
THE AX-KOCHEN-ERSHOV THEOREM

CHRISTIAN D’ELBÉE

Abstract. These are the notes of a course for the summer school Model Theory in Bilbao hosted by the Basque
Center for Applied Mathematics (BCAM) and the Universidad del País Vasco/Euskal Herriko Unibertsitatea
in September 2023.

The goal of this course is to prove the Ax-Kochen-Ershov (AKE) theorem, see Theorem 1.15 below. This
classical result in model theory was proven by Ax and Kochen and independently by Ershov in 1965-1966. The
AKE theorem is considered as the starting point of the model theory of valued fields and witnessed numerous
refinements and extensions. To a certain measure, motivic integration can be considered as such. The AKE
theorem is not only an important result in model theory, it yields a striking application to p-adic arithmetics.
Artin conjectured that all p-adic fields are C2 (every homogeneous polynomial of degree d and in > d2 variable has
a non trivial zero, see Definition 1.1). A consequence of the AKE theorem is that the p-adics are asymptotically
C2, in a sense that will be precised in Subsection 1.3. The conjecture of Artin has been disproved by Terjanian
in 1966, yielding that the solution given by the AKE theorem is in a sense optimal. The proof presented here is
due to Pas but the general strategy stays faithful to the original paper of Ax and Kochen, which consist in the
study of the asymptotic first-order theory of the p-adics.
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Introduction and preliminaries

The object of study here are valued fields, i.e. fields equipped with a valuation.

Definition. A valuation on a field K is a group homomorphism v : K× → Γ where (Γ,+, 0, <) is an ordered
abelian group which further satisfies

v(a+ b) ≥ min {v(a), v(b)} .
We often extend v to the whole K by setting v(0) > γ for all γ ∈ Γ, which is abbreviated by v(0) =∞.

A typical example of a valued field is Qp, naturally equipped with the p-adic valuation vp. A valuation on a
field encompasses a rich set of data that we recall now. Let (K, v) be a valued field.

Value group. The value group of (K, v) is the subgroup v(K×) of Γ. We often (but not always) assume that Γ
is the value group, i.e. that v is onto. Note that as ordered abelian groups, Γ and v(K×) are torsion-free.

Valuation ring, maximal ideal. The set O = {a ∈ K | v(a) ≥ 0} is an integral domain which satisfies a very
strong property: a divides b or b divides a (in O) for all a, b ∈ O. Domains satisfying this property are
called valuation rings. The spectrum of ideals is lineary ordered by inclusion and in particular, valuation rings
are local ring i.e. they have a unique maximal ideal. The maximal ideal of O is denoted m and satisfies
m = {a ∈ K | v(a) > 0}. We refer to O as the valuation ring of (K, v) and m the maximal ideal of (K, v). The
(multiplicative) group of units in O is denoted O×. It is easy to check that O× = {a ∈ K | v(a) = 0} and that
the value group of v is isomorphic to the quotient K×/O×.

Residue field. The quotient O/m is a field called the residue field, denoted k. The quotient map res : O → k is
called the residue map and will play an essential role all along the paper.

We often recall the previous data via the following diagram.
K Γ ∪ {∞}

k

←→v

←→ res

A recurrent idea is that the valued field (K, v) is “controlled” by the value group and the residue field. It
turns out that model theory is a nice setting to make this intuition concrete, as we will see with the AKE
theorem.

The model-theoretic treatment of valued fields uses various languages, which are equivalent in the sense that
they have the same first-order expressibility. Let Lring = {+,−, ·, 0, 1} be the language of rings, we generally
use this language for rings and for fields.

Three-sorted language. The most intuitive way of encompassing the full structure of a valued field in a first-order
language is by considering three sorts. Let L3s be the three sorted language defined by:

� one sort for the valued field K in a copy of the language of rings Lvf = {+,−, ·, 0, 1} (the valued field
sort)
� one sort for the residue field k in a different copy Lres = {+,−, ·, 0, 1} of the language of fields (the

residue field sort)
� one sort for the value group Γ in the language of ordered groups expanded by a constant Lgp =
{+,− <, 0,∞} (the value group sort)
� a function symbol v : K → Γ ∪ {∞} for the valuation
� a function symbol res : K → k for an extension of the residue map O → k to K.

Each valued field (K, v) can be considered as a L3s-structure by interpreting the right objects in the right sorts.
The residue map res : O → k will be extended to K by setting res(K \O) = {0}. Note that the value group sort
is a little more than a group because of ∞, and we extend the group structure so that γ +∞ =∞, −∞ =∞.
As a multi-sorted structure, variables used to construct sentences and formulas are tagged by the sort they talk
about. To make this apparent in L3s, we will use x, y, z, . . . as variables for the valued field sort; ξ, ζ, . . . for
variables in the value group sort; and x̄, ȳ, z̄, . . . for the residue field sort. It is easy to write down an L3s-theory
whose models are exactly valued fields in which v, res are onto and res � O is the residue map1 and every given
valued field (K, v) can be seen as an L3s-structure, usually denoted (K, k,Γ) or (K, k,Γ, v, res).

1Once v has been specified to be a valuation, one just has to say that if v(x) ≥ 0, v(y) ≥ 0 then res(x) = res(y) ⇐⇒ v(x−y) > 0

and if v(x) < 0 then res(x) = 0.
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One-sorted language. Let L1s = Lring ∪ {P} where P is a unary predicate. A valued field (K, v) is often
considered in the more economical language L1s by letting P be a predicate for the valuation ring O. From
a valued field (K,O) in L1s, we can recover the three-sorted structure (K, k,Γ). The valuation function is
interpretable as the canonical projection K× → K×/O× from K× to the sort K×/O×. For instance,

v(a) = v(b) ⇐⇒ v(ab−1) = 0

⇐⇒ ab−1 ∈ O×

⇐⇒ ∃y y ∈ O ∧ ya = b.

Statements about elements of K×/O× reduce to statements in (K,O). The ordered group structure on the
imaginary sort K×/O× is also definable: for instance, one defines the order on K×/O× by v(a) ≤ v(b) ⇐⇒
ba−1 ∈ O. The residue map and the residue field are also interpretable as the canonical projection res : O →
k = O/m, extending to K \O by 0. One sees that the interpretation is uniform, in the sense that it follows the
same procedure from any L1s valued field (K,O) using only that O is a valuation ring.

Ring language for the valuation ring. The most economic way of treating a valued field (K, v) in first-order logic
is by considering the valuation ring O in the language Lring. From O we recove K which is the fraction field of
O (which is interpretable as the quotient of O × O by the definable relation (x, y) ∼ (z, t) ⇐⇒ xt − yz = 0)
as well as a copy O′ of O in K (which consists of the image of elements of the form (a, 1) in the projection
π : O ×O → K).

We see here that the model-theory of valued field essentially reduces to the model-theory of valuation rings,
but difference between languages might still be relevant, especially in Section 2 where we will need to be more
explicit about the value group and the residue field. We will allow ourselves to freely switch from one language
to another when considering a given valued field although most of the time the three-sorted language L3s will
be preferred.

(K, v)

O (K,O) (K, k,Γ)

Lring L1s L3s

←

→ ←→

←

→
→→ →→

← ← ← ← ← ←

Exercise 1. Write down (or convince yourself that it exists) the following.
(1) The L3s-theory Tts of valued field (with surjective valuation v).
(2) The L1s-theory Tos of valued fields.
(3) The Lring-theory Tvr of valuation rings.

Notations and conventions. In a valued field (K, v), for consistency with the notations of the associ-
ated three-sorted structure (K, k,Γ), we will generally use the variables a, b, c, . . . for elements of the field
K, α, β, γ, . . . for elements of the value group Γ and ā, b̄, . . . for elements of the residue field k.
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1. The Ax-Kochen-Ershov Theorem

1.1. p-adic numbers. Let p be a prime number. The ring Zp of p-adic integers is for us the set of formal sums:∑
i∈N

aip
i ai ∈ {0, . . . , p− 1} .

There is a unique way to represent elements2 of Z (even of Z(p)) in Zp and addition and multiplication in Zp
are the ones extending addition and multiplication in Z in the most natural way (i.e. addition componentwise
with reminder, and distributive multiplication with reminder).

The ring of p-adic integers is usually defined as the inverse limit of the family of rings (Z/pnZ)n (with natural
epimorphism Z/pm → Z/pnZ for m ≥ n) hence p-adic integers as sequences (ai)i∈N such that ai ≡ aj (mod pi)
for i ≤ j. This gives a more formal construction but is equivalent in the end3.

The ring Zp is a local domain with maximal ideal pZp. Even more, it is a valuation ring and its field of
fraction is denoted Qp, the field of p-adic numbers. The representation as infinite sum of Zp extends to Qp by
letting the index rang over integer: every element in Qp is a sum∑

i≥i0

aip
i ai ∈ {0, . . . , p− 1}

for some i0 ∈ Z. The map vp : Qp → Z ∪ {∞} defined by v(x) =∞ ⇐⇒ x = 0 and for
∑
i aip

i 6= 0

v(
∑
i

aip
i) = min {i | ai 6= 0}

defines a valuation on Qp, called the p-adic valuation. The valuation ring associated is O = Zp, the maximal
ideal is m = pZp, the value group is Γ = Z and the residue field is Zp/pZp ∼= Z/pZ = Fp. We summarize this
data by the following:

Qp Z ∪ {∞}

Fp
←→vp

←→ res

As Kurt Gödel used to say4: Trees are the most inspiring structures. For a model-theorist point of view, the
structure that encompasses the combinatorial aspect of valued fields (and especially Qp) is the one of a tree.
We describe how this is done, by representing Zp as a tree. One thinks of elements of Zp as branches of an
infinite tree rooted in one single point with p branches at each note, representing the choice of the coefficient ai
of the term aip

i. Hence the nodes on each branches are indexed by the positive part of the value group (here
N) and the choices at each nodes represents the residue field Fp.∑

i

aip
i = the branch choosing ai at the pi-th level

We refer to Figure 1 for a sketch of the tree representation of Z2. In the representation of Zp as a tree, there is
a special branch: the 0 branch. We represent it on the far left of the drawing and it is the branch choosing 0 at
each level. Every element branching on the zero branch at a level say pi0 is written a =

∑
i≥i0 aip

i so v(a) = i0.
More generally the node where two elements a and b branch is at the level corresponding to the valuation of
a− b: below this branching, a and b made the same choices of ai’s hence the difference cancel this prefix.

1.2. Formal Laurent series. For any field K the field of formal Laurent series K((t)) is the set of formal
sums

∑
i≥i0 ait

i for ai ∈ K and i0 ∈ Z with obvious addition and multiplication naturally extending the ones
of polynomials in t. The field K((t)) can be equipped with the t-adic valuation vt defined as follows

vt(
∑
i

ait
i) = min {i ∈ Z | ai 6= 0} .

The associated valuation ring is the ring K[[t]] of formal series
∑
i≥0 ait

i, the residue field is K and the value
group is Z.

2Note that if every finite sum
∑n

i=0 aip
i represents an element of N, elements of Z can be infinite sums: −1 =

∑
i∈N(p− 1)pi.

3Note that the correspondence is not via (ai) ↔
∑

i aip
i (but is it close).

4Quoted from Christopher Nolan’s Oppenheimer movie.
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Figure 1. Tree representation of Zp, for p = 2

K((t)) Z ∪ {∞}

K

←→vt

←→ res

For a prime number p, the tree representation of Fp[[t]] can be done exactly as for the p-adic integers, by
representing elements

∑
i≥0 ait

i as branches and the path represents the choices of the sequence (ai)i≥0, one
gets the same tree as for Zp.

Those tree representations do not reflect the arithmetic in Zp or Fp[[t]] but it enlightens a strong similarity
between Zp and Fp[[t]], which is precisely what the Ax-Kochen principle is all about.

1.3. The Ax-Kochen principle and Artin’s conjecture. Recall that in model theory, rings and fields are
often considered in the language of (unital) rings Lring = {+,−, ·, 0, 1}. The goal of this course is to present
the following transfer theorem proved in 1965 by Ax and Kochen [4].

Ax-Kochen Principle. Let θ be any sentence of the language Lring. Then for all but finitely many prime
numbers p, we have

Zp � θ ⇐⇒ Fp[[t]] � θ.
Equivalently, for any sentence θ in the three-sorted language L3s, then for all but finitely many p we have

(Qp,Fp,Z) � θ ⇐⇒ (Fp((t)),Fp,Z) � θ.

The fact that the two statements are equivalent comes from the fact that the ring Zp is bi-interpretable with
the three-sorted structure (Qp,Fp,Z) and similarly for Fp[[t]] and (Fp((t)),Fp,Z).

We will see that this theorem follows from an important quantifier elimination result, the Ax-Kochen-Ershov
theorem (see Theorem 1.15 below). The idea behind the Ax-Kochen principle is that (Qp)p and (Fp((t)))p
“asymptotically” share the same first-order theory. Before going into those considerations, we state an important
application of the Ax-Kochen principle on a conjecture of Artin.
A little history. It all starts in 1933 when Tsen proves that if K is an algebraically closed field, then there
are no nontrivial central division algebras over the field K(X). Reading on Tsen’s work, Artin isolated the
property that K(X) satisfies and which prevents central division algebras over K(X) to exist. This property
–called quasi-algebraically closed at that time– corresponds to the property C1: for all d ∈ N>0, an homogeneous
polynomial in > d variables has a nontrivial zero. The notion were later generalised by Lang.
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Definition 1.1 (Lang). For d, i ∈ N>0, we say that a field K is Ci(d) if every homogeneous polynomial of
degree d with > di variables with coefficients in K has a nontrivial zero in K. A field is Ci if it is Ci(d) for all
d ∈ N>0.
Remark 1.2. A field K is Ci(d) if and only if every homogeneous polynomial of degree d with di + 1 variables
with coefficients in K has a nontrivial zero in K, for d > 1. See Exercise 3.

Existence of central division algebras over a given field are intrinsically linked to solutions of certain polyno-
mial equations. A famous theorem of Wedderburn yields that there are no central division algebra over a finite
field, hence Artin (and already Dickson before him) conjectured that every finite field is C1. This was proved
by Chevalley in 1935 [9].
Fact 1.3 (Chevalley5, 1935). Every finite field is C1.

Later, the result of Tsen were to be generalised in various forms, for instance if K is Ci then K(X1, . . . , Xj)
is Ci+j (Greenberg [13]) and if K is Ci then K((t)) is Ci+1 (Greenberg, [12]). Together with Chevalley’s result,
we obtain a result already proved by Lang in 1952 [21].
Fact 1.4 (Lang, 1952). Fp((t)) is C2, for all p.

Concerning the p-adics, a hundred years ago, H. Hasse [14] proved that every quadratic form (i.e. homoge-
neous polynomial of degree 2) over Qp in 5 variables have a nontrivial zero in Qp. In other words, Qp is C2(2).
The existence of normic forms of order 2 (i.e. forms of degree d in d2 variables without nontrivial zeros) on Qp
prevent Qp to be C1. In 1936, Artin made the following conjecture.
Artin’s Conjecture (1936). Qp is C2, for all p.

In 1952, Lewis [22] proved that Qp is C2(3), a new step toward the proof of the conjecture. In 1965, Ax and
Kochen used Lang’s result to get the following “asymptotic” solution to Artin’s conjecture:
Corollary 1.5. For all d ∈ N, there exists N = N(d) such that Qp is C2(d) for all p > N . In other words, for
each d ∈ N, the set of p such that Qp is not C2(d) is finite.

They used the Ax-Kochen principle as follows.

Proof. Let d ∈ N and m = d2 + 1. Consider the list (Mi(X1, . . . , Xm))1≤i≤l of all monomials of degree d and
for each ~x = (x1, . . . , xl) introduce the notation

Px⃗( ~X) :=

l∑
i=1

xiMi( ~X)

For any field K, the set
{
Pa⃗( ~X) | ~a ∈ Kl

}
consists of all homogeneous polynomials of degree d in ≤ m variables.

Let θd be the following sentence:

∀x1, . . . , xl

 ~x 6= ~0︸ ︷︷ ︸
Px⃗(X⃗) is not the zero polynomial

→ ∃z1, . . . , zm
(
Px⃗(~z) = 0 ∧ ~z 6= ~0

)
︸ ︷︷ ︸

Px⃗(X⃗) has a nontrivial zero

 .
By Remark 1.2, for any field K, we have K � θd if and only if K is C2(d). Note that if Px⃗( ~X) uses strictly less
than the variables in ~X, then it is trivial that is has a nontrivial zero. By the Ax-Kochen principle, there exists
N = N(θ) = N(d) such that for all p > N we have Fp((t)) � θd if and only if Qp � θd. By Lang’s theorem
Fp((t)) is C2 for all p hence for p > N we have Qp � θd. �

This solution is only asymptotic and does not fully answer the question asked by Artin. Considering that
Artin’s conjecture is false in general, this asymptotic solution is not so bad afterall. Indeed, around the same
time as Ax and Kochen’s solution, Guy Terjanian found the first counterexample to Artin’s conjecture.
Example 1.6 (Q2 is not C2(4)). Consider F (x1, . . . , x18) to be the form:

G(x1, x2, x3) +G(x4, x5, x6) +G(x7, x8, x9) + 4G(x10, x11, x12) + 4G(x13, x14, x15) + 4G(x16, x17, x18)

for G(x, y, z) = x4 + y4 + z4 − (x2y2 + x2z2 + y2z2) − xyz(x + y + z). Then Terjanian proves in [25] that the
only zero of F in Q2 is the trivial one, so Q2 is not C2(4).

5This theorem were later extended by Warning (Chevalley-Warning Theorem) and then by Ax [3] to the following stronger form.
Let K be a finite field with q elements of characteristic p. Let f be a polynomial of degree d in n variables with coefficient in K.
Let N(f) be the number of distinct zero of f in Kn. If n > d and a is the largest integer strictly less than n

d
then qa divides N(f).

In particular, if f has no constant term, then 0⃗ is a zero of f hence there exists a nontrivial zero of f .
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More example were found afterwards however in each case with d even. It is a current open question whether
Artin’s conjecture is true for odd d, in other words, is every Qp C2(d) for all odd d? In particular it is still open
whether every Qp is C2(5). See [15] for more on that topic.

Remark 1.7 (On bounds). There exists an explicit bound for the value of N(d) in Corollary 1.5. In [6], Brown
proved that N(d) can be choosen to be

22
22

211
d4d

.

The same method that we will use to prove the Ax-Kochen principle also yields that the first-order theory
of the field Qp is decidable. This appear first in [5]. Given (p, d), there exists a procedure for deciding whether
the statement θd (from the proof of Corollary 1.5) is true or false in Qp. Hence for a fixed degree d, one could in
theory use an algorithm to check that Qp is C2(d) for all prime p lower than Brown’s bound. In the particular
case of d = 5, Heath-Brown [15] proved that the bound can be reduced to 17, but as he puts it “This is certainly
decidable in principle, but whether it is realistic to expect a computational answer with current technology is
unclear.”

Remark 1.8. Note that being Ci is equivalent to the following stronger formulation: K is Ci if for all f1, . . . , fr
homogeneous polynomials in n variables of degree d with n > rdi there exists a nontrivial common zero of
f1, . . . , fr. This result is attributed to Lang and Nagata, see [13].

Exercise 2. Prove that R is not Ci(2d) for any i, d ∈ N>0.

Exercise 3. Consider a homogeneous polynomial f ∈ K[X1, . . . , Xn+1] of degree d in X1, . . . , Xn+1 variables.
Assume that f has no nontrivial zeros in K, then g(X1, . . . , Xn) = f(X1, . . . , Xn, 0) is homogeneous of the same
degree as f and has no nontrivial zeros in K.

(1) Prove that Xn+1 does not divide f .
(2) Deduce that g(X1, . . . , Xn) is nonzero.
(3) Conclude.

1.4. Henselian valued fields. The p-adics and other valued fields that we will consider here share a very
important property which we define now.

Definition 1.9. A valued field (K, v) is Henselian if it satisfies the following property:
Simple zero lift. For each P ∈ O[X] and ā ∈ k such that res(P )(ā) = 0 and res(P ′)(ā) 6= 0 there exists

b ∈ O such that P (b) = 0 and res(b) = ā.

Remark 1.10. In whatever language considered to study a valued field (K, v), being Henselian is a first-order
property. Indeed, O, k and the map res : O → k are interpretable. Write Px⃗(y) =

∑n
i=0 xiy

i and P ′
x⃗(y) =∑n

i=1 ixiy
i−1 and the set of sentences

∀x0 . . . xn∃ȳ
[
(Pres(x⃗)(ȳ) = 0 ∧ P ′

res(x⃗)(ȳ) 6= 0)→ ∃yPx⃗(y) = 0 ∧ res(y) = ȳ
]

for all n ∈ N>0 is satisfied by a valued field if and only if it is Henselian.

Fact 1.11. (Qp, vp) and (K((t)), vt) are Henselian valued field.

Remark 1.12. In Qp we have the p-adic absolute value given by |a|p = p−vp(a). We have |a+ b|p ≤ max {|a|p, |b|p}
and |·|p endows Qp with an ultrametric for which Qp is complete. Using Newton’s method, one gets a results
due to Hensel, that every complete valued field with v(K×) ⊆ R (archimedean value group) satisfies the simple
zero lift property.

Remark 1.13. There seems to be an ambiguity in the litterature about what Hensel’s lemma really is. For a
few authors, Hensel’s lemma is the fact that complete valued fields with archimedean value group satisfy the
simple zero lift, or an equivalent statement such as:

(∗) given a ∈ O and P ∈ O[X] with v(P (a)) > 2v(P ′(a)), there exists b ∈ O with P (b) = 0 and
v(b− a) > v(P ′(a)))

For most authors, this statement (∗) (or any of its variant, or the simple zero lift property) is Hensel’s lemma
itself. See Exercise 7 for a proof that the simple zero lift is equivalent to (∗).
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1.5. The Ax-Kochen-Ershov Theorem. The Ax-Kochen principle follows from a theorem proved in 1965
by Ax and Kochen [4] and independently on the other side of the iron curtain by Ershov [11].

Given any valued field (K, v) with value group Γ and residue field k, there are three cases for the pair of
characteristics (char(K), char(k)):

� (Equicharacteristic 0) (0, 0) this happens if char(k) = 0. Examples are C((X)), R((X)).
� (Equicharacteristic p) (p, p) this happens if char(K) = p. Examples are Fp((X)), Falg

p ((X)).
� (Mixed characteristic) (0, p) this happens if v(p) > 0. An example is Qp.

Remark 1.14. As v(1) = 0, in equicharacteristic 0, one has v(n) = 0 for all n ∈ Z, hence as elements of valuation
0 are invertible in the valuation ring, one has Q× ⊆ O×.

Recall that for two structures M,N in the same language L , we write M ≡ N (in L ) if every L -sentence
true in M is also true in N and vice versa. Recall that a valued field (K, v) can be consider in various equivalent
languages, in particular it can be seen as an L3s-structure (K, k,Γ) where k is the residue field and Γ the valued
group.

Theorem 1.15. (Ax-Kochen-Ershov) Let (K, kK ,ΓK) and (L, kL,ΓL) be two valued fields in the three-sorted
language L3s which are Henselian and of equicharacteristic 0. Then

(K, kK ,ΓK) ≡ (L, kL,ΓL) as valued fields in L3s ⇐⇒

{
kK ≡ kL (as fields in Lres) and
ΓK ≡ ΓL (as ordered groups in Lgp)

This theorem will follow from Pas’ theorem, which we will prove in the next section.
Let us see now how the Ax-Kochen principle follows from this result.

Proof of the Ax-Kochen principle from Theorem 1.15. By contradiction assume that θ is an L3s sentence such
that for some infinite subset S of prime numbers we have (Qp,Fp,Z) � θ for all p ∈ S and (Fp((t)),Fp,Z) � ¬θ
for all p ∈ S.

Let U be a non-principal ultrafilter on the set of primes such that S ∈ U . Consider the L3s-structures

(K, kK ,ΓK) =
∏
U
(Qp,Fp,Z) and (L, kL,ΓL) =

∏
U
(Fp((t)),Fp,Z).

K and L are valued fields. Let σp be the Lring sentence expressing

1 + . . .+ 1︸ ︷︷ ︸
p times

= 0.

For all q, Qp � ¬σq hence by Łoś theorem, K is of characteristic 0. Similarly, for all but one q we have
Fp((t)) � σq hence L is of characteristic 0. Both kK and kL are the pseudo-finite field

∏
U Fp. For all but one

q, we have Fp � ¬σq hence kK and kL are of characteristic 0. We conclude that both (K, v) and (L, v) are of
equicharacteristic 0. The value groups ΓK and ΓL equal

∏
U Z in both cases. By Remark 1.10 we have that

both K and L are Henselian. By Theorem 1.15 we conclude that (K, kK ,ΓK) ≡ (L, kL,ΓL), however by Łoś
theorem, (K, kK ,ΓK) � θ and (L, kL,ΓL) � ¬θ, a contradiction. �

Remark 1.16. The proof shows that for all ultrafilter U on the prime numbers, we have∏
U
(Qp,Fp,Z) ≡

∏
U
(Fp((t)),Fp,Z).

Here is a direct consequence of the AKE Theorem.

Corollary 1.17. For any fields K,L of characteristic 0 we have, as rings

K ≡ L ⇐⇒ K[[t]] ≡ L[[t]]

In particular we have Qalg[[t]] ≡ C[[t]]. Note however that Qalg[t] 6≡ C[t] and Qalg[[t1, t2]] 6≡ C[[t1, t2]].

1.6. Generalised series and further application. Given a field k and an ordered abelian group Γ, we now
define a field k((tΓ)) of generalised series (or Hahn series) with a valuation v having residue field k and value
group Γ.

Recall that a subset A of Γ is well-ordered if each nonempty subset of A has a least element.
We define K = k((tΓ)) to be the set of formal series

f(t) =
∑
γ∈Γ

aγt
γ
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such that the support supp(f) = {γ ∈ Γ | aγ 6= 0} is well-ordered. Using Exercise 4 the binary operations∑
aγt

γ +
∑

bγt
γ :=

∑
(aγ + bγ)t

γ

(∑
aγt

γ
)(∑

bγt
γ
)
:=

∑
γ

 ∑
α+β=γ

aαbβ

 tγ

are well-defined and turn K into an integral domain. Further, we define a valuation on K:

v(
∑

aγt
γ) = min {γ | aγ 6= 0} .

Theorem 1.18. For all k,Γ, the ring K = k((tΓ)) is a field, v is a valuation on K and (K, v) has residue field
k and value group Γ. The valuation ring is denoted k[[tΓ]], it consists of elements of K of positive support.

Proof. The proof of this result is mainly checking facts, and left as an exercise. The fact that K is a field is a
bit more involved and is detailed in Exercise 5. �

Some well-known facts about generalised power series, that we will not have time to prove in this course:
(1) If k is algebraically closed and Γ is divisible, then k((tΓ)) is algebraically closed.
(2) k((tΓ)) is Henselian, for all k and Γ.

This generalised series construction allows us to construct many new examples of Henselian valued field, by
varying the residue field (k = R,C,Fp,Qp, ...) or the value group (Γ = R,Q,Z,Zp,Z × Z, ...). As particular
examples of generalised series, we recover the Laurent series k((t)), for Γ = (Z,+, <) and in particular our
important example Fp((t)) above.

Corollary 1.19. Here are some more consequences of the AKE Theorem 1.15 with the above facts on generalized
series.

(1) For any henselian valued field (K, v) of equicharacteristic 0, residue field k and value group Γ, we have
K ≡ k((tΓ))

as valued fields.
(2) For any non-principal ultrafilter U on the prime numbers, we have∏

U
Qp ≡ F ((t))

as valued fields, where F =
∏

U Fp.

Looking back at the tree representations of the valuation rings Zp and Fp[[t]], one can also represent elements
of k[[tΓ]] as branches of a tree. The tree itself might bit more abstract (e.g. if the value group is dense) but
the tree representation still makes sense. In Zp or Fp[[t]] the “branching” of two elements a and b is at the level
v(a − b). One has to take into account that for an arbitrary Γ and a, b ∈ k[[tΓ]], the “branching” of a and b
might not be an identified point. For instance assume that the support of a and b is γ0 < γ1 < . . . < γω ordered
as the ordinal ω + 16 and assume that aγi = bγi for i < ω and aω 6= bω. There is no branching point between
a and b but the valuation of a− b (namely γω) is very close to where the branching point should be. In effect,
taking arbitrary elements a and b, the valuation of a− b is

sup {γ ∈ A | aα = bα for all α < γ, α ∈ A}
where A is the (well ordered) union of supp(a) and supp(b). In our representation of valued fields as trees, we
will identify the (possibly imaginary) branching point of a and b with the valuation of a− b.

Exercise 4. Let A,B be well-ordered subsets of Γ. Prove the following:
(1) A ∪B is well-ordered;
(2) A+B = {α+ β | α ∈ A, β ∈ B} is well-ordered;
(3) For each γ ∈ Γ there are only finitely many pairs (α, β) ∈ A×B such that γ = α+ β.

Exercise 5. We prove that K = k((tΓ)) is a field. We assume the following:
(Neumann’s Lemma) Let A be a well-ordered subset of Γ. Then

{α1 + . . .+ αn | αi ∈ A,n ∈ N}
is well-ordered and for all γ ∈ Γ there are only a finite number of elements of A whose sum equals Γ.

(1) Let f ∈ K with v(f) > 0. Prove that
∑∞
n=0 f

n ∈ K and that (1− f)
∑∞
n=0 f

n = 1.

6Take for instance Γ = Q, γi =
∑i

j=0 2
−j for i < ω and γω = 2.

9



a
b

≈ v(a− b)

Figure 2. Meet points are valuations

(2) Prove that for any g ∈ K \ {0} there exists c ∈ k, γ ∈ Γ and f with v(f) > 0 such that g = ctγ(1− f).
(3) Conclude.

2. The theorem of Pas

2.1. Angular component map. In a valued field (K, v) note that res↾O× : O× → k× is a multiplicative group
homomorphism. An angular component map on (K, v) is an extension of this homomorphism to the supergroup
K× of O×.

Definition 2.1. Given a valued field (K, v) with residue field k. An angular component map is a map ac : K → k
such that 

ac(a) = 0 ⇐⇒ a = 0

ac : K× → k× is a multiplicative group homomorphism
ac(a) = res(a) whenever v(a) = 0

A valued field equipped with an angular component map is called an ac-valued field.

The first two conditions imply that ac is a multiplicative map i.e. ac(ab) = ac(a)ac(b) for all a, b ∈ K.

Example 2.2. Main examples of angular component maps:
� (In Qp.) Let f =

∑
i≥i0 aip

i with ai0 6= 0. Then we define ac(f) = ai0 = avp(f).
� (In k((tΓ)).) Let f =

∑
i≥i0 ait

i with ai0 6= 0. Then we define ac(f) = ai0 = avt(f).

There are examples7 of valued field which do not have an angular component map, however every valued
field has an elementary extension with an angular component map.

Recall that an abelian group A is pure injective if for all abelian groups B,C where B is a pure subgroup in
C (i.e. B = {c ∈ C | cn ∈ B for some n ∈ N}) any homomorphism B → A extends to a homomorphism C → A.
The following is a classical fact in model theory of groups, see e.g. [8, Theorem 20, p. 171].

Fact 2.3. Every ℵ1-saturated abelian group is pure injective.

Proposition 2.4. Let (K, k,Γ) be an ℵ1-saturated valued field. Then there exists an angular component map
ac : K → k.

7An example is given in [24].
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Proof. We want to find an extension of res↾O× : O× → k× to K×. By ℵ1-saturation of (K, k,Γ) (actually of
the group (k×, ·)) and Fact 2.3 it suffices to prove that O× is pure in K×. If a ∈ K× is such that an ∈ O×,
then v(an) = nv(a) = 0 hence v(a) = 0 i.e. a ∈ O×. �

2.2. The language of Denef-Pas and Pas Theorem. We introduce the three-sorted language of Denef and
Pas to deal with ac-valued fields

Definition 2.5. Let Ldp be the three sorted language defined by:
� one sort for the valued field K in the language of rings Lvf = {+,−, ·, 0, 1} (the valued field sort)
� one sort for the residue field k in a different copy Lres = {+,−, ·, 0, 1} of the language of fields (the

residu field sort)
� one sort for the value group Γ in the language of ordered groups expanded by a constant Lgp =
{+,− <, 0,∞} (the value group sort)
� a function symbol v : K → Γ ∪ {∞} for the valuation
� a function symbol ac : K → k for the angular component map.

Any Ldp-structure is given by a tuple (K, k,Γ, v, ac) with the following maps between the three sorts:

K Γ ∪ {∞}

k

←→v
←→ ac

Note that the language Ldp is countable, in the sense that the number of Ldp-formulas is countable.

Definition 2.6. Let T dp
0 be the Ldp-theory expressing the following for any model (K, k,Γ, v, ac):

� (K, v) is a valued field with value group Γ (i.e. v(K×) = Γ)
� (K, v) is Henselian of equicharacteristic (0, 0).
� ac : K → k is an angular component map for the valued field (K, v) (i.e. ac : K× → k× is a group

homomorphism, ac(a) = 0 iff a = 0) and the residue map res : O → k associated to v is onto and
coincide with ac on the set O× = {a ∈ K | v(a) = 0}8).

Definition 2.7. Let Tres be a theory of fields in Lres and Tgp a theory of ordered abelian group in Lgp we
define T dp = T dp(Tres, Tgp) to be the expansion of T dp

0 obtained by adding Tres in Lres to the residue field sort
and Tgp in Lgp to the value group sort.

For a field k and an ordered abelian group Γ, we will also consider T dp = T dp(Th(k),Th(Γ)).
In 1989, Johan Pas [23] proves :

Theorem 2.8 (Johan Pas). For any complete theory Tres of field in Lres and for any complete theory Tgp of
ordered abelian group in Lgp, the theory T dp = T dp(Tres, Tgp) is complete and eliminates the fields quantifiers.
This means that for any Ldp-formula φ(x, ξ, ū) there exist an Ldp-formula ψ(x, ξ, ū) where the quantifiers ∀, ∃
are only over variables from Lres and Lgp, such that

T dp � ∀xξū [φ(x, ξ, ū)↔ ψ(x, ξ, ū)] .

Proof of the AKE Theorem 1.15 from Theorem 2.8. Let (K, kK ,ΓK) and (L, kL,ΓL) be two valued fields in the
three-sorted language L3s which are Henselian and of equicharacteristic 0. We need to prove that (K, kK ,ΓK) ≡
(L, kL,ΓL) in L3s if and only if kK ≡ kL in Lring and ΓK ≡ ΓL in Lgp. The ’only if’ direction is clear. We
prove the ’if’ direction. Assume that kK ≡ kL and ΓK ≡ ΓL. First, consider (K∗, k∗K ,Γ

∗
K) and (L∗, k∗L,Γ

∗
L)

two ℵ1-saturated elementary extensions (as L3s valued fields) of (K, kK ,ΓK) and (L, kL,ΓL) respectively. By
Proposition 2.4, there exists angular component maps acK∗ : K∗ → k∗K and acL∗ : L∗ → k∗L so that we may
consider (K∗, k∗K ,Γ

∗
K) and (L∗, k∗L,Γ

∗
L) as Ldp-structures. Note that res is always onto the residue field so that

acK∗ and acL∗ are onto. It follows from the hypotheses that (K∗, k∗K ,Γ
∗
K) and (L∗, k∗L,Γ

∗
L) are models of T dp

for T dp = T dp(Th(kK),Th(ΓK)). By Theorem 2.8, T dp is complete, hence (K∗, k∗K ,Γ
∗
K) ≡ (L∗, k∗L,Γ

∗
L) as Ldp

valued fields. In particular, (K∗, k∗K ,Γ
∗
K) ≡ (L∗, k∗L,Γ

∗
L) as L3s valued fields. As (K, kK ,ΓK) ≡ (K∗, k∗K ,Γ

∗
K)

and (L, L,ΓL) ≡ (L∗, k∗L,Γ
∗
L) as L3s valued fields, we conclude (K, kK ,ΓK) ≡ (L, kL,ΓL). �

8To express this: define res : O → k by cases:

res(a) =

{
ac(a) if v(a) = 0

0 if v(a) > 0

and ask that res is a ring homomorphism which is surjective and with kernel m.
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3. Proof of Pas’ theorem

3.1. Algebraic preliminaries. Recall that a valuation satisfies v(a + b) ≥ min {v(a), v(b)}. The ambiguity
really comes when v(a) = v(b), since we have the following:

v(a) < v(b) =⇒ v(a+ b) = v(a)

Indeed, assume that v(a) < v(b), then v(a) = v(a+b−b) ≥ min {v(a+ b), v(b)} (as v(b) = v(−b) by Exercise 6).
Since v(a) < v(b) it must be that v(a) ≥ v(a+ b). On the other hand we have v(a+ b) ≥ min {v(a), v(b)} = v(a)

Exercise 6. Let (K, v) be a valued field. Prove the following:
(1) v(1) = v(−1) = 0
(2) v(a) = v(−a)
(3) If v(a1 + . . .+ an) > min {v(ai)} then there exists i 6= j such that v(ai) = v(aj).
(4) If (a1, . . . , an) 6= ~0 and

∑n
i=0 ai = 0 then there exists i 6= j such that v(ai) = v(aj).

The following is a key lemma to understand how valuations extend to field extensions.

Lemma 3.1. Let (L,w) be an extension of the valued field (K, v). Let
� a1, . . . , ar ∈ Ow such that res(a1), . . . , res(ar) ∈ kL are kK-linearly independent;
� b1, . . . , bs ∈ L× such that w(b1), . . . , w(bs) are in different classes modulo ΓK ;
� {0} 6= {ci,j | 1 ≤ i ≤ r, 1 ≤ j ≤ s} ⊆ K

Then
w(

∑
i,j

ci,jaibj) = min
i,j
{w(ci,jaibj)} = min

i,j
{v(ci,j) + w(bj)}

In particular, (aibj)i,j are K-linearly independent.

Proof. First, as res(ai) are nonzero, we have v(ai) = 0 for all i ≤ r. Let γ = min {v(ci,j) + w(bj) | i, j} and
I = {(i, j) | v(ci,j) + w(bj) = γ}. As w(

∑
(i,j)/∈I ci,jaibj) ≥ min {v(ci,j) + w(bj) | (i, j) /∈ I} > γ, it is enough

to show that w(
∑

(i,j)∈I ci,jaibj) = γ. Observe that there exists j0 such that for all (i, j) ∈ I we have j = j0:
otherwise v(ci,j) + v(bj) = v(ci′,j′) + w(bj′) for j 6= j′ which contradicts that w(bj) and w(b′j) are in different
cosets modulo ΓK . In particular, v(ci,j) = v(ci′,j0). Fix (i0, j0) ∈ I. Then

1

ci0,jbj

∑
(i,j)∈I

ci,jaibj =
∑

(i,j)∈I

ci,j
ci0,j

ai = u

It remains to prove that v(u) = 0 or equivalently res(u) 6= 0 (as v(ci,j/ci0,j) ≥ 0) which follows from
res(a1) . . . res(ar) being linearly independent over kK . The ‘in particular’ part is immediate: bi are nonzero
hence w(bi) 6= ∞ so if

∑
i,j ci,jaibj = 0 with (ci,j)i,j 6= ~0 then valuation is ∞ and so is min {v(ci,j) + v(bj)}, a

contradiction. �

Remark 3.2. Let (K, v) ⊆ (L,w) be a valued fields extension with L a finite field extension of K. Then

[L : K] ≥ [kL : kK ][ΓL : ΓK ]

To see this, take (ai)i∈I such that (res(ai)) are kK-independent and (bj)j∈J with (v(bj)) in different cosets
modulo ΓK , then {aibj | i, j} are K-linearly independent so that [L : K] ≥ |{aibj | i, j}| = |I × J |.

When we consider a valued field extension (K, v) ⊆ (L,w), we have that w � K = v hence for now on we will
write (K, v) ⊆ (L, v).

Corollary 3.3. Let (K, v) ⊆ (L, v) be a valued fields extension.
(1) Let a ∈ L be such that 1, res(a), . . . , res(an) are linearly independent over kK . Then for all c0, . . . , cn ∈ K

we have
v(
∑
i

cia
i) = min

i
{v(ci)}

In particular v(K +Ka+ . . .+Kan) ⊆ ΓK ∪ {∞}.
(2) Let a ∈ L be such that 0, v(a), . . . , v(an) ∈ ΓL are in different classes modulo ΓK . Then for all

c0, . . . , cn ∈ K we have
v(
∑
i

cia
i) = min

i
{v(ci) + iv(a)}

In particular v(K +Ka+ . . .+Kan) ⊆ 〈ΓK , v(a)〉 ∪ {∞}.
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Remark 3.4. Let (K, v) ⊆ (L, v) such that ΓK = ΓL then for all a ∈ L there exist b ∈ K and c ∈ O×
L such that

a = bc. Indeed, let a ∈ L, we have v(a) ∈ ΓK hence there exists b ∈ K such that v(a) = v(b). Then for c = ab−1

we have v(c) = 0 so c ∈ O×
L and a = bc.

Remark 3.5. Let (K, v) ⊆ (L, v) be such that ΓL = 〈ΓK , α〉 for some element α. Assume that a ∈ L is such
that α = v(a). Then every element of L is a product bcan where b ∈ K, c ∈ O×

L for some n ∈ Z. Indeed: if
e ∈ L we have v(e) = γ + nα for some γ ∈ ΓK and n ∈ Z. Then v(ea−n) = γ ∈ ΓK hence there exists b ∈ K
such that v(b) = γ hence for c = eb−1a−n we have v(c) = 0 i.e. c ∈ O×

L and e = bcan.

3.1.1. Henselian fields. Recall that a valued field (K, v) is Henselian if it satisfies the following property:
Simple zero lift. For each P ∈ O[X] and ā ∈ k such that res(P )(ā) = 0 and res(P ′)(ā) 6= 0 there exists

b ∈ O such that P (b) = 0 and res(b) = ā.

Lemma 3.6. Let (K, v) be Henselian of equicharacteristic 0. If P (X) ∈ OK [X] is such that v(P (0)) >
2v(P ′(0)), then there exists a ∈ OK such that{

P (a) = 0

v(a) = v(P (0))− v(P ′(0)).

Proof. Write P (X) = a0 + a1X + . . .+ anX
n and P ′(X) = a1 +2a2X + . . .+ nanX

n−1, so that a0 = P (0) and
a1 = P ′(0). Let Q(X) = 1

a0
P (cX) for c = −a0a1 , then we have

Q(X) = 1−X +
∑
i≥2

ai
a0
ciXi

Note that

v(cia−1
0 ) = (i− 1)v(a0)− iv(a1)

= (i− 1)(v(a0)−
i

i− 1
v(a1))

≥ (i− 1)(v(a0)− 2v(a1)) > 0

In particular v( aia0 c
i) = v(ai)+v(c

ia−1
0 ) > 0. It follows that v(Q(1)) > 0 hence res(Q)(1) = 0 and res(Q′)(1) = 1.

By the simple zero lift, there exists b ∈ K such that Q(b) = 0 and res(b) = 1. In particular v(b) = 0. Let a = cb,
we have P (a) = 0 and v(a) = v(c) = v(P (0))− v(P ′(0)). �

Corollary 3.7. Let (L, v) be a Henselian valued field of equicharacteristic 0. If (K, v) ⊆ (L, v) is such that
kK = kL and γ ∈ ΓL is such that nγ ∈ ΓK , then there exists a ∈ L such that{

an ∈ K
v(a) = γ

Proof. We first establish the following.

Claim 1. For all b ∈ mL and for all n ∈ N there exists a ∈ L such that{
an = 1 + b

v(a− 1) = v(b)

Proof of the claim. Let P (X) = (X +1)n− (1+ b). We have v(P (0)) = v(b) > 0 = 2v(1) = 2P ′(0). By Lemma
3.6, there exists c ∈ L such that P (c) = 0 and v(c) = v(P (0))− v(P ′(0)) = v(b). Then a = c+ 1 is suitable for
the claim. �

Let b ∈ L and c ∈ K such that v(b) = γ and v(c) = nγ. We have v(bnc−1) = 0 so we may apply res and as
kK = kL, there exists d ∈ O×

K such that res(d) = res(bnc−1) (d is of valuation 0 since otherwise res(d) = 0). We
set c′ = cd. Then we have res(bnc′−1) = 1 so bnc′−1 = 1+ u for u ∈ mL and bn = c′(1 + u). By the claim, 1+ u
has an n-th root e with v(e − 1) = v(u) > 0, i.e. res(e − 1) = 0 so res(e) = res(1) so v(e) = 0. It follows that
v(be−1) = v(b) = γ and (be−1)n = c′. This finishes the proof with a = be−1. �

We finish with two important and classical theorems on Henselian fields.

Theorem 3.8. (K, v) is Henselian if and only if for all algebraic field extension L of K, there exists a unique
valuation w on L which extends v.
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Theorem 3.9. (Ostrowski) Let (K, v) be a Henselian valued field and L a finite field extension of K. Let w be
the unique extension of v to L. Then

[L : K] = [kL : kK ][ΓL : ΓK ]χd

for some d ∈ N and

χ =

{
char(kK) if char(kK) > 0

1 if char(kK) = 0.

Remark 3.10. The number d in Theorem 3.9 is usually called the defect of the extension L/K.

The proofs of Theorem 3.8 and 3.9 are beyond the scope of this course.

Corollary 3.11. Let (K, v) be an Henselian valued field with char(k) = 0, then K has no proper immediate
algebraic extensions (i.e. an extension (L,w) of (K, v) such that kK = kL and ΓK = ΓL).

Proof. If (K, v) has an immediate algebraic extension, it has an immediate finite extension (L,w). As ΓK = ΓL
and kK = kL and χ = 1 (as char(kK) = 0) it remains [L : K] = 1 by Ostrowski’s theorem. �

Exercise 7. Prove that the simple zero lift property is equivalent to
(∗) given a ∈ O and P ∈ O[X] with v(P (a)) > 2v(P ′(a)), there exists b ∈ O with P (b) = 0 and

v(b− a) > v(P ′(a)))

First, assume that v(P (a)) > 2v(P ′(a)) for some a ∈ O and P ∈ O[X] \ {0}.
(1) Prove that P ′(a) 6= 0.
(2) Prove that there exists Q(Y,X) ∈ K[X,Y ] such that P (a −X) = P (a) − P ′(a)X +X2Q(a,X) (Hint:

Check out Lemma 3.17 below).
(3) Prove that for Y = X/P ′(a) the polynomial

R(Y ) :=
P (a− P ′(a)Y

P ′(a)2

satisfies:
(a) R(Y ) ∈ O[Y ].
(b) res(R)(0) = 0, res(R′)(0) = −1.

(4) Use the simple zero lift property prove that there exists c ∈ O such that R(c) = 0.
(5) Conclude (∗) by taking b = a− f ′(a)c ∈ O.

Conversely, if P ∈ O[X], res(P )(ā) = 0 6= res(P ′)(ā) then for any lift a ∈ O of ā we have v(P (a)) > 0 = v(P ′(a)).
Conclude using (∗).

Exercise 8. We prove that Zp is definable in Qp in the language of rings:

Zp =
{
a ∈ Qp | ∃y(1 + pa2 = y2)

}
if p 6= 2

and
Z2 =

{
x ∈ Qp | ∃y(1 + 2x3 = y3)

}
.

We detail the steps for p 6= 2, the case p = 2 is similar.
(1) If a ∈ Qp \ Zp.

(a) Check that v(a) is even if a is a square (this does not use a /∈ Zp).
(b) Prove that v(pa2) ≤ −1.
(c) Deduce that v(1 + pa2) ∈ Z is odd.
(d) Conclude.

(2) If a ∈ Zp, consider P (Y ) = Y 2 − (1 + pa2).
(a) Prove that v(P (1)) > 2v(P ′(1)).
(b) Conclude using Exercise 7.

Exercise 9. Let p > 2. Prove that in Fp((t)) the ring Fp[[t]] is definable with the parameter t by the formula

∃y 1 + tx2 = y2.

(Hint: Proceed as in Exercise 8.)
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3.1.2. Henselization.

Fact 3.12. Let (K, v) be any valued field. There exists a valued field extension (Kh, vh) of (K, v) such that:
(1) Kh is an algebraic extension of K (as fields), i.e. K ⊆ Kh ⊆ Kalg;
(2) (Kh, vh) is Henselien;
(3) If (L,w) is a Henselian valued field extending (K, v), then there exists an embedding of valued fields

i : (Kh, vh) → (L,w) over K (i.e. a field embedding i : Kh → L such that i � K = IdK and
i(OKh) = OL ∩ i(Kh)).

(4) (Kh, vh) is an immediate extension of (K, v), i.e. kK = kKh and ΓK = ΓKh .
(Kh, vh) is called the Henselization of (K, v).

(3) will be called the universal property of the Henselization and as often with this sort of property, it implies
that (Kh, vh) is unique up to K-isomorphism of valued field. The proof of Fact 3.12 is beyond the scope of this
course, however we will explain how (Kh, vh) is constructed using infinite Galois theory.

For convenience we assume that K is of characteristic 0 but what we will describe now has an equivalent in
positive characteristic. The absolute Galois group of the field K is by definition:

GK := Aut(Kalg/K)

In infinite Galois theory, GK is identified with the inverse limit of the inverse system of finite groups

{Gal(L/K) | L finite Galois extension of K}

with the restriction maps Gal(M/K)→ Gal(L/K) as connecting homomorphisms, for K ⊆ L ⊆M . Essentially,
an element σ ∈ GK is though of as the family

(σL | L finite Galois extension of K, σL ∈ Gal(L/K) and if M ⊇ L ⊇ K σM � L = σL).

GK is thus a profinite group (=inverse limit of finite groups) and as such is endowed with a topology, which
admits cosets of normal subgroups of finite index as a basis of open sets. The Galois correspondence gives that
there is a one-to-one correspondence

{closed subgroups of GK} ↔
{

intermediate fields K ⊆ L ⊆ Kalg
}

given by

H 7→ fix(H) =
{
a ∈ Kalg | σ(a) = a for all σ ∈ H

}
Gal(Kalg/L) 7→L.

This correspondence is of course more precise (e.g. L/K is Galois iff Gal(L/K) is normal in GK , etc). We
now consider the valued field (K, v). We will use two standard facts from classical valuation theory:

a) (Extension Theorem) For any field extension L of K there exists a valuation w on L extending v.
b) (Conjugation Theorem) If L is a normal field extension of K and w1, w2 two valuations on L extending

v, then there exists a field automorphism σ of L over K such that σ(Ow1
) = Ow2

.
By the extension theorem, there exists a valuation w on Kalg extending the valuation v on K. We define

Dw := {σ ∈ GK | σ(Ow) = Ow} ⊆ GK

Note that Dw is the automorphism group of the valued field (Kalg, w) over (K, v). One proves that Dw is a
closed subgroup of GK and that for any other extension w′ of v to Kalg the groups Dw and Dw′ are conjugate
as subgroups of GK (in particular Dw may not be a normal subgroup). We can now define (Kh, vh):

Kh := fix(Dw) ; vh := w � Kh.

This already gives (1) of Fact 3.12. Using the Galois correspondence, we have

Aut(Kalg/Kh) = Dw = {σ ∈ GK | σ(Ow) = Ow} .

By the Conjugation Theorem, any extension of vh to Kalg have to be conjugated by an element of Aut(Kalg/Kh)
hence vh has a unique extension to Kalg = (Kh)alg. By Theorem 3.8, this gives that (Kh, vh) is Henselian (2).
(3) and (4) need more work, see e.g. [16].
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a

aj2

v(a− aj3)

aj3

aj1

v(a− aj2) = v(aj3 − aj2)

v(a− aj1) = v(aj2 − aj1)

Figure 3. A pseudo-convergent sequence is pseudo-Cauchy

3.1.3. Kaplanski theory of pseudo-convergence. In this section we consider sequences of elements in a valued
field (K, v) with value group Γ. Most sequences will be indexed by ordinals. Those results are due to Kaplanski
[20] and are classical.

Definition 3.13. Let (ai) = (ai)i<λ be a sequence in (K, v) for some limit ordinal λ.
(1) We say that (ai) pseudoconverges to a ∈ K, denoted (ai)  a if (v(ai − a))i<λ is eventually strictly

increasing, i.e. there exists i0 < λ such that for all i0 < i < j < λ we have
v(aj − a) > v(ai − a)

We say that a is a pseudolimit of (ai).
(2) (ai) is a pseudo-Cauchy sequence if there exists i0 < λ such that for all i0 < j1 < j2 < j3 < λ we have

v(aj3 − aj2) > v(aj2 − aj1)

Remark 3.14. Some easy facts.
(1) (A pseudolimit is rarely unique). In fact, if (ai)  a then for all b we have (ai)  b if and only if

v(a− b) > v(a− ai) eventually (i.e. there exists i0 < λ such that v(a− b) > v(a− ai)). See Exercise 10.
(2) (Every pseudoconvergent sequence is a pseudo-Cauchy sequence). If (ai) a then (ai) is a pc-sequence:

let i0 < λ be such that v(a − aj) > v(a − ai) for all i0 < i < j, then if i0 < j1 < j2 < j3 we
have v(aj3 − aj2) = v(aj3 − a + a − aj2) = v(a − aj2) because v(a − aj3) > v(a − aj2). Similarly
v(aj2 − aj1) = v(a− aj1), hence as v(a− aj2) > v(a− aj1) we conclude:

v(aj3 − aj2) = v(a− aj2) > v(a− aj1) = v(aj2 − aj1)

(3) (Valuation of a pc-sequence, I) If (ai) is a pc-sequence then we will consider the sequence (αi) ⊆ Γ such
that v(ai+1 − ai) = αi. The sequence (αi) is eventually strictly increasing. Indeed, for all j > i > i0
we have v(ai+1 − ai) = v(ai+1 − aj + aj − ai) = v(aj − ai) since v(ai+1 − aj) > v(aj − ai). Also
αi+1 = v(ai+2−ai+1) > v(ai+1−ai) = αi for i > i0. If (ai) a we also have αi = v(a−ai) eventually.

(4) (Valuation of a convergent sequence) If (ai) a then the sequence (βi) = (v(ai)) is eventually strictly
increasing or eventually constant. Indeed, suppose first that v(ai) ≥ v(a) for some i > i0, then for all
j > i we have v(a− aj) > v(a− ai) ≥ min {v(ai), v(a)} = v(a) hence v(a) = v(aj) so (βi) is eventually
constant. Otherwise, v(ai) < v(a) for all i > i0 and for i0 < i < j we have v(ai) = v(a − ai) <
v(a− aj) = v(aj).
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We start by constructing limits of pseudo-Cauchy sequences at the cost of extending the valuation.

Lemma 3.15. Let (ai)i<λ be a pseudo-Cauchy sequence in K and let (L, v) be a |λ|+-saturated elementary
extension of (K, v). Then there exists a ∈ L such that (ai) a (in the valued field (L, v)).

Proof. Let i0 < λ be as in the definition of (ai)i<λ being a pc-sequence. Consider the set of formulas:
∆(x) = {v(x− aj) > v(x− ai) | j > i > i0}

For any finite subset ∆0(x), if j0 is the maximal of the indexes of the ai appearing in ∆0, then for any λ > j1 > j0
we have

v(aj1 − aj) > v(aj1 − ai)
for all j0 > j > i > i0. Hence aj0 satisfies ∆0(x). As ∆0 was arbitrary, ∆(x) is finitely consistent. As the
cardinality of ∆ is |λ|, it is satisfied in any |λ|+-saturated elementary extension of (K, v). �

Remark 3.16 (Valuation of a pc-sequence, II). If (ai) is a pc-sequence, then (βi) = v(ai) is either eventually
strictly increasing or eventually constant. Indeed: from Lemma 3.15 (ai) is a pseudoconvergent sequence (in an
extension of (K, v)), then conclude from Remark 3.14 (4), since v(ai) live in ΓK .

Lemma 3.17 (Formal Taylor expansion). Let P (X) ∈ K[X] of degree ≤ n, then there exists P0, . . . , Pn such
that P (X + Y ) =

∑n
i=0 Pi(X)Y i, with P0(X) = P (X), P1(X) = P ′(X) and deg(Pi) ≤ n − i. Moreover, if

O ⊆ K is a subring and P (X) ∈ O[X] then Pi(X) ∈ O[X].

Proof. This is left as an exercise. Prove that for P (X) = Xn we have Pi(X) = CinX
n−i and extend to arbitrary

P by K-linearity. In characteristic 0, this is the Taylor expansion, Pi(X) = P (i)(X)
i! . �

Theorem 3.18 (Polynomials are continuous). Let (ai)i<λ be a sequence of elements in K, a ∈ K and let
P (X) ∈ K[X] be a nonconstant polynomial. If (ai)  a then (P (ai))  P (a). In particular if (ai) is a
pc-sequence then (P (ai)) is a pc-sequence.

Proof. We start with a claim.

Claim 2. Let n ∈ N>0, β1, . . . , βn ∈ Γ, m1, . . . ,mn distinct elements of N>0. Let fi : Γ → Γ the function
fi(γ) = βi+miγ. Let (γj) be a strictly increasing sequence indexed by a limit ordinal. Then there exists i0 ∈ I
such that fi0(γj) < fi(γj) eventually (in j) for all i ∈ I \ {i0}

Proof of the claim. This is an easy exercise, by induction on n. �

Let P be nonconstant of degree n, by Lemma 3.17 there exists (Pi) such that
P (X + Y ) = P (X) + P1(X)Y + . . .+ Pn(X)Y n

in K[X,Y ]. Substitute X with a and Y with a− ai we get:

P (ai)− P (a) =
n∑
i=1

Pi(a)(ai − a)i.

Similarly P (X) = P (a+(X−a)) = P (a)+
∑n
i=1 Pi(a)(X−a)i, hence as P is nonconstant, Pi0(a) 6= 0 for some

1 ≤ i0 ≤ n. Let βi = v(Pi0(a)) and γj = v(aj − a), we have v(Pi0(a)(aj − a)i0) = βi0 + iγj . By the claim there
exists 1 ≤ j0 ≤ n such that for every 1 ≤ j ≤ n with j 6= j0, we have βj0 + j0γi < βj + jγi eventually (in i).
Thus v(P (ai) − P (a)) = βj0 + j0γi eventually. As (γi) is eventually strictly increasing (since (ai)  a), so is
v(P (ai)− P (a)) hence P (ai) P (a). �

Remark 3.19. Let (ai) be a pc-sequence in K and let P ∈ K[X]\{0}. By Theorem 3.18, (P (ai)) is a pc-sequence
hence by Remark 3.16 the sequence (v(P (ai)) is either eventually strictly increasing or eventually constant.

Definition 3.20 (Algebraic type, transcendental type). A pc-sequence (ai) in K is of transcendental type over
K if for all P ∈ K[X] \ {0} the sequence v(P (ai)) is eventually constant. Otherwise (ai) is of algebraic type
over K.

Remark 3.21. If (ai) is a pc-sequence of transcendental type over K, then:
(1) (ai) has no pseudolimit in K. Indeed, if (ai)  a ∈ K, then consider X − a ∈ K[X] \ {0} to reach a

contradiction.
(2) the eventual valuation of (P (ai)) is never ∞. If this happens, then (P (ai)) is eventually constant equal

to 0 but such sequence is not pseudo-Cauchy, contradicting Theorem 3.18.
(3) A pc-sequence (ai) is of transcendental type over K if and only if (P (ai)) does not pseudoconverges to

0, for any nonconstant P (X) ∈ K[X].
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Theorem 3.22. Let (ai) be a pc-sequence in (K, v) of transcendental type over K. Let L = K(X) be the field
of rational functions over K. Then the valuation v extends uniquely to a valuation v : L→ Γ ∪ {∞} such that

v(P ) := eventual value of (v(P (ai)))
for each P ∈ K[X]. Further, (L, v)) is an immediate valued field extension of (K, v) (ΓL = ΓK and kL = kK)
and (ai)  X. Conversely, if (ai)  a in a valued field extension of (K, v) then a is transcendental and the
field isomorphism K(X)→ K(a) over K sending X to a is a valued field isomorphism.

Proof. One easily checks that v(P ) thus defined is indeed a valuation extending v. For instance, if P = QR ∈
K[X] \ {0}, then let α, β, γ be the eventual valuations of (P (ai)), (Q(ai)), (R(ai)) respectively. Then for some
i0 we have P (aj) = α, Q(aj) = β, R(aj) = γ for all j > i0. As P (aj), Q(aj), R(aj) are elements of K and
P (aj) = Q(aj)R(aj) (by the universal property of polynomials) we have v(P (aj)) = v(Q(aj)) + v(R(aj)) hence
α = β + γ, i.e. v(QR) = v(Q) + v(R). We let the other properties of a valuation to check as an exercise. Note
that the function v defined on K[X] extends uniquely to K(X) by setting v(P/Q) = v(P ) − v(Q). The value
group of (L, v) is clearly ΓK as the eventual value of (P (ai)) is the value of P (aj) ∈ K for some big enough j.

We check that kL = kK . Suppose first that P ∈ K[X] is such that v(P ) = 0. As (ai) a we have by Theorem
3.18 that (P (ai))  P so v(P − P (ai)) is eventually strictly increasing. Eventually, 0 = v(P ) = v(P (ai))
hence v(P − P (ai)) ≥ min {v(P ), v(P (ai)} ≥ 0. As v(P − P (ai)) is eventually strictly increasing, we have
v(P −P (ai)) > 0 eventually, i.e. res(P ) = res(b) ∈ kK for b = P (ai) ∈ O×

K . For any P/Q ∈ L with v(P/Q) = 0,
as ΓL = ΓK there exists r ∈ K such that v(r) = −v(P ) = −v(Q) so that P/Q = (rP )/(rQ) with rP, rQ ∈ K[X]
with v(rP ) = v(rQ) = 0. From above, there exists b1, b2 ∈ O×

K with res(b1) = res(rP ) and res(b2) = res(rQ).
As v(rQ) = v(b2) = 0, rQ and b2 are invertible in O×

L and res((rQ)−1) = res(b2)
−1 so that we can apply the

ring homomorphism: res((rP )/(rQ)) = res((rP )(rQ)−1) = res(rP ) res((rQ)−1) = res(b1) res(b2)
−1 ∈ kK .

We check that (ai)  X. By definition, v(X − ai) is the eventual valuation of (aj − ai)j which is αi =
v(ai+1 − ai) and the sequence (αi) is eventually strictly increasing by Remark 3.14 (3).

Finally, assume that (ai)  a is a valued field extension of K. For any P ∈ K[X] \K we have (P (ai))  
P (a) hence v(P (a)) = v(P (ai)) eventually. By Remark 3.21 (2), v(P (a)) 6= ∞ hence P (a) 6= 0 i.e. a is
transcendental over K. It then follows clearly that the field isomorphism between K(X) and K(a) is a valued
field isomorphism. �

The algebraic counterpart is:

Theorem 3.23. Let (ai) be a pc-sequence in (K, v) of algebraic type over K without pseudolimit in K. Then
(K, v) admits a proper immediate algebraic extension of valued fields.

Proof. The proof is very similar to the previous case, a little more complicated. We leave it as an exercise where
more details about uniqueness of the immediate extension are given, see Exercise 11. �

Corollary 3.24. Let (K, v) be a Henselian valued field of residue characteristic 0. Let (ai) be any pc-sequence
without pseudo-limit in K, then (ai) is of transcendental type.

Proof. Otherwise, (ai) would be of algebraic type and Theorem 3.23 would contradicts that (K, v) has no proper
immediate algebraic extension (Corollary 3.11). �

Proposition 3.25. Let (K, v) ⊆ (L, v) be a valued field extension which is immediate (i.e. ΓK = ΓL and
kK = kL). Let a ∈ L \K then there is a limit ordinal λ and a sequence (ai)i<λ of elements of K such that

(1) (ai)i<λ has no pseudo-limit in K;
(2) (ai) a.

If (K, v) is Henselian of residue characteristic 0 then (ai) is of transcendental type.

Proof. Let I = {v(a− c) | c ∈ K}. We claim that I has no greater element. If v(a − c) ∈ I, then as ΓK = ΓL
there exists b ∈ K such that v(a− c) = v(b). Then v((a− c)b−1) = 0 and as kK = kL there exists d ∈ O×

K such
that res((a− c)b−1) = res(d), i.e. v((a− c)b−1 − d) > 0. Then

v(a− c− bd) = v[b(
a− c
b
− d)]

= v(b) + v((a− c)b−1 − d)︸ ︷︷ ︸
>0

> v(b) = v(a− c).

For c′ = c − bd ∈ K we have v(a − c′) > v(a − c), so I has no greatest element. Choose a sequence (ai)i<λ of
element of K such that {v(a− ai)} is strictly increasing and cofinal in I, then (ai)i<λ  a. By contradiction if
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there exists c ∈ K such that (ai)  c, then by Remark 3.14 (1), v(a − c) > v(a − ai) contradicting cofinality.
The last assumption is by Corollary 3.24. �
Remark 3.26. Combining Theorem 3.22, 3.23 and Proposition 3.25, we also obtain the following result of
Kaplanski [20]: a valued field (K, v) is maximal (i.e. it has no proper immediate extension, equivalently any
valued field extension extends the residue field or the value group) if and only if every pc-sequence in (K, v)
admits a limit in K.

Remark 3.27. Following on the previous remark, a valued field is called algebraically maximal if it admits no
proper immediate algebraic extension. Then a valued field (K, v) is algebraically maximal if and only if every
pc sequence of algebraic type in K has a limit in K. The ‘if’ follows from Proposition 3.25 and Exercise 11
and the ‘only if’ follows from Theorem 3.23. By Corollary 3.11 any Henselian field of residue characteristic 0
is algebraically maximal and it can be shown that in residue characteristic 0, being Henselian is equivalent to
being algebraically maximal.

Exercise 10. Prove that if (ai) a then for all b we have (ai) b if and only if v(a− b) > v(a− ai) eventually.

Exercise 11. Let (ai) be a pc-sequence in (K, v) of algebraic type over K without pseudolimit in K. Then
(K, v) admits an immediate algebraic extension of valued fields (L, v). Let P (X) be of minimal degree d such
that (v(P (ai))) is eventually strictly increasing.

(1) Prove that P is irreducible and of degree ≥ 2.
Let a be a root of P in an extension of (K, v) and let L = K(a). For any polynomial R(X) ∈ K[X] of degree
< d, the sequence v(P (ai)) is eventually constant, hence define:

v(R(a)) = eventual value of v(R(ai)).
(2) Prove that v is a well-defined function on L×.
(3) Prove that v defines a valuation on L (Hint: To prove that v(S(a)T (a)) = v(S(a))+v(T (a)), consider the

Euclidean division by P : S(X)T (X) = P (X)Q(X) +R(X) with deg(R) < d, then S(a)T (a) = R(a)).
(4) Conclude by checking that ΓL = ΓK and kL = kK (Hint. Proceed as in the proof of Theorem 3.22.
(5) (Bonus) If b is another root of P in an extension, prove that there is a valued field isomorphism

K(a)→ K(b) over K sending a to b.

Exercise 12. Assume that (K(a), v) is a proper algebraic immediate extension of (K, v) and (ai) a pc-sequence
of K as in Lemma 3.25 with (ai) a. Let P be the minimal polynomial of a over K.

(1) Prove that P (ai) = (ai − a)Q(ai) for some Q ∈ K(a)[X].
(2) Deduce that v(P (ai)) is eventually strictly increasing, hence that (ai) is of algebraic type.

3.2. The idea of the proof. Recall that we study ac-valued fields (K, v, ac) in the language Ldp of Denef-Pas,
consisting of a three sorts: one sort for the field K in a copy Lvf of the language of rings, one sort for the
residue field k in a copy Lres of the language of rings and one sort for Γ ∪ {∞} in the language Lgp of ordered
groups expanded by a constant ∞. We also have the valuation v : K → Γ ∪ {∞} and the angular component
map ac : K → k.

K Γ ∪ {∞}

OK k

←→v←

→
ac←

↩

→
← →res

To prove Pas’ theorem we will use the following criterion (see e.g. [7, Lemma 4.2]).

Lemma 3.28. Let T be a theory in a countable language L and ∆ a set of L -formulas closed by boolean
combination. Let M and N be ℵ1-saturated models of T . If the following holds:

� for all f : A→ B isomorphism between two countable substructures A of M and B of N which preserves
∆-formulas (M � φ(a) =⇒ N � φ(f(a)) for all tuple a from A and φ(x) ∈ ∆), then for any a ∈ M
there exists an isomorphism g between two substructures of M and N respectively which extend f ,
preserves ∆-formulas and has the element a in its domain.

then every L -formula is equivalent to a ∆-formula modulo T . Further, if given any model M,N of T , the same
∆-sentences are satisfied by M and N , then T is complete.

In multi-sorted logic, each sort come equipped with a distinguished set of variable. Quantifying over a variable
from a given sort means that the interpretation of the quantification (“for all”, “there exists”) is restricted to the
elements of the sort. In order to distinguish between the three sorts, we will use different symbols as variable:

� x, y, z, . . . for the field sort,
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� ξ, ζ for the group sort,
� x̄, ȳ, . . . for the residue sort.

An example of Ldp sentence is the following:
∀x∀ξ(v(x) = ξ ∧ (∀ζ ξ + ζ = ζ))→ (∃ȳ ac(x)ȳ = 1).

In any ac-valued field, which is a complicated way to express that if v(x) = 0 then ac(x) has an inverse. Note
that ac(x) = 0 if and only if x = 0 hence

T dp � ∀x(x 6= 0↔ ∃ȳ ac(x)ȳ = 1)

which is a (silly) example of a quantified formula ∃ȳ ac(x)ȳ = 1 being equivalent modulo T dp to a quantifier-free
one x 6= 0. Example 3.29 below gives a less trivial example of quantifier elimination.

We consider the set ∆ of Ldp-formulas in which the quantifiers ∀, ∃ only range over variable x̄, ȳ from the
residue field and ξ, ζ from the value group. The goal of this section is to use Lemma 3.28 with the set ∆ to
prove that every formula in Ldp is equivalent modulo T dp to a formula from ∆. A formula from ∆ will also be
called a ∆-formula.

Example 3.29. Let us consider now a less trivial example of quantifier elimination in a model (K, k,Γ, v, ac)
of T dp. Let f ∈ Z[X] be an irreducible polynomial, which can be seen as a polynomial in K[X] and in k[X]
because (K, v) is of equicharacteristic 0. Since 1 is in the language of rings,

n = 1 + . . .+ 1︸ ︷︷ ︸
n times

is a term hence so are f(x), f ′(x), f(ȳ), f ′(ȳ). The following Ldp-sentence holds in (K, v)

∀y

[∃x f(x) = 0 ∧ v(x− y) > 0 ∧ v(y) = 0]︸ ︷︷ ︸
ϕ(y)

↔ [∃ȳ f(ȳ) = 0 ∧ f ′(ȳ) 6= 0 ∧ v(y) = 0 ∧ ac(y) = ȳ]︸ ︷︷ ︸
ψ(y)


So the formula φ(y) is equivalent modulo T dp to the ∆-formula ψ(y) which has no quantifier in the valued field
sort. We check that the above sentence indeed hold in every model of T dp. As (K, v) is Henselian, we have in
particular that every simple root of f in k can be lifted to a root of f in K. This gives the right to left direction,
the assumption of v(y) = 0 is there to ensure that res = ac. The left to right direction is just applying the ring
homomorphism res to the equation f(x) = 0, knowing that Z ⊆ O× and that f(x) is separable.

In order to apply Lemma 3.28, we consider two ℵ1-saturated models (K, kK ,ΓK , v, ac) and (L, kL,ΓL) of T dp.
Note that in every model of T dp the substructure generated by the constants are isomorphic: it is (Z,Z, {0,∞})
with trivial valuation (v(a) = 0 if a 6= 0 and v(0) =∞) and ac = Id.

We consider two countable substructures (A, kA,ΓA) and (B, kB ,ΓB) of (K, kK ,ΓK , v, ac) and (L, kL,ΓL) re-
spectively and assume that there exists an isomorphism f : (A, kA,ΓA)→ (B, kB ,ΓB) which preserves formulas
in ∆. As an Ldp-isomorphism, f really consists of three maps f = (f↾A, f↾kA , f↾ΓA

) where:
� f↾A is a ring isomorphism between A and B;
� f↾kA is a ring isomorphism between kA and kB ;
� f↾ΓA

is an ordered group isomorphism between ΓA and ΓB , mapping ∞ to ∞.
� f commutes with both v and ac:

f↾ΓA
(v(a)) = v(f↾A(a)) and f↾kA(ac(a)) = ac(f↾A(a)).

We want prove that for any a ∈ K \ A we may extend f to an Ldp-isomorphism with domain a subset of
(K, kK ,ΓK) containing a and which preserves formulas from ∆. We will prove a little more:
for any countable elementary substructure (E, kE ,ΓE) of (K, kK ,ΓK) containing (A, kA,ΓA), we can extend f

to an Ldp-isomorphism with domain (E, kE ,ΓE) which preserves ∆-formulas.
This will give the result since for any a ∈ K there exists a countable elementary substructure of (K, kK ,ΓK)
containing A and a, by the downward Lowehein-Skolem theorem (we assume that all languages are countable).

Let (E, kE ,ΓE) be a countable elementary substructure of (K, kK ,ΓK) extending (A, kA,ΓA). We will extend
f to (E, kE ,ΓE) in the following steps:

� (Step 0) kA is an Lres-structure of kK , hence is a ring (or rather an integral domain), we extend f↾kA
to the fraction field Frac(kA) of kA and assume that kA and kB are fields. We then extend similarly
f↾A to the fraction field of A to assume that A,B are fields.
� (Step 1) We extend f↾kA to kE to assume that kA = kE and similarly we extend f↾ΓA

to ΓE to assume
that ΓA = ΓE . This uses that the maps f↾kA and f↾ΓA

are elementary and ℵ1-saturation of (L, kL,ΓL).
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� (Step 2) We extend f↾A to a field C with A ⊆ C ⊆ E such that res : OC → kE is onto (hence in
particular ac is also onto). To do so, we exhibit a preimage under res of an element of kE which is
not in the residue res(OA) of A and extend f to this preimage. There are two subcases: 3.5.1 where
the element is algebraic over res(OA) (in which case we use Henselianity of E and Corollary 3.3 (1))
and 3.5.2 where the element is transcendental over res(OA) (in which case we use a similar but simpler
argument).
� (Step 3) We extend f↾A to ensure that v(A×) = ΓE . We exhibit preimage under v of an element in
ΓA \ v(A×) and extend f on it. There are two subcases: 3.6.2 where the element is of torsion modulo
v(A×) (in which case we use Henselianity and Corollary 3.3 (2)) and 3.6.1 where it is not of torsion (in
which case we use a similar but simpler argument again).
� (Step 4) We extend f↾A to E. By the previous steps, any element a ∈ E \ A defines an immediate

valued field extension A(a) of A. There are two subcases: if a is algebraic over A, then a belongs to
the Henselization Ah of A and the fact that E is henselian and the universal property of Henselization
allows to extend f to Ah. The other case is when a is transcendental over A in which case Kaplanski
theory of pseudo-convergence (subsection 3.1.3) yields a unique way of extending f to A(a).

Remark 3.30. (Preserving ∆-formulas) We observe that a ∆-formula Φ(x, ȳ, ξ) is equivalent to a formulas of
the form

(Qȳ′)(Qξ′)ψ(x, ȳ, ȳ′, ξ, ξ′)

where x is a tuple of Lvf -variables, ȳ, ȳ′ are tuples of Lres-variables, ξ, ξ′ are tuples of Lgp-variables, (Qȳ′)(Qξ′)
are quantifications over those variables and ψ is quantifier-free. As symbols in Ldp only apply to variables in
the appropriate sort, ψ is equivalent to a disjunction of formulas of the form

φvf(x) ∧ ψres(ac(t1(x)), ȳ, ȳ
′) ∧ ψgp(v(t2(x)), ξ, ξ

′)

where φvf is from Lvf , ψres is from Lres, ψgp is from Lgp and t1(x), t2(x) are Lvf -terms. This is because the
only terms in Lgp that can be equal to a variable from Lgp are Lgp-terms and v(t1(x)) for some Lvf -term t1
and similarly for the residue sort. In turn as (Qȳ′) only use free variable from ψres, we may put (Qȳ′) in front
of ψres and similarly for (Qξ′) and ψgp so that ψ is equivalent to a disjunction of formulas of the form

φvf(x) ∧ φres(ac(t1(x)), ȳ) ∧ φgp(v(t2(x)), ξ)
for a quantifier-free Lvf -formula φvf , an Lres-formula φres and an Lgp-formula φgp. In particular, f↾kA preserves
all Lres-formulas, so f↾kA is an elementary (partial) map between kA ⊆ (K, kK ,ΓK) and kB ⊆ (L, kL,ΓL), in
the following sense:

(K, kK ,ΓK) � φres(ā1, . . . , ān) ⇐⇒ (L, kL,ΓL) � φres(f↾kA(ā1), . . . , f↾kA(ān)).
Similarly f↾ΓA

is an elementary (partial) map ΓA → ΓB .

Note that (K, kK ,ΓK) and (L, kL,ΓL) satisfy the same ∆-sentences since those involving the valued field are
quantifier-free, hence only talk about the characteristic.

3.3. Step 0. We extend f to Frac(kA) and Frac(A).
First, ΓA and ΓB are subgroups of ΓK and ΓL respectively because Lgp contains +,−. The substructure

kA of kK is a priori an integral domain (a substructure need only be closed under functions of the language,
that would be different if there were a function symbol −1 for the inverse) and the fraction field Frac(kA) is a
subset of kK . We extend f↾kA to Frac(kA) by setting f( ā

b̄
) = f(ā)

f(b̄)
∈ KL for ā, b̄ ∈ kA. This extension is unique

and f↾kA is still elementary: it is an easy exercise to prove that each Lres-formula involving fractions ( āi
b̄i
) is

equivalent to an Lres-formula involving ai, bi. In light of Remark 3.30 the extension of f thus obtained preserves
∆-formulas. f is still an Ldp-isomorphism since there is no commutativity conditions to check. Similarly, the
map f↾A extends (uniquely) to a field isomorphism between Frac(A) and Frac(B) which commutes with v: if
a
b ∈ Frac(A) then v(ab ) = v(a)−v(b) ∈ ΓA and f↾ΓA

(v(a)−v(b)) = v(f↾A(a))−v(f↾B(b)) = v(
f↾A(a)
f↾A(b) ) = v(f(ab )).

For a, b 6= 0 we have ac(ab ) =
ac(a)
ac(b) hence because we first extended f to Frac(kA) we similarly conclude that f

commutes with ac.

3.4. Step 1. We extend f to kE and ΓE .
Let (āi)i<ω be an enumeration of kE \ kA, this exists since (E, kE ,ΓE) is a countable structure. Consider

the set Σ(x) of Lres-formulas φ(x̄) with parameters in kA and such (K, kK ,ΓK) � φ(ā0). Let Σ0(x) be a
finite subset of Σ and write φ(x̄, c̄1, . . . , c̄n) for the conjunction of the formulas in Σ0, with c̄i ∈ kA. As
(K, kK ,ΓK) � ψ(ā0, c̄1, . . . , c̄n) we have (K, kK ,ΓK) � ∃x ψ(x, c̄1, . . . , c̄n). Note that ∃x̄φ(x̄, c̄1, . . . , c̄n) is a
∆-formula, hence (L, kL,ΓL) � ∃x ψ(x, f(c1), . . . , f(cn)), since f↾kA is elementary. As Ldp is countable and
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(A, kA,ΓA) is countable, the set Σf (x̄) =
{
φf (x̄) | φ ∈ Σ

}
is also countable, for φf (x̄) the Lres-formula with

parameters in (B, kB ,ΓB) obtained by applying f to every parameters from kA in φ. By above, Σf is finitely
satisfiable in (L, kL,ΓL), it follows from ℵ1-saturation that there exists b̄0 ∈ L satisfying Σf (x̄). It follows from
Remark 3.30 and the fact that ac(A) ⊆ kA that the extension of f to A ∪ {ā0} → B ∪

{
b̄0
}

by f(ā0) = b̄0
preserves all ∆-formula. For any i < ω, the set Aā0, . . . , āi is still countable hence by induction we may
iterate the above argument to extend fkA to a partial map kE → f(kE) preserving all ∆-formulas. As kE is
a field and A did not change, (A, kE ,ΓA) is still a substructure of (E, kE ,ΓE) and f is an Ldp-isomorphism
(A, kE ,ΓA)→ (B, f(kE),ΓB) which preserves ∆-formulas.

We follow the exact same strategy for extending f to ΓE by taking an enumeration (γi)i<ω of ΓE \ΓA, using
this time that f↾ΓE

is Lgp-elementary and that v(A×) ⊆ ΓA. In a sense, Remark 3.30 gives a “separation of
sorts”, to be understood as: tpLdp(γi/(A, kA,ΓA)γ0 . . . γi−1) is really given by tpLgp(γi/ΓAγ0 . . . γi−1) . This is
really because there is no map going from the group sort (or the residue field sort) to another sort.

Remark 3.31. In the rest of the proof if we extend f to an Ldp-isomorphism between a substructure (C, kE ,ΓE) ⊇
(A, kE ,ΓE) of (E, kE ,ΓE) and its image, it will automatically preserve all ∆-formulas. This follows from Remark
3.30 since v(C×) ⊆ ΓE and ac(C) ⊆ kE and f↾kE , f↾ΓE

are elementary.

By Step 1 and the previous Remark, we are given an Ldp-isomorphism f : (A, kE ,ΓE)→ (B, f(kE), f(ΓE))
which preserves ∆-formulas (in particular f↾kE is Lres-elementary and f↾ΓE

is Lgp-elementary) and we need to
extend it to (E, kE ,ΓE). Note that at this point we may have res(OA) ⊊ kE and v(A×) ⊊ ΓE. In Step 2 and
Step 3 we will ensure that both res and v are onto.

3.5. Step 2. We extend f to a subfield C ⊆ E such that res(OC) = kE .
Denote by k̃A, k̃B the residue fields of (A, v) and (B, v) respectively, i.e. res(OA) = k̃A ⊆ kA and res(OB) =

k̃B ⊆ kB . As f defines an isomorphism of valued fields between (A, v) and (B, v), it induces an isomorphism
between k̃A and k̃B . Let ā ∈ kE \ k̃A. There are two subcases: ā is algebraic over k̃A or ā is transcendental over
k̃A.

3.5.1. ā is algebraic over k̃A. Let P̄ (X) be its minimal monic polynomial over k̃A and let P (X) ∈ OA[X] be a
monic polynomial obtained by lifting the coefficients of P̄ (X) (and taking 1 as a lift for the leading coefficient). P
has the same degree as P̄ and because res : OA → k̃A is a ring homomorphism which extends to OA[X]→ k̃A[X]

and res(P ) = P̄ we obtain that P (X) is irreducible over OA and over A. As k̃A is of characteristic 0 and P̄
is irreducible, P̄ ′(a) 6= 0. As E is Henselian, simple zeros lift, hence there exists a ∈ OE such that P (a) = 0
and res(a) = ā. On the other side, f(P )(X) is irreducible over B and of the same degree as P as f is a field
isomorphism between A and B. Similarly f(P̄ )(X) is irreducible and separable over k̃B with f(ā) as a single
root, hence by Hensel’s Lemma there exists b ∈ L with f(P )(b) = 0 and res(b) = f(ā). We extend f↾A to a field
isomorphism9 between A(a) and B(b) by setting f(a) = b. We need to check that this isomorphism preserves
the valuation and commutes with ac.

As a k̃A-vector space, k̃A(ā) admits 1, ā, . . . , ān−1 as a basis. By Corollary 3.3 (1), for all u0, . . . , un−1 ∈ A
we have

v(

n−1∑
i=0

uia
i) = min

i
{v(ui)} ∈ ΓA

Similarly, 1, res(b), . . . res(b)n−1 is a basis of k̃B(f(ā)) hence v(
∑n−1
i=0 f(ui)b

i) = mini {v(f(ui))} ∈ ΓB for all
f(ui) ∈ B. Note that this gives that A(a) and B(b) are unramified extensions of A and B respectively, for the
valuations induced on A(a) and B(b) by (K, v) and (L, v). As f↾ΓA

preserves the order and v(ui) ∈ ΓA, we
have f(mini {v(ui)}) = mini {f(v(ui))}. We also have f(v(ui)) = v(f(ui)) for all i since ui ∈ A. We conclude
f(v(

∑n−1
i=0 uia

i)) = v(f(
∑
i uiai)).

It remains to check that f commutes with ac. As A(a) is an unramified extension of A, by Remark 3.4, every
element in A(a) can be written as the product du where u ∈ A and d ∈ A(a) with v(d) = 0. Then f(ac(du)) =
f(ac(d)ac(u)) = f(ac(d))f(ac(u)). As f � (A, kA,ΓA) is an Ldp-isomorphism we have f(ac(u)) = ac(f(u)).
As v(d) = 0, ac(d) = res(d) so f(res(d)) = res(f(d)) = ac(f(d)) because f is a valued field isomorphism
A(a)→ A(b) (and v(f(d)) = 0). We conclude f(ac(du)) = ac(f(du)).

9This is very standard: first A[X] and B[X] are isomorphic and the ideal (P ) in A[X] (respectively (f(P )) in B[X]) is the kernel
of the evaluation map A[X] → A(a) (resp. B[X] → B(a)) which yields A(a) ∼= A[X]/(P ) ∼= B[X]/(f(P )) ∼= B(b).
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3.5.2. ā is transcendental over k̃A. Then so is f(ā) over k̃B and let a ∈ OE , b ∈ OL be such that res(a) = ā and
res(b) = b̄. As res is a ring homomorphism we have that a and b are transcendental over A and B respectively.
We can extend f↾A to a field isomorphism A(a)→ B(b) with a 7→ b. Reasoning as in 3.5.1 using Corollary 3.3
(1) we get that A(a)/A and B(b)/B are unramified valued field extensions (for the induced valuation from K
and L respectively) and f commutes with the valuation. Again, as in 3.5.1 we get that f also commutes with
ac by writing every element of A(a) as the product of an element of O×

A(a) and an element of A (Remark 3.4).
By considering a countable enumeration of kE \ k̃A and reasoning as in Step 1, we conclude Step 2.

3.6. Step 3. We extend f↾A to a subfield C ⊆ E such that v(C×) ⊆ ΓE . Let Γ̃A = v(A×) be the value group
of A and let γ ∈ ΓA \ Γ̃A with γ > 0. Let Γ̃B = v(B×) = f(Γ̃A). There are two cases: there exists n such that
nγ ∈ Γ̃A (γ is torsion modulo Γ̃A) or nγ /∈ Γ̃A for all n (γ is not torsion modulo Γ̃A). Note that at this point
(A, v) and (E, v) have same residue field by Step 2.

3.6.1. γ is torsion modulo Γ̃A. Let n be minimal such that nγ ∈ Γ̃A. Observe that 0, γ, . . . , (n − 1)γ are in
different cosets modulo Γ̃A. As (A, v) ⊆ (E, v) have same residue field and (E, v) is Henselian, by Corollary
3.7 there exists a ∈ E such that an ∈ A and v(a) = γ. By minimality of n we also have that Xn − an is the
minimal polynomial of a over A: otherwise

∑n−1
i=0 uia

i = 0 for some ui ∈ A not all zero, then by Corollary 3.3
(2), v(

∑n
i=0 uia

i) = mini {v(ui) + iγ} so this implies that v(ui) + iγ = v(uj) + jγ for some 0 ≤ i < j < n,
contradicting minimality of n.

As f↾ΓA
: ΓA → ΓB is an isomorphism and f↾ΓA

(Γ̃A) = Γ̃B , n is also minimal such that nf(γ) ∈ Γ̃B and
0, f(γ), . . . , (n− 1)f(γ) are in different cosets modulo Γ̃B . By Fact 3.12, the Henselization Bh of B is a subfield
of (L, v) with same residue field. By Corollary 3.7, this time applied to the valued field extension (Bh, w) of
(B,w), there exists c ∈ Bh ⊆ L such that cn ∈ B and v(c) = f(γ). Again by minimality of n, Xn − cn is the
minimal polynomial of c over B. We already have that f extends to a field isomorphism A(a)→ B(c) via a 7→ c
and by Corollary 3.3 (2) v(

∑n
i=0 uia

i) = mini {v(ui) + iv(a)} and v(
∑n
i=0 f(ui)b

i) = mini {f(v(ui)) + iv(b)} for
all ui ∈ A, which only depends on Γ̃A, γ (respectively Γ̃B , f(γ)) so, similarly to the previous case, f is a valued
field isomorphism. In order to commute with ac we need to modify c to some b such that ac(b) = f(ac(a)).

As cn ∈ B the element ac(c) ∈ kL is algebraic over f↾kA(kA) = kB . As f↾kA is Lres-elementary, we have
kB ≺ kL which implies10 kalgB ∩ kL = kB , so ac(c) ∈ kB . Consider f(ac(a))ac(c−1) ∈ kB \ {0}. By Step
2, res(OB) = f(kA) = kB hence there exists d ∈ O×

B such that res(d) = f(ac(a))ac(c−1). Let b = cd then
ac(b) = f(ac(a)). Also v(b) = v(c) = f(γ) and bn ∈ B, so as above the extension of f to A(a)→ B(b) mapping
a 7→ b is a valued field isomorphism. Note that Corollary 3.3 (2) implies that v(A(a)×) = 〈ΓA, γ〉 hence by
Remark 3.5 every element of A(a) can be written as product of elements ucan with u ∈ A, c ∈ A(a) with
v(c) = 0 and similarly on the side of B(b). Then using ac(b) = f(ac(a)) and the fact that ac and res coincide
on elements of valuation 0 we conclude that f : A(a)→ B(b) commutes with ac.

3.6.2. γ is torsion-free modulo Γ̃A. Let a ∈ E be such that v(a) = γ. As (nγ)n∈N are in different cosets modulo
Γ̃A, Corollary 3.3 (2) yields

v(
∑
i

uia
i) = min

i
{v(ui) + iv(a)} (?)

for all (ui) ∈ A. (?) has several consequences:
� a is transcendental over A: if

∑
i uia

i = 0, this would imply that v(ui)+ iv(a) = v(uj)+ jv(a) for some
i 6= j contradicting the hypothesis on γ.
� If b ∈ L is such that v(b) = f(γ) then as in the previous point, b is transcendental over B and by (?)

the field isomorphism A(a)→ B(b) mapping a 7→ b commutes with the valuation
� v(A(a)×) = Γ̃A ⊕ 〈γ〉 and v(B(b)×) = Γ̃B ⊕ 〈f(γ)〉

We prove that we may choose a, b as above with ac(a) = 1. As 0 < α < ∞ we have that res(a) = 0 and as
a 6= 0 we have ac(a) 6= 0. In particular there exists u ∈ O×

A such that res(u) = ac(a) hence for a′ = au−1 we
have: a′ transcendental over A, v(a′) = v(a) − v(u) = γ and ac(a′) = 1. Similarly we may move b to b′ such
that ac(b′) = 1. By above the extension f : A(a′)→ B(b′) mapping a′ 7→ b′ is a valued fields isomorphism and
preserves ac using Remark 3.5.

By considering a countable enumeration of ΓE \ Γ̃A and reasoning as in Step 1, we conclude Step 3.

10This is pretty straightforward: let K ≺ L as rings and a ∈ L algebraic over K. Let P (X) ∈ K[X] \ {0} be the minimal monic
polynomial of a over K and n the number of roots of P in L. Then L � ∃≥nx P (x) = 0 hence K � ∃≥nx P (x) = 0 so that every root
of P in L is also in K, in particular a ∈ K. Here ∃≥nxP (x) = 0 is a shortcut for ∃x1, . . . , xn

∧
1≤i ̸=j≤n xi ̸= xj∧

∧
1≤i≤n P (xi) = 0.
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3.7. Step 4. We extend f↾A to E. For any a ∈ E \ A, we have v(a) ∈ ΓE = v(A×) = ΓA by Step 3 and if
v(a) ≥ 0 we have res(a) ∈ kE = res(O×

A) = kA by Step 2 so A(a) is an immediate extension of A. If v(a) < 0
consider a−1 (since we will extend f to the field A(a)). There are two subcases.

3.7.1. a is algebraic over A. Then by Fact 3.12 (4) we have that a is in the Henselization Ah of A. We extend
directly f to Ah. Note first that as E is Henselian, Ah ⊆ E and Ah = Aalg ∩E by Fact 3.12 and the restriction
of the valuation of E to Ah is the (unique) extension of vA to Ah. Similarly, Bh is an immediate extension of
B and f extends (uniquely) to a valued field isomorphism Ah → Bh this follows from the universal property
of the Henselization (Fact 3.12 (3)). Note that the Henselization is an immediate extension hence ΓA(= ΓE)
kA(= kE), ΓB , kB are left unchanged. As Ah is an unramified extension of A, ac extends uniquely to A(a) (by
Remark 3.4) and f commutes with ac.

3.7.2. a is transcendental over A. In this case, by Proposition 3.25, as A is Henselian of residue characteristic
0, there exists a pc-sequence of transcendental type (ai)i<λ of elements of A which has no limit in A and such
that (ai)  a. Then (A(a), v) (in E) is the unique extension of (A, v) as in Theorem 3.22. As (ai)i<λ is a
pc-sequence of transcendental type, so is the sequence (bi)i<λ defined by bi = f↾A(ai), since being a pc-sequence
of transcendental type is expressible as a set of quantifier-free formulas11. By Lemma 3.15 (bi) has a pseudolimit
b in L and f extends to a valued field isomorphism A(a) → B(b) mapping a 7→ b by the “Conversely” part of
Theorem 3.22. As in the previous case, A(a) is an unramified extension of A so ac extends uniquely to A(a)
(by Remark 3.4) and f commutes with ac.

By considering a countable enumeration of E \A and reasoning as in Step 1, we conclude Step 4.

4. Heritage of the AKE theorem in modern model theory

Definition 4.1 (Shelah). Let T be a complete theory in a language L . We say that T is NIP if for all model
M of T and for all L -formula φ(~x, ~y) there exists no family of tuples (ai)i<ω, (bI)I⊆ω such that

M � φ(ai, bI) ⇐⇒ i ∈ I.

A structure M is called NIP if Th(M) is NIP.

Example 4.2. (1) R, C are NIP as fields in Lring.
(2) Any abelian group (in the language of groups) is NIP.
(3) The structure (N, |) is not NIP, where x | y is the divisibility relation. Take (ai)i<ω to be an enumeration

of the primes and (bI)I⊆ω and enumeration of square-free numbers, with bI =
∏
i∈I ai, then ai | bI iff

i ∈ I.

Properties as in Definition 4.1 are generally called combinatorial properties. Those are very robust constraints,
which transfer easily through definability, in the sense that any structure interpretable in an NIP theory is again
NIP. For instance if a domain is NIP, so is its fraction field, if a group G is NIP and H is a definable subgroup,
then the quotient group G/H is NIP as a group. The NIP property is a wide generalisation of o-minimality
and also yields structure theorems on definable sets. For instance, NIP groups which are ‘large’ enough have a
canonical nontrivial quotient which is a compact topological group.

With this in mind, there are two (non-exclusive) directions in current research on NIP theories.
� (“Applied”) Finding new examples of NIP theories or studying intrinsic properties of known NIP the-

ories. This approach usually need to understand structures coming from algebra, analysis, differential
geometry, etc, understand deeply the definable sets in those structures.
� (“Pure”) Only from the definition of NIP, derive abstract properties of NIP structures. This approach

usually uses infinite combinatorics, abstract topological arguments, etc. Properties proved here are very
general and apply to a wide range of structures.

The study of NIP theories, or other similar combinatorial constraints (stables, simple, NTP2,...) is a branch
of model theory that is called classification theory. Back to valued field, here is an important result of Delon
from the 80s [10], which very much relies on the AKE theorem and has a similar taste.

Theorem 4.3. (Delon) Let (K, k,Γ) be a Henselian valued field of equicharacteristic 0. Then

(K, k,Γ) is NIP ⇐⇒
{
k is NIP (as a field in Lres) and
Γ is NIP (as an ordered groups in Lgp)

11Eventually we have v(P (ai))i is constant for all P ∈ A[X] \ {0} so this holds for (P (bi))i eventually for all P ∈ B[X] \ {0}.
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It was later proved by Gurevich and Schmidt that any ordered abelian group is NIP, so the second condition is
actually superfluous. In particular, fields like C((tΓ)),R((t)), etc are NIP. Also those results have been extended
to equicharacteristic p (under additional assumptions) and mixed characteristic (0, p) (also under additional
assumptions). See e.g. [1] for recent results in that direction. In particular any finite extension of Qp is NIP as
a field.

A mixed approach between the pure an the applied approach is to try and classify all given group, field, rings,
graphs with a given constraint. For instance, it is known that every NIP ring has only finitely many maximal
ideals. The two main questions concerning NIP fields are:

Conjecture 4.4. (Henselianity) Every NIP valued field (K, v) is Henselian.

Conjecture 4.5. (Shelah) Every NIP infinite field is either algebraically closed, real-closed or admits a non-
trivial valuation which is Henselian.

It is known that the Shelah conjecture implies the Henselianity conjecture. The Shelah conjecture is still
open, however it has been established in some restricted cases for instance the “dp-minimal” and the “dp-finite”
case (in positive characteristic) by Will Johnson [19, 17, 18]. Those are already important achievements since
the classes of dp-minimal/dp-finite structures contains already our most interesting examples, R,C,Qp. This
trend of research is very much alive and a full characterisation of NIP fields seems within reach, see also [2] for
recent progress from Anscombe and Jahnke

Appendix A. Extra results of Ax and Kochen and a conjecture of Lang

Recall that a ring R is local if it has a unique maximal ideal m. The field k := R/m is called the residue
field, just as in the valued field case. Note that R× = R \m. A local ring R is Henselian if for all polynomials
P (X) ∈ R[X] and any a ∈ R such that

P (a) ∈ m and P ′(a) /∈ m

there is b ∈ R such that P (b) = 0 and a− b ∈ m.

Theorem A.1 (Lifting). Let R be a Henselian local ring of residual characteristic 0. Then the residue field
can be lifted, i.e. there is a field F which is a subring of R such that res : F → k is an isomorphism.

Proof. As R is of residual characteristic 0, k contains Q as a subfield and the injective homomorphism Z → k
lift to a homomorphism Q→ k. In particular R contains the ring Q as a subring. Using Zorn’s Lemma, there
exists a maximal field F contained in R extending Q. Note that F consist of invertible elements of R hence res
is injective on F , so res(F ) is a subfield of k. We now show that F is a lift of k, in the sense that res(F ) = k.
Assume not, then there exists ā ∈ k such that ā /∈ res(F ). There are two cases. First if ā is transcendental over
res(F ). Then for all P ∈ F [X] \ {0} and any lift a of ā (res(a) = ā) we have

res(P (a)) = res(P )(ā) 6= 0.

This means that P (a) is invertible in R, i.e. P (a) ∈ R× so that for any a ∈ res−1(ā) we get that F (a) is a
field contained in R. This contradicts maximality of F . If ā is algebraic over res(F ) hence there exists a monic
polynomial P (X) ∈ F [X] which is a lift of the minimal monic polynomial res(P )(X) of ā over res(F ). Then P (X)
is irreducible over F [X]. As k is of characteristic 0 we have res(P (a)) = 0 and res(P ′(a)) = (res(P ))′(ā) 6= 0
which means P (a) ∈ m and P ′(a) /∈ m. As R is Henselian, there exists b ∈ R such that P (b) = 0 and
res(b) = res(a) = ā. This means that F [b] = F (b) is an algebraic field extension of F contained in R,
contradicting maximality of F . We conclude that such ā cannot exist, i.e. res : F → k is onto. �

A consequence of the lifting theorem is the following extra result of Ax and Kochen [4].

Theorem A.2 (Ax-Kochen). Let P ∈ Z[X1, . . . , Xn] \ {0} and P̄ ∈ Fp[X1, . . . , Xn] its reduction modulo p.
Then for all but finitely many primes p, any zero of P̄ in Fp can be lifted to a zero of P in Zp.

Proof. Let P ∈ Z[X1, . . . , Xn]. Let U be a non-principal ultrafilter on the set of prime numbers. Reasoning as
in the proof of the Ax-Kochen principle, R :=

∏
U Zp is a Henselian local field with residue field k :=

∏
U Fp

hence of characteristic 0. Assume that P has a zero in k, i.e. there exists ā ∈ kn such that res(P )(ā) = 0. By
Theorem A.1, P considered in R[X] also have a solution in R, i.e. there exists b ∈ Rn such that res(bi) = āi
and P (b) = 0, by lifting ā. Note that here both R and k have characteristic 0. Consider now the statement φP
defined by

∀x (P (x) ∈ m)→ (∃yP (y) = 0 ∧ yi − xi ∈ m)

where x = (x1, . . . , xn) and y = (y1 . . . yn). Then R � φP hence by Łoś theorem, we get Zp � φP for all but
finitely many primes p. �
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As a corollary, Ax and Kochen [4] were able to establish a solution to a conjecture of Lang from the 50s,
which were already proven by Greenleaf using algebraico-geometric technics around the same time.

Corollary A.3. (Greenleaf, Ax-Kochen) Let P ∈ Z[X1, . . . , Xn] \ {0} be with constant term equal to zero and
assume that degP < n. Then P has a nontrivial zero in Zp for all but finitely many primes p.

Proof. The polynomial res(P )(X) has a trivial solution in Fp since there is no constant terms. By the Chevalley-
Warning theorem, the cardinality of the set {

a ∈ Fnp | P (a) = 0
}

is divisible by p hence there is a nontrivial zero of res(P ) in Fp. By Theorem A.2, this nontrivial zero lift to a
zero in Zp (which is nontrivial) for all but finitely many primes. �
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The lifting theorem has another consequence. Let n ∈ N>1 and p a prime number. We list similarities and
differences between the two following rings.

Z/pnZ = {0, 1, . . . , pn − 1}

� Ring of cardinality pn.
� Local ring with residue field Fp.
� The unique maximal ideal 〈p〉 is principal.
� The characteristic is pn.
� No lift of the residue field.

Fp[X]/〈Xn〉

� Ring of cardinality pn.
� Local ring with residue field Fp.
� The unique maximal ideal 〈X〉 is principal.
� The characteristic is p.
� Lift of the residue field Fp.

Thus, the two rings Z/pnZ and Fp[X]/〈Xn〉 look very much alike. As for Zp and Fp[[X]] in the AKE theorem,
we show that Z/pnZ and Fp[X]/〈Xn〉 asymptotically share the same first-order theory. We will study local
rings in the language L t

ring = Lring ∪{t} where t is a constant symbol. For n ∈ N>1, let Tn be the L t
ring-theory

of rings R such that
(1) R is a local ring,
(2) the maximal ideal is principal, generated by the constant t: m = 〈t〉,
(3) the residue field k = R/m is of characteristic 0,
(4) tn−1 6= 0 and tn = 0.

We write (R, k, t) for a model of Tn so that R is the local ring, k = R/m is the residue field and t is the
generator of m.

Theorem A.4. Let (R, t) be a model of Tn with residue field k. Then

(R, t) ∼= (k[X]/〈Xn〉, X)

In particular for two models (R, k, t) and (R′, k′, t′) of Tn we have

k ∼= k′ ⇐⇒ (R, k, t) ∼= (R′, k′, t′).

Proof. We start with a claim.

Claim 3. Let R be a local ring with t a generator of the maximal ideal m of R. Let A be a set of representatives
of R modulo m. Then:

(1) for each n ∈ N, r ∈ R, there exists a0, . . . , an−1 ∈ A and s ∈ R such that

r = a0 + a1t+ . . .+ an−1t
n−1 + stn.

(2) If tn−1 6= 0 then tm /∈ 〈tm+1〉 for m < n and (a0, . . . , an−1) in (1) is uniquely determined by n, r.

Proof of Claim 3. See Exercise 13. �

Using (2) of the claim, there is a strictly descending chain of ideals

R = 〈1〉 ⊋ 〈t〉 ⊋ . . . ⊋ 〈tn−1〉 ⊋ 〈tn〉 = {0} .

Hence we may define a valuation v : R→ Z ∪ {∞} by

v(r) =

{
max

{
i | r ∈ 〈ti〉

}
if r 6= 0

∞ if r = 0

and a norm on R via |r| = 2−v(r). Since v takes only finitely many values, R is complete in the metric induced
by | · | so R is Henselian (see Remark 1.13). By Theorem A.1, there is a ring embedding j : k → R such that
res(j(x)) = x for all x ∈ k. In particular, A := j(k) is a set of representatives modulo m. By the universal
property of polynomial rings, j extends to a ring homomorphism jt : k[X]→ R by setting jt(X) = t. By (1) of
the claim, jt is onto and by (2) ker jt = 〈Xn〉. �

Here is an immediate consequence, which could be considered as and Ax-Kochen principle for finite local
rings.
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Corollary A.5. Let U be a non-principal ultrafilter on the set of prime numbers. Then for any n > 1∏
U
(Z/pnZ, p) ∼=

∏
U
(Fp[X]/〈Xn〉, X) as L t

ring-structure.

In particular, for any Lring-sentence φ
(Z/pnZ, p) � φ ⇐⇒ (Fp[X]/〈Xn〉, X) � φ

for all but finitely many primes p.

Proof. Reasoning as in the proof of the Ax-Kochen principle, the residue field on both sides is the pseudo-finite
field

∏
U Fp which is of characteristic 0. It follows that

∏
U (Z/pnZ, p) and

∏
U (Fp[X]/〈Xn〉, X) are both models

of Tn with the same residue field, so Theorem A.4 applies. �
Remark A.6 (For model-theorists). One could ask the following question about the rings

∏
U Z/pnZ and∏

U Fp[X]/〈Xn〉: where do they lie in Shelah’s classification landscape? Using Theorem A.4 we have that
R ∼= F [X]/〈Xn〉 for F =

∏
U Fp. It is easy to see that F [X]/〈Xn〉 is definable12 in the pure theory of the

pseudo-finite field F , so the rings
∏

U Z/pnZ and
∏

U Fp[X]/〈Xn〉 are simple.

Exercise 13. The goal here is to prove Claim 3. We keep the same notations as in the claim.
(a) Prove (1) using induction on n.
(b) Prove that if tn−1 6= 0 then tm /∈ 〈tm+1〉 for all m < n. (Hint. Observe that 1 − tr is a unit, for all

r ∈ R.)
(c) Assume that

∑n−1
i=0 a

i
i + rtn =

∑n−1
i=0 b

i
i + stn for ai, bi ∈ A, r, s ∈ R. By contradiction, let m be the

least i such that ai 6= bi. Prove that (am − bm)tm ∈ 〈tm+1〉.
(d) Prove that am − bm is invertible.
(e) Conclude using (b).

Exercise 14. Let TACF
n be the expansion of Tn expressing further that the residue field is algebraically closed.

The goal of this exercise is to prove that the theory TACF
n is complete and axiomatize (C[X]/〈Xn〉, X).

(a) Check that TACF
n is indeed first-order.

(b) Let R be a model of TACF
n , prove that |R| = |k| where k is the residue field. (Hint. Observe that R is

isomorphic to a k-vector space of dimension n).
(c) Let κ be an uncountable cardinal. Prove that two models of cardinality κ of TACF

n are isomorphic.
TACF
n is called uncountably categorical. (Hint. Use that two algebraically closed fields of uncountable

cardinality are isomorphic and Theorem A.4.)
(d) Conclude that TACF

n is complete. (Hint. Take two arbitrary models R,R′ of TACF
n and consider

elementary extensions of uncountable cardinality.)
(e) As an application, prove the following Lefschetz principle: for all L t

ring-sentence φ

(C[X]/〈Xn〉, X) � φ ⇐⇒ (Falg
p [X]/〈Xn〉, X) � φ

for all but finitely many primes p.

12Consider A = Fn, defines the addition componentwise and the following multiplication:

(a0, . . . , an−1) ∗ (b0, . . . , bn−1) := (a0b0, . . . ,
∑

i+j=k

aibj , . . . ,
∑

i+j=n−1

aibj).

Then (A,+, ∗) ∼= (F [X]/⟨Xn⟩,+, ·).
28



References
[1] Sylvy Anscombe and Franziska Jahnke. Characterizing nip henselian fields, 2022.
[2] Sylvy Anscombe and Franziska Jahnke. Characterizing nip henselian fields, 2022.
[3] James Ax. Zeroes of polynomials over finite fields. Amer. J. Math., 86:255–261, 1964.
[4] James Ax and Simon Kochen. Diophantine problems over local fields. I. Amer. J. Math., 87:605–630, 1965.
[5] James Ax and Simon Kochen. Diophantine problems over local fields. II. A complete set of axioms for p-adic number theory.

Amer. J. Math., 87:631–648, 1965.
[6] Scott Shorey Brown. Bounds on transfer principles for algebraically closed and complete discretely valued fields. Mem. Amer.

Math. Soc., 15(204):iv+92, 1978.
[7] Zoé Chatzidakis. Cours de m2: Théorie des modèles des corps valués. https://www.math.ens.psl.eu/ zchatzid/papiers/cours08.pdf,

2008.
[8] Greg Cherlin. Model theoretic algebra—selected topics, volume Vol. 521 of Lecture Notes in Mathematics. Springer-Verlag,

Berlin-New York, 1976.
[9] C. Chevalley. Démonstration d’une hypothèse de M. Artin. Abh. Math. Sem. Univ. Hamburg, 11(1):73–75, 1935.

[10] Françoise Delon. Types sur {C}((x)). Groupe d’étude de théories stables, 2:1–29, 1978-1979.
[11] Ju. L. Eršov. On elementary theories of local fields. Algebra i Logika Sem., 4(2):5–30, 1965.
[12] Marvin J. Greenberg. Rational points in Henselian discrete valuation rings. Inst. Hautes Études Sci. Publ. Math., (31):59–64,

1966.
[13] Marvin J. Greenberg. Lectures on forms in many variables. W. A. Benjamin, Inc., New York-Amsterdam, 1969.
[14] H. Hasse. Darstellbarkeit von zahlen durch quadratische formen. J. f. reine u. angew. Math., 153:113–130, 1923.
[15] D. R. Heath-Brown. Artin’s conjecture on zeros of p-adic forms. In Proceedings of the International Congress of Mathematicians.

Volume II, pages 249–257. Hindustan Book Agency, New Delhi, 2010.
[16] Franziska Jahnke. An introduction to valued fields. In Lectures in model theory, Münst. Lect. Math., pages 119–149. Eur.

Math. Soc., Zürich, 2018.
[17] Will Johnson. Dp-finite fields i: infinitesimals and positive characteristic, 2020.
[18] Will Johnson. Dp-finite fields v: topological fields of finite weight, 2020.
[19] Will Johnson. The classification of dp-minimal and dp-small fields. J. Eur. Math. Soc. (JEMS), 25(2):467–513, 2023.
[20] Irving Kaplansky. Maximal fields with valuations. Duke Math. J., 9:303–321, 1942.
[21] Serge Lang. On quasi algebraic closure. Ann. of Math. (2), 55:373–390, 1952.
[22] D. J. Lewis. Cubic homogeneous polynomials over p-adic number fields. Ann. of Math. (2), 56:473–478, 1952.
[23] Johan Pas. Uniform p-adic cell decomposition and local zeta functions. J. Reine Angew. Math., 399:137–172, 1989.
[24] Johan Pas. On the angular component map modulo P . J. Symbolic Logic, 55(3):1125–1129, 1990.
[25] Guy Terjanian. Un contre-exemple à une conjecture d’Artin. C. R. Acad. Sci. Paris Sér. A-B, 262:A612, 1966.

Mathematisches Institut der Universität Bonn, Office 4.004, Endenicher Allee 60, 53115 Bonn, Germany
URL: http://choum.net/~chris/page_perso/

29

http://choum.net/~chris/page_perso/

	Introduction and preliminaries
	1. The Ax-Kochen-Ershov Theorem
	2. The theorem of Pas
	3. Proof of Pas' theorem
	4. Heritage of the AKE theorem in modern model theory
	Appendix A. Extra results of Ax and Kochen and a conjecture of Lang
	References

