Higher Randomness and hK-Trivials

Paul-Elliot Anglès d'Auriac Benoît Monin

March 26, 2019

Paul-Elliot Anglès d'Auriac Benoît Monin Higher Randomness and hK-Trivials

▲ □ ▶ < ≥ ▶</p>

< ≣⇒

æ

Consider the following game:

Game of Guessing the Random

For every N:

- I choose a sequence in 2^N (deterministically)
- I randomly get another one by throwing N times a coin
- The other player have to bet on which was obtained randomly.

Consider the following game:

Game of Guessing the Random

For every N:

- I choose a sequence in 2^N (deterministically)
- I randomly get another one by throwing N times a coin
- The other player have to bet on which was obtained randomly.

Which sequence would you bet is obtained randomly ?

Consider the following game:

Game of Guessing the Random

For every N:

- I choose a sequence in 2^N (deterministically)
- I randomly get another one by throwing N times a coin
- The other player have to bet on which was obtained randomly.

Which sequence would you bet is obtained randomly ?

However $Pr(\text{obtaining } A) = Pr(\text{obtaining } B) = 2^{-11}...$

Consider the following game:

Game of Guessing the Random

For every N:

- I choose a sequence in 2^N (deterministically)
- I randomly get another one by throwing N times a coin
- The other player have to bet on which was obtained randomly.

Which sequence would you bet is obtained randomly ?

However $Pr(\text{obtaining } A) = Pr(\text{obtaining } B) = 2^{-11}...$

How to compare the randomness of two sequences ? A random sequence is expected to

- Have no structure
- be not predictable,
- be hard to remember
- ...

• 3 >

- - E - F

How to compare the randomness of two sequences ? A random sequence is expected to

- Have no structure
- be not predictable,
- be hard to remember = being incompressible
- ...

Suppose I moved to 182718525747285286528 Logic Street.

Hi Mom!

Please note my new address is 182718525747285286528 Logic Street.

How to compare the randomness of two sequences ? A random sequence is expected to

- Have no structure
- be not predictable,
- be hard to remember = being incompressible
- ...

Suppose I moved to 100000000000000000 Logic Street.

Hi Mom!

Please note my new address is "1" and 20 "0" Logic Street.

・ 同 ト ・ ヨ ト ・ ヨ ト

Intuition

The more a string is random the bigger is its shortest description (in some coding).

Definition (Kolmogorov Complexity)

$$C(\sigma) = \min\{|\tau| : M(\tau) = \sigma\}$$

where

$$M(0^e 1\sigma) = M_e(\sigma)$$

- $182718525747285286528 \rightarrow 0^{e_{id}} 1182718525747285286528.$
- 100000000000000000 $\rightarrow 0^{e}120$.

Pseudorandomness is not random at all!

イロト イヨト イヨト イヨト

Strategy for the second player

Between A and B, choose the sequence with higher Kolmogorov complexity !

(if you can find it...)

(4日) (日)

< ≣ >

How to measure randomness on infinite sequences ?

When the sequence is infinite, we consider Kolmogorov complexity on prefixes.

¹Note the switch from *C* to *K* a prefix-free version of Kolmogorov complexity, where the size of the program cannot be used as a part of the information...

How to measure randomness on infinite sequences ?

When the sequence is infinite, we consider Kolmogorov complexity on prefixes. Two extremal ${\sf cases}^1$:

Maximal Kolmogorov complexity

 $\forall n, K(A \upharpoonright n) \geq^* n$

Minimal Kolmogorov complexity

 $\forall n, K(A \upharpoonright n) \leq^* K(n)$

where \leq^* is inequality up to a constant.

¹Note the switch from *C* to *K* a prefix-free version of Kolmogorov complexity, where the size of the program cannot be used as a part of the information...

Maximal Kolmogorov complexity

A sequence A is called ML-random if

$\forall n, K(A \upharpoonright n) \geq^* n$

 We expect such sequences to have no sufficiently simple exceptional property,

▲御▶ ▲理▶ ▲理▶ …

Maximal Kolmogorov complexity

A sequence A is called ML-random if

$\forall n, K(A \upharpoonright n) \geq^* n$

- We expect such sequences to have no sufficiently simple exceptional property,
- 2 exceptional properties are $P \subseteq 2^{\omega}$ with $\lambda(P) = 0$,
- Sufficiently simple properties should include $\{A : \forall n, A(2n) = 0\}$ but not $\{A\}$ for complicated A.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

Maximal Kolmogorov complexity

A sequence A is called ML-random if

$\forall n, K(A \upharpoonright n) \geq^* n$

- We expect such sequences to have no sufficiently simple exceptional property,
- 2 exceptional properties are $P \subseteq 2^{\omega}$ with $\lambda(P) = 0$,
- Sufficiently simple properties should include $\{A : \forall n, A(2n) = 0\}$ but not $\{A\}$ for complicated A.

Characterization (Schnorr)

A is ML-random iff A has no sufficiently simple exceptional property, where: P is sufficiently simple iff $P = \bigcap \mathcal{U}_n$ where (\mathcal{U}_n) is a family of open, uniformly r.e. sets with $\lambda(\mathcal{U}_n) \leq 2^{-n}$. Minimal Kolmogorov complexity

A sequence A is called K-trivial if

 $\forall n, K(A \upharpoonright n) \leq^* K(n)$

- Computable sequences are K-trivial,
- but there exist non-computable K-trivials.

< 43 ► < 3 ►

< 3 >

Minimal Kolmogorov complexity

A sequence A is called K-trivial if

 $\forall n, K(A \upharpoonright n) \leq^* K(n)$

- Computable sequences are K-trivial,
- but there exist non-computable K-trivials.
- We expect such sequences to have low computational power,

Characterization (Nies, Hirschfeldt)

A sequence A is K-trivial iff ML-randomness= ML^A -randomness.

A (10) A (10) A (10) A

Higher Randomness

▲御▶ ▲ 国▶ ▲ 国▶

What if we allow more power to decode the description (in K)?

(四) (日) (日)

What if we allow more power to decode the description (in K)?

Definition For a set $A \subseteq \mathbb{N}$, we say that: • A is Π_1^1 if there exists a recursive predicate R such that:

 $n \in A \Leftrightarrow \forall X \subseteq \mathbb{N}, \exists m : R(n, m, A),$

2 A is
$$\Sigma_1^1$$
 if $\mathbb{N} \setminus A$ is Π_1^1 ,

3 A is
$$\Delta_1^1$$
 if A is both Σ_1^1 and Π_1^1 .

What if we allow more power to decode the description (in K)?

Definition

For a set $A \subseteq \mathbb{N}$, we say that:

• A is Π_1^1 if there exists a recursive predicate R such that:

 $n \in A \Leftrightarrow \forall X \subseteq \mathbb{N}, \exists m : R(n, m, A),$

Definition (higher Kolmogorov Complexity)

$$hK(\sigma) = \min\{|\tau| : M(\tau) = \sigma\}$$

where

What if we allow more power to decode the description (in K)?

Definition

For a set $A \subseteq \mathbb{N}$, we say that:

• A is Π_1^1 if there exists a recursive predicate R such that:

 $n \in A \Leftrightarrow \forall X \subseteq \mathbb{N}, \exists m : R(n, m, A),$

Definition (higher Kolmogorov Complexity)

$$hK(\sigma) = \min\{|\tau| : M(\tau) = \sigma\}$$

where

M is a universal prefix-free
$$\Pi_1^1$$
 machine

Why Π_1^1 ?

Recall that

Fact

A is r.e. iff $(n \in A \Leftrightarrow \exists t : \phi_e(n)[t])$.

It's a Σ_1^0 statement. Shouldn't we choose Σ_1^1 in our higher K?

イロン イヨン イヨン イヨン

Why Π_1^1 ?

Recall that

Fact

A is r.e. iff $(n \in A \Leftrightarrow \exists t : \phi_e(n)[t])$.

It's a Σ_1^0 statement. Shouldn't we choose Σ_1^1 in our higher K?

Theorem

 $\mathcal{O} = \{e : \phi_e \text{ codes a well order}\}\$ is Π_1^1 -complete, i.e if A is Π_1^1 , then for some recursive f:

 $n \in A \Leftrightarrow f(n) \in \mathcal{O}.$

・日本・ ・ 日本・ ・ 日本・

Why Π_1^1 ?

Recall that

Fact

A is r.e. iff $(n \in A \Leftrightarrow \exists t : \phi_e(n)[t])$.

It's a Σ_1^0 statement. Shouldn't we choose Σ_1^1 in our higher K?

Theorem

 $\mathcal{O} = \{e : \phi_e \text{ codes a well order}\} \text{ is } \Pi_1^1\text{-complete, i.e if } A \text{ is } \Pi_1^1\text{, then for some recursive } f:$

$n \in A \Leftrightarrow f(n) \in \mathcal{O}.$

- **1** We can slice $\mathcal{O} = \bigcup_{\alpha < \omega_1^{CK}} \mathcal{O}_{\alpha}$,
- 3 Then $A = \bigcup_{\alpha < \omega_1^{CK}} A_{\alpha}$ where $n \in A_{\alpha} \Leftrightarrow f(n) \in \mathcal{O}_{\alpha}$
- (A_α)_{α<ω^{CK}₁} is an increasing union of uniformly Δ¹₁ sets, along computable ordinals.

I don't like technical talks

- We have a new notion of computation, with time going along computable ordinals,
- 2 we plugged this in our definition of K, giving us hK

Now, routine:

▲御▶ ▲理▶ ▲理▶ …

I don't like technical talks

- We have a new notion of computation, with time going along computable ordinals,
- 2 we plugged this in our definition of K, giving us hK

Now, routine:

Minimal higher Kolmogorov complexity

A sequence A is called hK-trivial if

```
\forall n, hK(A \upharpoonright n) \leq^* hK(n)
```

Maximal Kolmogorov complexity

A sequence A is called Π_1^1 -ML-random if

 $\forall n, hK(A \upharpoonright n) \geq^* n$

Question

Do Π_1^1 -ML-randoms have the same kind of properties as ML-randoms?

Question

Do hK-trivials have the same kind of properties as K-trivials?

Question

What about the other notions from algorithmic randomness?

< 43 ► < 3 ►

3 ×

Some answers are already known:

Characterization (Bienvenu, Greenberg, Monin)

A is Π_1^1 -ML-random iff A has no sufficiently simple exceptional property, where: P is sufficiently simple iff $P = \bigcap \mathcal{U}_n$ where (\mathcal{U}_n) is a family of open, uniformly Π_1^1 . sets with $\lambda(\mathcal{U}_n) \leq 2^{-n}$.

Characterization (Bienvenu, Greenberg, Monin)

A sequence A is hK-trivial iff Π_1^1 -ML-randomness= Π_1^1 -ML^A-randomness.

(四) (종) (종)

Some answers are already known:

Characterization (Bienvenu, Greenberg, Monin)

A is Π_1^1 -ML-random iff A has no sufficiently simple exceptional property, where: P is sufficiently simple iff $P = \bigcap \mathcal{U}_n$ where (\mathcal{U}_n) is a family of open, uniformly Π_1^1 . sets with $\lambda(\mathcal{U}_n) \leq 2^{-n}$.

Characterization (Bienvenu, Greenberg, Monin)

A sequence A is hK-trivial iff Π_1^1 -ML-randomness= Π_1^1 -ML^A-randomness.

Now let's get straight to our result!

・ 回 ト ・ ヨ ト ・ ヨ ト

Definition (Weak-2-Randomness, Weak- Π_1^1 -Randomness)

A is W2R if A has no Π_2^0 exceptional property, and W Π_1^1 R for the higher counterpart.

Definition (Martin-Löf $\langle 0' \rangle$, Π_1^1 -Martin-Löf $\langle O \rangle$)

A property $P = \bigcap_n \mathcal{U}_{f(n)}$ is a ML $\langle 0' \rangle$ test if $f \leq 0'$ and $\lambda(\mathcal{U}_{f(n)}) \leq 2^{-n}$. A set A is ML $\langle 0' \rangle$ -random if it is in no ML $\langle 0' \rangle$ test. Π_1^1 -ML $\langle \mathcal{O} \rangle$ -randomness is the higher conterpart.

(1日) (1日) (1日)

Definition (Weak-2-Randomness, Weak- Π_1^1 -Randomness)

A is W2R if A has no Π_2^0 exceptional property, and W Π_1^1 R for the higher counterpart.

Definition (Martin-Löf $\langle 0' \rangle$, Π_1^1 -Martin-Löf $\langle O \rangle$)

A property $P = \bigcap_n \mathcal{U}_{f(n)}$ is a ML $\langle 0' \rangle$ test if $f \leq 0'$ and $\lambda(\mathcal{U}_{f(n)}) \leq 2^{-n}$. A set A is ML $\langle 0' \rangle$ -random if it is in no ML $\langle 0' \rangle$ test. Π_1^1 -ML $\langle \mathcal{O} \rangle$ -randomness is the higher conterpart.

Theorem (Nies ; Kjos-Hanssen, Miller, and Solomon)

A is K-trivial if and only if

$$W2R^{A} = W2R = ML\langle 0' \rangle$$

Theorem (Monin)

 $\mathrm{W}\Pi_1^1\mathrm{R} \neq \mathrm{ML}\langle \mathcal{O} \rangle$

Paul-Elliot Anglès d'Auriac Benoît Monin Higher Randomness and hK-Trivials

Our result

Theorem (Nies ; Kjos-Hanssen, Miller, and Solomon)

A is K-trivial if and only if

$$W2R = W2R^{A} = ML\langle 0' \rangle$$

Theorem (Monin)

 $\mathrm{W}\Pi_1^1\mathrm{R} \supsetneq \Pi_1^1\text{-}\mathrm{ML}\langle \mathcal{O}\rangle$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Our result

Theorem (Nies ; Kjos-Hanssen, Miller, and Solomon)

A is K-trivial if and only if

$$W2R = W2R^{\mathcal{A}} = ML\langle 0' \rangle$$

Theorem (Monin)

 $\mathrm{W}\Pi_1^1\mathrm{R}\supsetneq\Pi_1^1\text{-}\mathrm{ML}\langle\mathcal{O}\rangle$

- If A is hK-trivial, then where is $W\Pi_1^1 R^A$?
- When A is Δ_1^1 , we have $W\Pi_1^1 R = W\Pi_1^1 R^A$. Otherwise...

A (1) > A (2) > A (2) >

Our result

Theorem (Nies ; Kjos-Hanssen, Miller, and Solomon)

A is K-trivial if and only if

$$W2R = W2R^{\mathcal{A}} = ML\langle 0' \rangle$$

Theorem (Monin)

 $\mathrm{W}\Pi_1^1\mathrm{R} \supsetneq \Pi_1^1\text{-}\mathrm{ML}\langle \mathcal{O}\rangle$

- If A is hK-trivial, then where is $W\Pi_1^1 R^A$?
- When A is Δ_1^1 , we have $W\Pi_1^1 R = W\Pi_1^1 R^A$. Otherwise...

Theorem (A., Monin)

A is hK-trivial not Δ_1^1 if and only if

 $\mathrm{W}\Pi_1^1\mathrm{R}^{\mathcal{A}}=\Pi_1^1\text{-}\mathrm{ML}\langle\mathcal{O}\rangle$

Theorem

$\mathrm{W}\Pi_1^1\mathrm{R}\supsetneq\mathrm{ML}\langle\mathcal{O}\rangle$

Theorem

A is hK-trivial not Δ_1^1 if and only if

 $\mathrm{W}\Pi_1^1\mathrm{R}^{\mathcal{A}}=\Pi_1^1\text{-}\mathrm{ML}\langle\mathcal{O}\rangle$

A characterization of non (higher-)computable hK-Trivial that has no equivalent on the lower setting.

→ 伺 ▶ → ミ ▶

- そ 臣 → - -

Theorem

$\mathrm{W}\Pi_1^1\mathrm{R}\supsetneq\mathrm{ML}\langle\mathcal{O}\rangle$

Theorem

A is hK-trivial not Δ_1^1 if and only if

 $\mathrm{W}\Pi_1^1\mathrm{R}^{\mathcal{A}}=\Pi_1^1\text{-}\mathrm{ML}\langle\mathcal{O}\rangle$

A characterization of non (higher-)computable hK-Trivial that has no equivalent on the lower setting.

Thank you for your attention!

(4月) キョン キョン