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α-Recursion α-Random Abstract definition

Abstract ourselves from computationnal model

Denote HF the set consisting of all hereditarily finite sets. The
following theorem caracterise the notion of “being computable” :

Theorem
Let A ⊆ N, then :

1 A is computable iff A is ∆1-comprehensible in HF,
2 A is recursively enumerable iff A is Σ1-comprehensible in HF,

1 Can be extended to A ⊆ HF ;
2 Can be modified by replacing HF by a well chosen set.
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α-Recursion α-Random Abstract definition

Theorem
Let A ⊆ HF, then :

1 A is computable iff A is ∆1-comprehensible in HF,
2 A is recursively enumerable iff A is Σ1-comprehensible in HF,

Classical Computability Abstract Definition

defined by modified into

Notion derived from
classical computability :

Alpha−Recursion

What’s next
We have a definition, parametrized by a set,
to modify it we need to find the sets for which the definition
stays interesting ;
we will use Godel’s constructibles.
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α-Recursion α-Random Godel Constructibles

Introduction to Godel’s constructibles

N,

{n ∈ N : n is even},

{n ∈ N : n is prime},

{n ∈ N : the n-th diophantine equation has a solution},

{n ∈ N : φ(n)} where φ is a formula.

Remarks :
1 Are there any other sets than these ?

I Yes, by cardinality... An example ?

2 Maybe there are a lot ?

I As a study, we can try to have the least possible such sets

Paul-Elliot Anglès d’Auriac Benoît Monin α-Recursion and Randomness



α-Recursion α-Random Godel Constructibles

Introduction to Godel’s constructibles

N,

{n ∈ N : n is even},

{n ∈ N : n is prime},

{n ∈ N : the n-th diophantine equation has a solution},

{n ∈ N : φ(n)} where φ is a formula.

Remarks :
1 Are there any other sets than these ?

I Yes, by cardinality... An example ?
2 Maybe there are a lot ?

I As a study, we can try to have the least possible such sets

Paul-Elliot Anglès d’Auriac Benoît Monin α-Recursion and Randomness



α-Recursion α-Random Godel Constructibles

A universe of sets with no superfluous : strategy

Idea
1 If we have nothing, we have no superfluous
2 If we have something, M, we need to have the sets shaped

like :
{x ∈ M|φ(x , p)}

for every formula φ and parameters p in M.
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α-Recursion α-Random Godel Constructibles

Ordinals

Definition
An ordinal is a set α such that

1 α is transitive : ∀x ∈ α,∀y ∈ x , y ∈ α
2 (α,∈) is a well ordering.

Some ordinals are successors,
some ordinals are limits.
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α-Recursion α-Random Godel Constructibles

A precise definition

Gödel’s constructible universe (1938)

Gödel’s constructible at rank α, written Lα are defined by induction
alons ordinals :

1 L0 = ∅,
2 Lα+1 = Def(Lα),
3 Lλ =

⋃
α<λ Lα.

The constructibles are the elements of
⋃
α Lα.

Definition

Def (M) =
{
EM
φ,p̄ : φ is a formula and p̄ ∈ M

}
where

EM
φ,p̄ = {x ∈ M : φ(x , p̄) is true in M}
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α-Recursion α-Random Godel Constructibles

Illustration
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α-Recursion α-Random Godel Constructibles

Examples

The constructibles are constructed layer by layer. These are some
particular layers :

1 Ln+1 = P(Ln) for n an integer ;
2 Lω = HF, the hereditarily finite sets ;
3 LωCK

1
= HYP, the sets with hyperarithmetic codes ;

4 Lλ = WRT, the sets with writable codes.

We find again HF !

Theorem
Let A ⊆ N, then :

1 A is computable iff A is ∆1-comprehensible in Lω,
2 A is recursively enumerable iff A is Σ1-comprehensible in Lω,
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α-Recursion α-Random Recursion with sets

Computability in a space of sets

The basic definition of α-recursion :

Definition
Let α be an ordinal and A ⊆ Lα. We say that :

1 A is α-finite if A ∈ Lα ;
2 A is α-recursive if A is ∆1-comprehensible in Lα ;
3 A is α-recursively enumerable if A is Σ1-comprehensible in Lα.

Some α will reveal more interesting than others,
A is a set of α-finite elements, not only integers.

Intuition
We see a computation as a search into all the α-finite sets.
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α-Recursion α-Random Recursion with sets

Admissibility I

It is not yet finished ! Because :

Remark
Some α will reveal more interesting than others...

Which α ?

I The admissibles ordinals, the ωX
1 for any X ∈ 2ω.

Then, what are the properties of Lα ?

I Lα is then admissible, it verifies the Kripke Platek axioms : Lα
is a model of ∆1-comprehension et Σ1-collection.
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α-Recursion α-Random Recursion with sets

Admissibility II

Definition
A set is said admissible if it verifies the Kripke-Platek axioms,
of which the most notable are ∆1-comprehension and
Σ1-collection.
An ordinal α is said to be admissible if Lα is admissible.

Lω, LωCK
1
, Lλ are admissibles.

If α is admissible, the mapping of an α-finite by a function of
α-recursive graph is α-finite.

Intuition
An ordinal α is admissible if the α-recursion is not too far from
computability.
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α-Recursion α-Random Recursion with sets

What did we defined ?

Intuition
We see a computation as a search into all the α-finite sets.

ω-recursion, is classical computability ;
ωCK

1 -recursion, is higher computability ;
λ-recursion, is ITTM computability.

We have a general and satisfying definition of computability.
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Randomness Part

a Computational Model

classical computability :
Notions derived from

Higher Computability

Random notions
induced :

Pi11 Randomness

Pi11−ML randomness...

ITTM−Randomness

ITTM−ML randomness...
ITTMs

Relative RandomnessRelative Computability

modified into

modified into

modified into

defined by

Alpha−Recursion

modified into

an Abstract Definition

defined by

Classical Computability

Alpha−ML randomness...

Alpha−randomness
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α-Recursion α-Random α-Randoms and α-Martin-Löf randoms

Defining randomness...

A randomly chosen sequence of bits
0 1 1 1 0 0 1 1 1 1 1 0 1 0 0 0 1 0 1 0 1 . . .

There exists several paradigms to define what it is to be random for
a sequence of bits :

1 Impredictability,
2 Incompressibility of prefixes,
3 No exceptionnal properties.

We will use the third paradigm.
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α-Recursion α-Random α-Randoms and α-Martin-Löf randoms

Algorithmic randomness ?

Question
For X ∈ 2ω, what does it means for X to be a random set ?

1 Has no more even numbers than odd ones,
2 is not computable,
3 Is not like b00b10b20 . . .

We define randomness by the negative : we remove those which do
not seem random.
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α-Recursion α-Random α-Randoms and α-Martin-Löf randoms

Formally

Paradigm
X is random if X has no exceptionnal property

Becomes

Definition
X is C -random if ∀P ∈ C such that λ(P) = 0, X 6∈ P

Examples of C :
1 the null Π0

2,
2 the null ∆1

1,
3 the Martin-Löf tests...

C countable ensures us that the C -randoms are conull.
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α-Recursion α-Random α-Randoms and α-Martin-Löf randoms

Martin-Löf Random

Martin-Löf randomness has been the most studied.
It has a definition for every of the three paradigm :
impredictability, incompressibility of prefixes, and no
exceptionnal properties.

Definition (Martin-Löf’s tests)

A Martin-Löf test is an intersection
⋂

n Un, where (Un) is
recursively enumerable, and λ(Un) ≤ 2−n.

Also called Π0
2 effectively null.

Definition (Martin-Löf Random)

X is Martin-Löf Random if X do not belong to any Martin-Löf test.
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α-Recursion α-Random α-Randoms and α-Martin-Löf randoms

α-randomness

Following this principle, we define the tests in Lα.

Definition
X is random over Lα (or α-random) if X do not belong to any null
borel set with code in Lα.

[11][1] [111]

[01][1110][101] [000] [110]

[1111][01][0] [010]

Figure – A borel code

ωCK
1 -randomness is

∆1
1-randomness,

λ-randomness is
ITTM-randomness.
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α-Recursion α-Random α-Randoms and α-Martin-Löf randoms

α-ML-randomness

We continue the process to generalise Martin-Löf’s idea :

Definition
An α-ML test is a Martin-Löf test U ⊆ ω × 2<ω which is
α-recursively enumerable.
X is α-ML random if it is in no α-ML tests.

ω-ML randomness is ML random,
ωCK

1 -ML randomness is Π1
1-ML randomness,

λ-ML randomness is ITTMML randomness
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α-Recursion α-Random A caracterisation

A question

Question
For every α, do the notions of “α-random” and “α-ML random”
coincide ?

Theorem

∆1
1-randomness and Π1

1-ML randomness are different notion.

This answers the quesion in a particular case. We would like a
condition on α for it to be true.
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α-Recursion α-Random A caracterisation

Projectibility

Alpha

Beta

Definition
α is projectible into β if there exists anα-recursive function,
one-one from α to β.

ωCK
1 , λ are projectible into ω ;

not every ordinals are projective into a smaller ordinal thant
themselves.
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α-Recursion α-Random A caracterisation

An equivalence

Theorem
The following are equivalent :

1 α is projectible into ω, and
2 α-randomness and α-ML randomness are different notions.

Being projectible into ω allows us to reduce “space” and “time” into
a single dimension.

Corollary
ITTM-randomness et ITTM-ML randomness are two different
notions.
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α-Recursion α-Random A caracterisation

Conclusion

L’α-recursion extends computability, and includes other
extensions ;
it allows us to define new notions of randomness ;
we have an equivalence between a property of set theory and a
property of algorithmic randomness.
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Thanks for your attention !
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