$\alpha\text{-Recursion}$ and Randomness

Paul-Elliot Anglès d'Auriac Benoît Monin

13 avril 2017

・ロン ・四と ・ヨン ・ヨン

æ

Extending computability

イロト イヨト イヨト イヨト

Table of contents

イロン イヨン イヨン イヨン

First step

イロン イヨン イヨン イヨン

Abstract ourselves from computationnal model

Denote $\rm HF$ the set consisting of all hereditarily finite sets. The following theorem caracterise the notion of "being computable" :

Theorem

Let $A \subseteq \mathbb{N}$, then :

- A is computable iff A is Δ_1 -comprehensible in HF,
- **2** A is recursively enumerable iff A is Σ_1 -comprehensible in HF,

▲ 同 ▶ → モラ ▶

Abstract ourselves from computationnal model

Denote $\rm HF$ the set consisting of all hereditarily finite sets. The following theorem caracterise the notion of "being computable" :

Theorem

Let $A \subseteq \mathbb{N}$, then :

- A is computable iff A is Δ_1 -comprehensible in HF,
- **2** A is recursively enumerable iff A is Σ_1 -comprehensible in HF,
- Can be extended to $A \subseteq HF$;
- ${f 2}$ Can be modified by replacing HF by a well chosen set.

・ 同・ ・ ヨ・

Abstract ourselves from computationnal model

Denote $\rm HF$ the set consisting of all hereditarily finite sets. The following theorem caracterise the notion of "being computable" :

Theorem

Let $A \subseteq \mathbf{HF}$, then :

- **(**) A is computable iff A is Δ_1 -comprehensible in HF,
- **2** A is recursively enumerable iff A is Σ_1 -comprehensible in HF,
- Can be extended to $A \subseteq HF$;
- ² Can be modified by replacing HF by a well chosen set.

Theorem

Let $A \subseteq \mathbf{HF}$, then :

- A is computable iff A is Δ_1 -comprehensible in HF,
- **2** A is recursively enumerable iff A is Σ_1 -comprehensible in HF,

What's next

- We have a definition, parametrized by a set,
- to modify it we need to find the sets for which the definition stays interesting;

• we will use Godel's constructibles.

Godel Constructibles

Introduction to Godel's constructibles

 $\mathbb{N},$ $\{n \in \mathbb{N} : n \text{ is even}\},$ $\{n \in \mathbb{N} : n \text{ is prime}\},$ $\{n \in \mathbb{N} : \text{the } n\text{-th diophantine equation has a solution}\},$ $\{n \in \mathbb{N} : \phi(n)\} \text{ where } \phi \text{ is a formula}.$

Remarks :

Are there any other sets than these?

2 Maybe there are a lot?

Paul-Elliot Anglès d'Auriac Benoît Monin

 α -Recursion and Randomness

・ 同 ト ・ ヨ ト ・ ヨ ト

Godel Constructibles

Introduction to Godel's constructibles

 $\mathbb{N},$ $\{n \in \mathbb{N} : n \text{ is even}\},$ $\{n \in \mathbb{N} : n \text{ is prime}\},$ $\{n \in \mathbb{N} : \text{the } n\text{-th diophantine equation has a solution}\},$ $\{n \in \mathbb{N} : \phi(n)\} \text{ where } \phi \text{ is a formula}.$

Godel Constructibles

A universe of sets with no superfluous : strategy

Idea

- If we have nothing, we have no superfluous
- If we have something, *M*, we need to have the sets shaped like :

$$\{x \in M | \phi(x, p)\}$$

Godel Constructibles

A universe of sets with no superfluous : strategy

Idea

- If we have nothing, we have no superfluous
- If we have something, *M*, we need to have the sets shaped like :

$$\{x \in M | \phi(x, p)\}$$

Godel Constructibles

A universe of sets with no superfluous : strategy

Idea

- If we have nothing, we have no superfluous
- If we have something, *M*, we need to have the sets shaped like :

$$\{x \in M | \phi(x, p)\}$$

Godel Constructibles

A universe of sets with no superfluous : strategy

Idea

- If we have nothing, we have no superfluous
- If we have something, *M*, we need to have the sets shaped like :

$$\{x \in M | \phi(x, p)\}$$

Godel Constructibles

A universe of sets with no superfluous : strategy

Idea

- If we have nothing, we have no superfluous
- If we have something, *M*, we need to have the sets shaped like :

$$\{x \in M | \phi(x, p)\}$$

Godel Constructibles

A universe of sets with no superfluous : strategy

Idea

- If we have nothing, we have no superfluous
- If we have something, *M*, we need to have the sets shaped like :

$$\{x \in M | \phi(x, p)\}$$

Godel Constructibles

A universe of sets with no superfluous : strategy

Idea

- If we have nothing, we have no superfluous
- If we have something, *M*, we need to have the sets shaped like :

$$\{x \in M | \phi(x, p)\}$$

Godel Constructibles

A universe of sets with no superfluous : strategy

Idea

- If we have nothing, we have no superfluous
- If we have something, *M*, we need to have the sets shaped like :

$$\{x \in M | \phi(x, p)\}$$

Godel Constructibles

A universe of sets with no superfluous : strategy

Idea

- If we have nothing, we have no superfluous
- If we have something, *M*, we need to have the sets shaped like :

$$\{x \in M | \phi(x, p)\}$$

Ordinals

Definition

An ordinal is a set α such that

- $\ \, \textbf{0} \ \, \alpha \ \, \text{is transitive} : \forall x \in \alpha, \forall y \in x, y \in \alpha \\ \ \, \textbf{0} \ \ \ \ \ \textbf{0} \ \, \textbf{0} \ \, \textbf{0} \ \ \ \ \textbf{0} \ \ \ \textbf{0} \ \ \ \textbf{0} \ \ \ \textbf{0} \ \ \textbf{0}$
- **2** (α, \in) is a well ordering.

- Some ordinals are successors,
- some ordinals are limits.

A precise definition

Gödel's constructible universe (1938)

Gödel's constructible at rank $\alpha,$ written L_{α} are defined by induction alons ordinals :

- $\bullet L_0 = \emptyset,$
- $2 L_{\alpha+1} = \mathrm{Def}(L_{\alpha}),$

The constructibles are the elements of $\bigcup_{\alpha} L_{\alpha}$.

Definition

$$Def(M) = \left\{ E^{M}_{\phi, \bar{p}} : \phi \text{ is a formula and } \bar{p} \in M
ight\}$$

where

$$E^M_{\phi,ar{p}} = \{x \in M : \phi(x,ar{p}) \text{ is true in } M\}$$

イロト イポト イヨト イヨト

臣

(日) (四) (王) (王) (王)

æ

Illustration

 \odot

<ロ> (四) (四) (日) (日) (日)

<ロ> (四) (四) (日) (日) (日)

æ

Illustration

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

(日) (四) (王) (王) (王)

æ

<ロ> (四) (四) (日) (日) (日)

æ

Illustration

(日) (四) (王) (王) (王)

æ

Illustration

æ

Illustration

Examples

The constructibles are constructed layer by layer. These are some particular layers :

- $L_{n+1} = \mathcal{P}(L_n)$ for *n* an integer;
- 2 $L_{\omega} = HF$, the hereditarily finite sets;
- **3** $L_{\omega_1^{CK}} = HYP$, the sets with hyperarithmetic codes;
- $L_{\lambda} = WRT$, the sets with writable codes.

Examples

The constructibles are constructed layer by layer. These are some particular layers :

•
$$L_{n+1} = \mathcal{P}(L_n)$$
 for *n* an integer;

- 2 $L_{\omega} = HF$, the hereditarily finite sets;
- **3** $L_{\omega_1^{CK}} = HYP$, the sets with hyperarithmetic codes;
- $L_{\lambda} = WRT$, the sets with writable codes.

We find again HF!

Examples

The constructibles are constructed layer by layer. These are some particular layers :

•
$$L_{n+1} = \mathcal{P}(L_n)$$
 for *n* an integer;

- 2 $L_{\omega} = HF$, the hereditarily finite sets;
- **③** $L_{\omega_{\tau}^{CK}} = HYP$, the sets with hyperarithmetic codes;
- $L_{\lambda} = WRT$, the sets with writable codes.

We find again HF!

Theorem

Let $A \subseteq \mathbb{N}$, then :

- A is computable iff A is Δ_1 -comprehensible in L_{ω} ,
- **2** A is recursively enumerable iff A is Σ_1 -comprehensible in L_{ω} ,

Computability in a space of sets

The basic definition of $\alpha\text{-recursion}$:

Definition

Let α be an ordinal and $A \subseteq L_{\alpha}$. We say that :

- **4** is α -finite if $A \in L_{\alpha}$;
- **2** A is α -recursive if A is Δ_1 -comprehensible in L_{α} ;

3 A is α -recursively enumerable if A is Σ_1 -comprehensible in L_{α} .

- $\bullet\,$ Some α will reveal more interesting than others,
- A is a set of α -finite elements, not only integers.

Intuition

We see a computation as a search into all the α -finite sets.

Image: A image: A

Admissibility I

It is not yet finished ! Because :

Remark Some α will reveal more interesting than others...

- Which α ?
- Then, what are the properties of L_{α} ?

Admissibility I

It is not yet finished ! Because :

Remark

Some α will reveal more interesting than others...

- Which α ?
 - The admissibles ordinals, the ω_1^X for any $X \in 2^{\omega}$.
- Then, what are the properties of L_{α} ?
 - L_α is then admissible, it verifies the Kripke Platek axioms : L_α is a model of Δ₁-comprehension et Σ₁-collection.

Admissibility II

Definition

- A set is said admissible if it verifies the Kripke-Platek axioms, of which the most notable are Δ_1 -comprehension and Σ_1 -collection.
- An ordinal α is said to be admissible if L_{α} is admissible.
- L_{ω} , $L_{\omega_1^{CK}}$, L_{λ} are admissibles.
- If α is admissible, the mapping of an α -finite by a function of α -recursive graph is α -finite.

Intuition

An ordinal α is admissible if the $\alpha\text{-recursion}$ is not too far from computability.

What did we defined?

Intuition

We see a computation as a search into all the $\alpha\mbox{-finite sets}.$

- ω -recursion, is classical computability;
- ω_1^{CK} -recursion, is higher computability;
- λ -recursion, is ITTM computability.

We have a general and satisfying definition of computability.

 α -Recursion α -Random

Randomness Part

イロン イヨン イヨン イヨン

æ

Defining randomness...

A randomly chosen sequence of bits

```
0111001111010001010101...
```

There exists several paradigms to define what it is to be random for a sequence of bits :

- Impredictability,
- Incompressibility of prefixes,
- No exceptionnal properties.

We will use the third paradigm.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

3

Algorithmic randomness?

Question

For $X \in 2^{\omega}$, what does it means for X to be a random set?

Algorithmic randomness?

Question

For $X \in 2^{\omega}$, what does it means for X to be a random set?

- Has no more even numbers than odd ones,
- is not computable,
- **3** Is not like $b_0 0 b_1 0 b_2 0 ...$

We define randomness by the negative : we remove those which do not seem random.

Formally

Paradigm

X is random if X has no exceptionnal property

Becomes

Definition

X is \mathscr{C} -random if $\forall P \in \mathscr{C}$ such that $\lambda(P) = 0, X \notin P$

・ロト ・ 同ト ・ ヨト ・ ヨト

臣

Formally

Paradigm

X is random if X has no exceptionnal property

Becomes

Definition

X is C-random if $\forall P \in C$ such that $\lambda(P) = 0$, $X \notin P$

Examples of \mathscr{C} :

- the null Π_2^0 ,
- **2** the null Δ_1^1 ,
- the Martin-Löf tests...
- ${\mathscr C}$ countable ensures us that the ${\mathscr C}\text{-randoms}$ are conull.

Martin-Löf Random

- Martin-Löf randomness has been the most studied.
- It has a definition for every of the three paradigm : impredictability, incompressibility of prefixes, and no exceptionnal properties.

・ コ ト ・ 日 ト ・ 目 ト ・

Martin-Löf Random

- Martin-Löf randomness has been the most studied.
- It has a definition for every of the three paradigm : impredictability, incompressibility of prefixes, and no exceptionnal properties.

Definition (Martin-Löf's tests)

A Martin-Löf test is an intersection $\bigcap_n \mathcal{U}_n$, where (\mathcal{U}_n) is recursively enumerable, and $\lambda(\mathcal{U}_n) \leq 2^{-n}$.

Also called Π_2^0 effectively null.

Definition (Martin-Löf Random)

X is Martin-Löf Random if X do not belong to any Martin-Löf test.

α -randomness

Following this principle, we define the tests in L_{α} .

Definition

X is random over L_{α} (or α -random) if X do not belong to any null borel set with code in L_{α} .

Figure – A borel code

- ω_1^{CK} -randomness is Δ_1^1 -randomness,
- λ-randomness is ITTM-randomness.

α -ML-randomness

We continue the process to generalise Martin-Löf's idea :

Definition

- An α -ML test is a Martin-Löf test $\mathcal{U} \subseteq \omega \times 2^{<\omega}$ which is α -recursively enumerable.
- X is α -ML random if it is in no α -ML tests.
- ω -ML randomness is ML random,
- ω_1^{CK} -ML randomness is Π_1^1 -ML randomness,
- λ -ML randomness is ITTM $_{\rm ML}$ randomness

A question

Question

For every $\alpha,$ do the notions of " $\alpha\text{-random"}$ and " $\alpha\text{-ML}$ random" coincide ?

표 문 표

A question

Question

For every $\alpha,$ do the notions of " $\alpha\text{-random"}$ and " $\alpha\text{-ML}$ random" coincide ?

Theorem

 Δ_1^1 -randomness and Π_1^1 -ML randomness are different notion.

This answers the quesion in a particular case. We would like a condition on α for it to be true.

Projectibility

Definition

 α is projectible into β if there exists an $\!\alpha\mbox{-recursive}$ function, one-one from α to $\beta.$

- ω_1^{CK} , λ are projectible into ω ;
- not every ordinals are projective into a smaller ordinal thant themselves.

An equivalence

Theorem

The following are equivalent :

- **()** α is projectible into ω , and
- α-randomness and α-ML randomness are different notions.

Being projectible into ω allows us to reduce "space" and "time" into a single dimension.

Corollary

ITTM-randomness et ITTM-ML randomness are two different notions.

- L' α -recursion extends computability, and includes other extensions;
- it allows us to define new notions of randomness;
- we have an equivalence between a property of set theory and a property of algorithmic randomness.

Thanks for your attention !

イロト イヨト イヨト イヨト

æ