Higher Randomness and hK-Trivials

Paul-Elliot Anglès d'Auriac Benoît Monin

March 26, 2019

Paul-Elliot Anglès d'Auriac Benoît Monin [Higher Randomness and hK-Trivials](#page-36-0)

 $4.17 + 3$

A F 不同 医 ∢重き

重

 $2Q$

Consider the following game:

Game of Guessing the Random

For every N:

- I choose a sequence in 2^N (deterministically)
- \bullet I randomly get another one by throwing N times a coin
- The other player have to bet on which was obtained randomly.

Consider the following game:

Game of Guessing the Random

For every N:

- I choose a sequence in 2^N (deterministically)
- \bullet I randomly get another one by throwing N times a coin
- The other player have to bet on which was obtained randomly.

Which sequence would you bet is obtained randomly ?

$$
\begin{array}{l} A = \hspace{-.05cm}0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \\ B = \hspace{-.05cm}0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0 \end{array}
$$

Consider the following game:

Game of Guessing the Random

For every N:

- I choose a sequence in 2^N (deterministically)
- \bullet I randomly get another one by throwing N times a coin
- The other player have to bet on which was obtained randomly.

Which sequence would you bet is obtained randomly ?

$$
\begin{array}{l} A = \hbox{0,0,0,0,0,0,0,0,0,0,0} \\ B = \hbox{0,1,0,0,1,1,1,0,0,1,0} \end{array}
$$

However $\mathsf{Pr}(\text{obtaining } A) = \mathsf{Pr}(\text{obtaining } B) = 2^{-11}...$

 Ω

Consider the following game:

Game of Guessing the Random

For every N:

- I choose a sequence in 2^N (deterministically)
- \bullet I randomly get another one by throwing N times a coin
- The other player have to bet on which was obtained randomly.

Which sequence would you bet is obtained randomly ?

$$
\begin{array}{l} A = \hbox{0,0,0,0,0,0,0,0,0,0,0} \\ B = \hbox{0,1,0,0,1,1,1,0,0,1,0} \end{array}
$$

However $\mathsf{Pr}(\text{obtaining } A) = \mathsf{Pr}(\text{obtaining } B) = 2^{-11}...$

$$
\begin{array}{l} A = 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1... \\ B = 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0... \end{array}
$$

 Ω

How to compare the randomness of two sequences ? A random sequence is expected to

- **Have no structure**
- be not predictable,
- be hard to remember
- \bullet ...

 ϵ in ϵ

How to compare the randomness of two sequences ? A random sequence is expected to

- **Have no structure**
- be not predictable,
- \bullet be hard to remember $=$ being incompressible
- \bullet ...

Suppose I moved to 182718525747285286528 Logic Street.

Hi Mom!

Please note my new address is 182718525747285286528 Logic Street.

 Ω

How to compare the randomness of two sequences ? A random sequence is expected to

- **Have no structure**
- be not predictable,
- \bullet be hard to remember $=$ being incompressible
- \bullet ...

Suppose I moved to 100000000000000000000 Logic Street.

Hi Mom!

Please note my new address is "1" and 20 "0" Logic Street.

 λ in λ

Intuition

The more a string is random the bigger is its shortest description (in some coding).

Definition (Kolmogorov Complexity)

$$
C(\sigma) = \min\{|\tau| : M(\tau) = \sigma\}
$$

where

$$
M(0^e 1 \sigma) = M_e(\sigma)
$$

- $182718525747285286528 \rightarrow 0^{e_{id}}1182718525747285286528.$
- $100000000000000000000 \rightarrow 0e120$.

Pseudorandomness is not random at all!

メロメ メ御 メメ きょく ヨメー

重

Strategy for the second player

Between A and B, choose the sequence with higher Kolmogorov complexity !

(if you can find it...)

 \leftarrow

An Del 不同 医 ∢重き

重

 $2Q$

How to measure randomness on infinite sequences ?

A = 01011101101001001011010100101010101010110 . . .

When the sequence is infinite, we consider Kolmogorov complexity on prefixes.

 $2Q$

¹Note the switch from C to K a prefix-free version of Kolmogorov complexity, where the size of the program cannot be used as a part of the information... 御き メミメ メミメー

How to measure randomness on infinite sequences ?

A = 01011101101001001011010100101010101010110 . . .

When the sequence is infinite, we consider Kolmogorov complexity on prefixes. Two extremal cases 1 :

Maximal Kolmogorov complexity

 $\forall n, K(A \restriction n) \geq^* n$

Minimal Kolmogorov complexity

 $\forall n, K(A \upharpoonright n) \leq^* K(n)$

where \leq^* is inequality up to a constant.

¹Note the switch from C to K a prefix-free version of Kolmogorov complexity, where the size of the program cannot be used as a part of the information... メロメ メ御 トメ ミメ メ ミメー

Maximal Kolmogorov complexity

A sequence A is called ML-random if

$\forall n, K(A \upharpoonright n) \geq^* n$

■ We expect such sequences to have no sufficiently simple exceptional property,

←暑→

An Del

Maximal Kolmogorov complexity

A sequence A is called ML-random if

 $\forall n, K(A \upharpoonright n) \geq^* n$

- We expect such sequences to have no sufficiently simple exceptional property,
- **2** exceptional properties are $P \subseteq 2^{\omega}$ with $\lambda(P) = 0$,
- **3** sufficiently simple properties should include ${A : \forall n, A(2n) = 0}$ but not ${A}$ for complicated A.

オ 重 国

Maximal Kolmogorov complexity

A sequence A is called ML-random if

$\forall n, K(A \upharpoonright n) \geq^* n$

- We expect such sequences to have no sufficiently simple exceptional property,
- **2** exceptional properties are $P \subseteq 2^{\omega}$ with $\lambda(P) = 0$,
- **3** sufficiently simple properties should include ${A : \forall n, A(2n) = 0}$ but not ${A}$ for complicated A.

Characterization (Schnorr)

A is ML-random iff A has no sufficiently simple exceptional property, where: *P* is sufficiently simple iff $P = \bigcap \mathcal{U}_n$ where (\mathcal{U}_n) is a family of open, uniformly r.e. sets with $\lambda(\mathcal{U}_n) \leq 2^{-n}$.

 \circ \circ

Minimal Kolmogorov complexity

A sequence A is called K-trivial if

 $\forall n, K(A \upharpoonright n) \leq^* K(n)$

- Computable sequences are K-trivial,
- but there exist non-computable K-trivials.

 290

重す

a Fil

Minimal Kolmogorov complexity

A sequence A is called K-trivial if

 $\forall n, K(A \upharpoonright n) \leq^* K(n)$

- Computable sequences are K-trivial,
- but there exist non-computable K-trivials.
- We expect such sequences to have low computational power,

Characterization (Nies, Hirschfeldt)

A sequence A is K-trivial iff ML-randomness= ML^A -randomness.

Higher Randomness

Paul-Elliot Anglès d'Auriac Benoît Monin [Higher Randomness and hK-Trivials](#page-0-0)

 \leftarrow \Box

御 ▶ イ君 ▶ イ君 ▶

重

What if we allow more power to decode the description (in K)?

 \leftarrow

E.V. 一 (語) …

A F

重

 $2Q$

What if we allow more power to decode the description (in K)?

Definition For a set $A \subseteq \mathbb{N}$, we say that: **3** A is Π^1_1 if there exists a recursive predicate R such that: $n \in A \Leftrightarrow \forall X \subseteq \mathbb{N}, \exists m : R(n, m, A),$ **2** A is Σ^1_1 if $\mathbb{N} \setminus A$ is Π^1_1 , **3** A is Δ_1^1 if A is both Σ_1^1 and Π_1^1 .

What if we allow more power to decode the description (in K)?

Definition For a set $A \subseteq \mathbb{N}$, we say that: **3** A is Π^1_1 if there exists a recursive predicate R such that: $n \in A \Leftrightarrow \forall X \subseteq \mathbb{N}, \exists m : R(n, m, A),$ **2** A is Σ^1_1 if $\mathbb{N} \setminus A$ is Π^1_1 , **3** A is Δ_1^1 if A is both Σ_1^1 and Π_1^1 . Definition (higher Kolmogorov Complexity)

$$
hK(\sigma)=\min\{|\tau|:M(\tau)=\sigma\}
$$

 Ω

where

What if we allow more power to decode the description (in K)?

Definition For a set $A \subseteq \mathbb{N}$, we say that: **3** A is Π^1_1 if there exists a recursive predicate R such that: $n \in A \Leftrightarrow \forall X \subseteq \mathbb{N}, \exists m : R(n, m, A),$ **2** A is Σ^1_1 if $\mathbb{N} \setminus A$ is Π^1_1 , **3** A is Δ_1^1 if A is both Σ_1^1 and Π_1^1 . Definition (higher Kolmogorov Complexity)

$$
hK(\sigma)=\min\{|\tau|:M(\tau)=\sigma\}
$$

where

M is a universal prefix-free
$$
\Pi_1^1
$$
 machine

 Ω

Why Π^1_1 $\frac{1}{1}$

Recall that

Fact

A is r.e. iff $(n \in A \Leftrightarrow \exists t : \phi_e(n)[t]).$

It's a Σ^0_1 statement. Shouldn't we choose Σ^1_1 in our higher K?

す重き。 重

母 ▶ ◀ ヨ ▶

4 0 8

 $2Q$

Why Π^1_1 $\frac{1}{1}$

Recall that

Fact

A is r.e. iff $(n \in A \Leftrightarrow \exists t : \phi_e(n)[t]).$

It's a Σ^0_1 statement. Shouldn't we choose Σ^1_1 in our higher K?

Theorem

 $\mathcal{O} = \{ \mathsf{e} : \phi_\mathsf{e} \text{ codes a well order} \}$ is $\Pi^1_1\text{-complete, i.e if } A$ is Π^1_1 , then for some recursive f :

$n \in A \Leftrightarrow f(n) \in \mathcal{O}.$

④重 800

Why Π^1_1 $\frac{1}{1}$

Recall that

Fact

A is r.e. iff $(n \in A \Leftrightarrow \exists t : \phi_e(n)[t])$.

It's a Σ^0_1 statement. Shouldn't we choose Σ^1_1 in our higher K?

Theorem

 $\mathcal{O} = \{ \mathsf{e} : \phi_\mathsf{e} \text{ codes a well order} \}$ is $\Pi^1_1\text{-complete, i.e if } A$ is Π^1_1 , then for some recursive f :

$n \in A \Leftrightarrow f(n) \in \mathcal{O}.$

- $\, {\bf 0} \,$ We can slice $\, \mathcal{O} = \bigcup_{\alpha < \omega_{\bf 1}^{CK}} \mathcal{O}_{\alpha}$,
- 2 Then $A=\bigcup_{\alpha<\omega_1^{\mathsf{CK}}}A_\alpha$ where $n\in A_\alpha\Leftrightarrow f(n)\in\mathcal{O}_\alpha$
- \bullet ${(A_{\alpha})_{\alpha<\omega_1^{CK}}}$ is an increasing union of uniformly ${\Delta^1_1}$ sets, along computable ordinals.

I don't like technical talks

- We have a new notion of computation, with time going along computable ordinals,
- \bullet we plugged this in our definition of K, giving us hK

Now, routine:

御 ▶ イヨ ▶ イ君 ▶ ○

I don't like technical talks

1 We have a new notion of computation, with time going along computable ordinals,

 \bullet we plugged this in our definition of K, giving us hK

Now, routine:

Minimal higher Kolmogorov complexity

A sequence A is called hK-trivial if

```
\forall n, hK(A \restriction n) \leq^* hK(n)
```
Maximal Kolmogorov complexity

A sequence A is called $\Pi^1_1\text{-}ML\text{-}random$ if

 $\forall n, hK(A \upharpoonright n) \geq^* n$

Question

Do Π_1^1 -ML-randoms have the same kind of properties as ML-randoms?

Question

Do hK-trivials have the same kind of properties as K-trivials?

Question

What about the other notions from algorithmic randomness?

∢重き

 Ω

Some answers are already known:

Characterization (Bienvenu, Greenberg, Monin)

A is $\Pi^1_1\text{-ML-random iff } A$ has no sufficiently simple exceptional property, where: *P* is sufficiently simple iff $P = \bigcap \mathcal{U}_n$ where (\mathcal{U}_n) is a family of open, uniformly Π_1^1 sets with $\lambda(\mathcal{U}_n) \leq 2^{-n}$.

Characterization (Bienvenu, Greenberg, Monin)

A sequence A is hK-trivial iff Π^1_1 -ML-randomness= Π^1_1 -ML^A-randomness.

→ イ団 ト イ ヨ ト イ ヨ ト ー

Some answers are already known:

Characterization (Bienvenu, Greenberg, Monin)

A is $\Pi^1_1\text{-ML-random iff } A$ has no sufficiently simple exceptional property, where: *P* is sufficiently simple iff $P = \bigcap \mathcal{U}_n$ where (\mathcal{U}_n) is a family of open, uniformly Π_1^1 sets with $\lambda(\mathcal{U}_n) \leq 2^{-n}$.

Characterization (Bienvenu, Greenberg, Monin)

A sequence A is hK-trivial iff Π^1_1 -ML-randomness= Π^1_1 -ML^A-randomness.

Now let's get straight to our result!

メ御 トメ ヨ トメ ヨ ト

Definition (Weak-2-Randomness, Weak- Π^1_1 -Randomness)

A is W2R if A has no Π^0_2 exceptional property, and $\mathsf{W}\Pi^1_1\mathsf{R}$ for the higher counterpart.

Definition (Martin-Löf $\langle 0' \rangle$, Π^1_1 -Martin-Löf $\langle \mathcal{O} \rangle$)

A property $P = \bigcap_n \mathcal{U}_{f(n)}$ is a $\mathsf{ML}\langle 0' \rangle$ test if $f \leq 0'$ and $\lambda(\mathcal U_{f(n)})\leq 2^{-n}.$ A set A is ML/0 $^\prime\rangle$ -random if it is in no ML/0 $^\prime\rangle$ test. Π^1_1 -ML $\langle \mathcal{O} \rangle$ -randomness is the higher conterpart.

→ 伊 ト イ ヨ ト イ ヨ ト ー

つくい

Definition (Weak-2-Randomness, Weak- Π^1_1 -Randomness)

A is W2R if A has no Π^0_2 exceptional property, and $\mathsf{W}\Pi^1_1\mathsf{R}$ for the higher counterpart.

Definition (Martin-Löf $\langle 0' \rangle$, Π^1_1 -Martin-Löf $\langle \mathcal{O} \rangle$)

A property $P = \bigcap_n \mathcal{U}_{f(n)}$ is a $\mathsf{ML}\langle 0' \rangle$ test if $f \leq 0'$ and $\lambda(\mathcal U_{f(n)})\leq 2^{-n}.$ A set A is ML/0 $^\prime\rangle$ -random if it is in no ML/0 $^\prime\rangle$ test. Π^1_1 -ML $\langle \mathcal{O} \rangle$ -randomness is the higher conterpart.

Theorem (Nies ; Kjos-Hanssen, Miller, and Solomon)

A is K-trivial if and only if

$$
W2R^A = W2R = ML\langle 0' \rangle
$$

Theorem (Monin)

 $\text{W}\Pi^1_1\text{R} \neq \text{ML}\langle \mathcal{O} \rangle$

 \circ

Paul-Elliot Anglès d'Auriac Benoît Monin [Higher Randomness and hK-Trivials](#page-0-0)

Our result

Theorem (Nies ; Kjos-Hanssen, Miller, and Solomon)

A is K-trivial if and only if

$$
W2R = W2R^A = ML\langle 0' \rangle
$$

Theorem (Monin)

 $W\Pi^1_1R \supsetneq \Pi^1_1\text{-ML}\langle \mathcal{O} \rangle$

メロメ メ御 トメ ミト メ ヨ トー

重

Our result

Theorem (Nies ; Kjos-Hanssen, Miller, and Solomon)

A is K-trivial if and only if

$$
W2R = W2R^A = ML\langle 0' \rangle
$$

Theorem (Monin)

 $W\Pi^1_1R \supsetneq \Pi^1_1\text{-ML}\langle \mathcal{O} \rangle$

- If A is hK-trivial, then where is $W\Pi_1^1\mathsf{R}^A$?
- When A is Δ^1_1 , we have $W\Pi^1_1R= W\Pi^1_1R^A$. Otherwise...

④重 800

重

Our result

Theorem (Nies ; Kjos-Hanssen, Miller, and Solomon)

A is K-trivial if and only if

$$
W2R = W2R^A = ML\langle 0' \rangle
$$

Theorem (Monin)

 $W\Pi^1_1R \supsetneq \Pi^1_1\text{-ML}\langle \mathcal{O} \rangle$

- If A is hK-trivial, then where is $W\Pi_1^1\mathsf{R}^A$?
- When A is Δ^1_1 , we have $W\Pi^1_1R= W\Pi^1_1R^A$. Otherwise...

Theorem (A., Monin)

A is hK-trivial not Δ_1^1 if and only if

 $W\Pi_1^1R^A = \Pi_1^1\text{-ML}\langle \mathcal{O} \rangle$

 Ω

Theorem

$W\Pi_1^1R \supsetneq ML\langle \mathcal{O} \rangle$

Theorem

A is hK-trivial not Δ^1_1 if and only if

$$
\mathrm{W}\Pi^1_1\mathrm{R}^A=\Pi^1_1\text{-}\mathrm{ML}\langle\mathcal{O}\rangle
$$

A characterization of non (higher-)computable hK-Trivial that has no equivalent on the lower setting.

 4 \overline{m} \rightarrow 4 \overline{m}

K 로)

 290

重

Theorem

$W\Pi_1^1R \supsetneq ML\langle \mathcal{O} \rangle$

Theorem

A is hK-trivial not Δ^1_1 if and only if

$$
\mathrm{W}\Pi^1_1\mathrm{R}^A=\Pi^1_1\text{-}\mathrm{ML}\langle\mathcal{O}\rangle
$$

A characterization of non (higher-)computable hK-Trivial that has no equivalent on the lower setting.

Thank you for your attention!

A + + = + + = +