 α -Recursion and Randomness

Paul-Elliot Anglès d'Auriac Benoît Monin

13 avril 2017

(ロ) (d))

4.1 ÷ ∢重き

重

 $2Q$

Paul-Elliot Anglès d'Auriac Benoît Monin α [-Recursion and Randomness](#page-55-0)

 α [-Recursion](#page-4-0) α [-Random](#page-40-0)

Extending computability

Paul-Elliot Anglès d'Auriac Benoît Monin α [-Recursion and Randomness](#page-0-0)

イロト イ団 トメ きょ メ きょう

重

 $2Q$

 α [-Recursion](#page-4-0) α [-Random](#page-40-0)

Table of contents

イロト イ母 トイ ヨ トイ ヨ トー

重

First step

イロト イ団 トメ きょ メ きょう

重

 $2Q$

Abstract ourselves from computationnal model

Denote HF the set consisting of all hereditarily finite sets. The following theorem caracterise the notion of "being computable" :

Theorem

Let $A \subseteq \mathbb{N}$, then :

- \bullet A is computable iff A is Δ_1 -comprehensible in HF,
- **2** A is recursively enumerable iff A is Σ_1 -comprehensible in HF,

Abstract ourselves from computationnal model

Denote HF the set consisting of all hereditarily finite sets. The following theorem caracterise the notion of "being computable" :

Theorem

Let $A \subseteq \mathbb{N}$, then :

- \bullet A is computable iff A is Δ_1 -comprehensible in HF,
- **2** A is recursively enumerable iff A is Σ_1 -comprehensible in HF,
- \bullet Can be extended to $A \subseteq HF$:
- **2** Can be modified by replacing HF by a well chosen set.

Abstract ourselves from computationnal model

Denote HF the set consisting of all hereditarily finite sets. The following theorem caracterise the notion of "being computable" :

Theorem

Let $A \subseteq HF$, then :

- \bullet A is computable iff A is Δ_1 -comprehensible in HF,
- **2** A is recursively enumerable iff A is Σ_1 -comprehensible in HF,
- \bullet Can be extended to $A \subseteq HF$.
- ² Can be modified by replacing HF by a well chosen set.

Theorem

Let $A \subseteq HF$, then :

- \bullet A is computable iff A is Δ_1 -comprehensible in HF,
- **2** A is recursively enumerable iff A is Σ_1 -comprehensible in HF,

What's next

- We have a definition, parametrized by a set,
- to modify it we need to find the sets for which the definition stays interesting ;

∢ ⊓ ⊧ ∢ Al ⊧ ∢ E

 290

o we will use Godel's constructibles.

Introduction to Godel's constructibles

 $\mathbb N$. ${n \in \mathbb{N} : n \text{ is even}}$, ${n \in \mathbb{N} : n \text{ is prime}}.$ ${n \in \mathbb{N} : \text{the } n\text{-th}$ diophantine equation has a solution}, ${n \in \mathbb{N} : \phi(n)}$ where ϕ is a formula.

Remarks :

2 Maybe there are a lot?

Paul-Elliot Anglès d'Auriac Benoît Monin α [-Recursion and Randomness](#page-0-0)

 \leftarrow \Box

す ライモン

 \rightarrow \equiv \rightarrow

÷

Introduction to Godel's constructibles

 $\mathbb N$. ${n \in \mathbb{N} : n \text{ is even}}$, ${n \in \mathbb{N} : n \text{ is prime}}.$ ${n \in \mathbb{N} : \text{the } n\text{-th}$ diophantine equation has a solution}, ${n \in \mathbb{N} : \phi(n)}$ where ϕ is a formula.

A universe of sets with no superfluous : strategy

Idea

- \bullet If we have nothing, we have no superfluous
- **2** If we have something, M, we need to have the sets shaped like :

$$
\{x\in M|\phi(x,p)\}
$$

for every formula ϕ and parameters p in M.

A universe of sets with no superfluous : strategy

Idea

- \bullet If we have nothing, we have no superfluous
- **2** If we have something, M, we need to have the sets shaped like :

$$
\{x\in M|\phi(x,p)\}
$$

for every formula ϕ and parameters p in M.

$\left(\bullet \right)$

A universe of sets with no superfluous : strategy

Idea

- \bullet If we have nothing, we have no superfluous
- **2** If we have something, M, we need to have the sets shaped like :

$$
\{x\in M|\phi(x,p)\}
$$

for every formula ϕ and parameters p in M.

つへへ

A universe of sets with no superfluous : strategy

Idea

- \bullet If we have nothing, we have no superfluous
- **2** If we have something, M, we need to have the sets shaped like :

$$
\{x\in M|\phi(x,p)\}
$$

for every formula ϕ and parameters p in M.

A universe of sets with no superfluous : strategy

Idea

- \bullet If we have nothing, we have no superfluous
- **2** If we have something, M, we need to have the sets shaped like :

$$
\{x\in M|\phi(x,p)\}
$$

for every formula ϕ and parameters p in M.

A universe of sets with no superfluous : strategy

Idea

- \bullet If we have nothing, we have no superfluous
- **2** If we have something, M, we need to have the sets shaped like :

$$
\{x\in M|\phi(x,p)\}
$$

for every formula ϕ and parameters p in M.

A universe of sets with no superfluous : strategy

Idea

- \bullet If we have nothing, we have no superfluous
- **2** If we have something, M, we need to have the sets shaped like :

$$
\{x\in M|\phi(x,p)\}
$$

for every formula ϕ and parameters p in M.

A universe of sets with no superfluous : strategy

Idea

- **1** If we have nothing, we have no superfluous
- **2** If we have something, M, we need to have the sets shaped like :

$$
\{x\in M|\phi(x,p)\}
$$

for every formula ϕ and parameters p in M.

 α [-Recursion](#page-4-0) α [-Random](#page-40-0) [Godel Constructibles](#page-8-0)

A universe of sets with no superfluous : strategy

Idea

- **1** If we have nothing, we have no superfluous
- **2** If we have something, M, we need to have the sets shaped like :

$$
\{x\in M|\phi(x,p)\}
$$

for every formula ϕ and parameters p in M.

Ordinals

Definition

An ordinal is a set α such that

- \bullet α is transitive : $\forall x \in \alpha$, $\forall y \in x$, $y \in \alpha$
- \bigcirc (α, \in) is a well ordering.

- Some ordinals are successors.
- some ordinals are limits.

A precise definition

Gödel's constructible universe (1938)

Gödel's constructible at rank α , written L_{α} are defined by induction alons ordinals :

- \bullet L₀ = \emptyset .
- $L_{\alpha+1} = \text{Def}(L_{\alpha})$,
- \bullet $L_{\lambda} = \bigcup_{\alpha < \lambda} L_{\alpha}$.

The constructibles are the elements of $\bigcup_{\alpha} L_{\alpha}.$

Definition

$$
\mathit{Def}(M) = \left\{E_{\phi,\bar{\rho}}^{M}: \phi \text{ is a formula and } \bar{\rho} \in M\right\}
$$

where

$$
E^M_{\phi,\bar p}=\{x\in M: \phi(x,\bar p)\text{ is true in }M\}
$$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

È

Paul-Elliot Anglès d'Auriac Benoît Monin α [-Recursion and Randomness](#page-0-0)

K ロチ X 部分 X ミチ X ミチ

重

 \odot

K ロチ X 部分 X ミチ X ミチ

È

 299

Paul-Elliot Anglès d'Auriac Benoît Monin α [-Recursion and Randomness](#page-0-0)

K ロチ X 部分 X ミチ X ミチ

重

 299

Paul-Elliot Anglès d'Auriac Benoît Monin α [-Recursion and Randomness](#page-0-0)

K ロチ X 部分 X ミチ X ミチ

重

 299

Paul-Elliot Anglès d'Auriac Benoît Monin | α[-Recursion and Randomness](#page-0-0)

 299

重

メロメ メ部メ メミメ メミメ

Paul-Elliot Anglès d'Auriac Benoît Monin α [-Recursion and Randomness](#page-0-0)

 299

重

K ロチ X 部分 X ミチ X ミチ

 299

重

K ロンバ 御 > X 출 > X 출 >

 299

重

 299

重

 299

È

 290

È

Examples

The constructibles are constructed layer by layer. These are some particular layers :

- \bullet $L_{n+1} = \mathcal{P}(L_n)$ for *n* an integer;
- 2 $L_{\omega} = HF$, the hereditarily finite sets;
- \bullet $L_{\omega_{\mathbf{1}}^{C\mathcal{K}}} = \text{HYP},$ the sets with hyperarithmetic codes ;
- \bullet $L_{\lambda} = \text{WRT}$, the sets with writable codes.

Examples

The constructibles are constructed layer by layer. These are some particular layers :

•
$$
L_{n+1} = \mathcal{P}(L_n)
$$
 for *n* an integer;

- **2** $L_{\omega} = HF$, the hereditarily finite sets;
- \bullet $L_{\omega_{\mathbf{1}}^{C\mathcal{K}}} = \text{HYP},$ the sets with hyperarithmetic codes ;
- \bullet $L_{\lambda} = \text{WRT}$, the sets with writable codes.

We find again HF!

Examples

The constructibles are constructed layer by layer. These are some particular layers :

•
$$
L_{n+1} = \mathcal{P}(L_n)
$$
 for *n* an integer;

- \bullet $L_{\omega} = HF$, the hereditarily finite sets;
- \bullet $L_{\omega_{\mathbf{1}}^{C\mathcal{K}}} = \text{HYP},$ the sets with hyperarithmetic codes ;
- \bullet $L_{\lambda} = \text{WRT}$, the sets with writable codes.

We find again HF!

Theorem

Let $A \subseteq \mathbb{N}$, then :

- **■** A is computable iff A is Δ_1 -comprehensible in L_{ω} ,
- **2** A is recursively enumerable iff A is Σ_1 -comprehensible in L_{ω} ,

Computability in a space of sets

The basic definition of α -recursion :

Definition

Let α be an ordinal and $A \subseteq L_{\alpha}$. We say that :

- **4** A is α -finite if $A \in L_{\alpha}$;
- **2** A is α -recursive if A is Δ_1 -comprehensible in L_{α} ;

3 A is α -recursively enumerable if A is Σ_1 -comprehensible in L_{α} .

つへへ

- Some α will reveal more interesting than others,
- \bullet A is a set of α -finite elements, not only integers.

Intuition

We see a computation as a search into all the α -finite sets.

Admissibility I

It is not yet finished ! Because :

- \bullet Which α ?
- Then, what are the properties of L_{α} ?

 \leftarrow \Box

Admissibility I

It is not yet finished ! Because :

Remark

Some α will reveal more interesting than others...

- Which α ?
	- ► The admissibles ordinals, the ω_1^X for any $X \in 2^\omega$.
- Then, what are the properties of L_{α} ?
	- \blacktriangleright L_α is then admissible, it verifies the Kripke Platek axioms : L_α is a model of Δ_1 -comprehension et Σ_1 -collection.

Admissibility II

Definition

- A set is said admissible if it verifies the Kripke-Platek axioms, of which the most notable are Δ_1 -comprehension and Σ_1 -collection.
- An ordinal α is said to be admissible if L_{α} is admissible.
- L_{ω} , $L_{\omega_1^{CK}}$, L_{λ} are admissibles.
- If α is admissible, the mapping of an α -finite by a function of α -recursive graph is α -finite.

 Ω

Intuition

An ordinal α is admissible if the α -recursion is not too far from computability.

へのへ

What did we defined ?

Intuition

We see a computation as a search into all the α -finite sets.

- \bullet ω -recursion, is classical computability;
- ω_1^{CK} -recursion, is higher computability ;
- λ -recursion, is ITTM computability.

We have a general and satisfying definition of computability.

 α [-Recursion](#page-4-0) α [-Random](#page-40-0)

Randomness Part

Paul-Elliot Anglès d'Auriac Benoît Monin α [-Recursion and Randomness](#page-0-0)

イロト イ団 トメ きょ メ きょう

重

 $2Q$

Defining randomness...

A randomly chosen sequence of bits

0 1 1 1 0 0 1 1 1 1 1 0 1 0 0 0 1 0 1 0 1 . . .

There exists several paradigms to define what it is to be random for a sequence of bits :

- **1** Impredictability,
- **2** Incompressibility of prefixes,
- ³ No exceptionnal properties.

We will use the third paradigm.

メロメ メ御 メメモメ メモメー

重

 $2Q$

Algorithmic randomness ?

Question

For $X \in 2^{\omega}$, what does it means for X to be a random set?

Paul-Elliot Anglès d'Auriac Benoît Monin α [-Recursion and Randomness](#page-0-0)

 Ω

Algorithmic randomness ?

Question

For $X \in 2^{\omega}$, what does it means for X to be a random set?

- **1** Has no more even numbers than odd ones,
- ² is not computable,
- \bullet Is not like $b_00b_10b_20...$

We define randomness by the negative : we remove those which do not seem random.

Formally

Paradigm

X is random if X has no exceptionnal property

Becomes

Definition

X is $\mathscr C$ -random if $\forall P \in \mathscr C$ such that $\lambda(P) = 0$, $X \notin P$

 $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$

∢ 重→

重

Formally

Paradigm

X is random if X has no exceptionnal property

Becomes

Definition

X is $\mathscr C$ -random if $\forall P \in \mathscr C$ such that $\lambda(P) = 0$, $X \notin P$

Examples of $\mathscr C$:

- **D** the null Π_2^0 ,
- **2** the null Δ_1^1 ,
- **3** the Martin-Löf tests...

 $\mathscr C$ countable ensures us that the $\mathscr C$ -randoms are conull.

 -10.11

 Ω

Martin-Löf Random

- **Martin-Löf randomness has been the most studied.**
- \bullet It has a definition for every of the three paradigm : impredictability, incompressibility of prefixes, and no exceptionnal properties.

つへへ

Martin-Löf Random

- **Martin-Löf randomness has been the most studied.**
- \bullet It has a definition for every of the three paradigm : impredictability, incompressibility of prefixes, and no exceptionnal properties.

Definition (Martin-Löf's tests)

A Martin-Löf test is an intersection $\bigcap_n \mathcal{U}_n$, where (\mathcal{U}_n) is recursively enumerable, and $\lambda(\mathcal{U}_n) \leq 2^{-n}$.

Also called Π^0_2 effectively null.

Definition (Martin-Löf Random)

 X is Martin-Löf Random if X do not belong to any Martin-Löf test.

α -randomness

Following this principle, we define the tests in L_{α} .

Definition

X is random over L_{α} (or α -random) if X do not belong to any null borel set with code in L_{α} .

Figure – A borel code

- $\omega_{1}^{\textit{CK}}$ -randomness is Δ^1_1 -randomness,
- \bullet λ -randomness is ITTM-randomness.

α-ML-randomness

We continue the process to generalise Martin-Löf's idea :

Definition

- An α -ML test is a Martin-Löf test $\mathcal{U} \subseteq \omega \times 2^{<\omega}$ which is α -recursively enumerable.
- X is α -ML random if it is in no α -ML tests.
- \bullet ω -ML randomness is ML random.
- ω_1^{CK} -ML randomness is Π $_1^1$ -ML randomness,
- λ -ML randomness is ITTM_{ML} randomness

A question

Question

For every α , do the notions of " α -random" and " α -ML random" coincide ?

Paul-Elliot Anglès d'Auriac Benoît Monin α [-Recursion and Randomness](#page-0-0)

←ロ ▶ → 伊 ▶

重き 重

 \leftarrow \equiv

A question

Question

For every α , do the notions of " α -random" and " α -ML random" coincide ?

Theorem

 Δ^1_1 -randomness and Π^1_1 -ML randomness are different notion.

This answers the quesion in a particular case. We would like a condition on α for it to be true.

Projectibility

Definition

 α is projectible into β if there exists anα-recursive function, one-one from α to β .

- $\omega_1^{\textit{CK}}$, λ are projectible into ω ;
- not every ordinals are projective into a smaller ordinal thant themselves.

An equivalence

Theorem

The following are equivalent :

- \bullet α is projectible into ω , and
- \bullet α -randomness and α -ML randomness are different notions.

Being projectible into ω allows us to reduce "space" and "time" into a single dimension.

Corollary

ITTM-randomness et ITTM-ML randomness are two different notions.

Conclusion

- L' α -recursion extends computability, and includes other extensions ;
- it allows us to define new notions of randomness;
- we have an equivalence between a property of set theory and a property of algorithmic randomness.

Thanks for your attention !

メロメ メ都 メメ きょくきょ

重