (x) ^ P (�x + b) defines B0 in
(M,+, 0, 1, D0

). So (M,+, 0, 1, B0
) is a reduct of (M,+, 0, 1, D0

), and hence < is not
definable in (M,+, 0, 1, B0

).

Now, for each m 2 N, let Bm = [0,m], and let Zm = (Z,+, 0, 1, <,Bm). Let U

be a non-principal ultrafilter on N, and let N =
Q

U Zm = (N,+, 0, 1, <,B) be the
ultraproduct of {Zm}m with respect to U . For each k 2 N, for every m � k,

Zm |= 9!x((8y(P (y) $ 0  y  x)) ^ x � k)

and therefore also N |= 9!x((8y(P (y) $ 0  y  x)) ^ x � k). Hence there exists a
positive infinite element b 2 N such that B = [0, b].

Suppose for a contradiction that < is definable in (N,+, 0, 1, B). Then there is a
formula �(x, y, z) in the language of (N,+, 0, 1, B) with |x| = |y| = 1, and there is
c 2 N , such that N |= 8x, y(x < y $ �(x, y, c)). Let (cm)m2N be a representative for c
mod U . Then {m 2 N : Zm |= 8x, y(x < y $ �(x, y, cm))} 2 U . In particular, this set
is not empty, so there exists m 2 N such that Zm |= 8x, y(x < y $ �(x, y, cm)). Hence
< is definable in (Z,+, 0, 1, Bm), a contradiction.
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