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Infinite Time Turing Machine
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Infinite Time Turing Machine

Definition (Hamkins, Lewis, 2000)

An Infinite Time Turing Machine is a Turing Machine with a special
state called “limit state” and three tapes:

@ The input tape,

@ the working tape, and

@ the output tape.

We now need to define a computation by an ITTM. Computations
are indexed by ordinals.

@ At successor step, the behaviour is the same as regular Turing
Machines.

@ We need to specify the behaviour at limit steps.
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Limit steps

At limit steps:

@ The state becomes the special “limit state”.

function limit() {

}

@ The value of each cells is the lim inf of its values at previous
stage of computation:

CellC,@—>—>@_>_>@_> ‘”|iminf @

Cell G;: [1]—[1]—[0] = [0]=[0] »[o] ---tminf  [o]
Cell Ge: [0]=[0] = [1] = [1] = [1] > [1] - Amif
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Computing with an ITTM

We have a notion of computability for reals;

Definition (Writability)

A real x is writable if there is an ITTM M starting with blank input
tape, which reach a halting state with x written on its output tape.

But also for classes of reals:

Definition (Decidability)

A class of reals A is ITTM-decidable if there exists an ITTM M
such that M(X) |=1if X € A and M(X) |= 0 otherwise.
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The power of ITTM-decidability

Are ITTMs really strong?

The class WO of codes for well-orders is ITTM-decidable. l
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The power of ITTM-decidability

Are ITTMs really strong?

The class WO of codes for well-orders is ITTM-decidable. l
All MY sets (resp. class) are writable (resp. decidable).

Kleene's O, and O° and O ... are writable.
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Where does it stop?

If an ITTM stops, it stops before wy.

Definition

We define v = sup{« : « is a halting time}.

By cofinality, v < ws.
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Toward Set Theory

Definition ()

We call )\ the supremum of the ordinals with writable codes.
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Toward Set Theory

Definition ()

We call )\ the supremum of the ordinals with writable codes.

A real X is eventually writable if there is an ITTM that write X at
some point X and never changes it.

Definition (¢)

We call ¢ the supremum of the ordinals with eventually writable
codes.
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Toward Set Theory

Definition ()

We call )\ the supremum of the ordinals with writable codes.

A real X is eventually writable if there is an ITTM that write X at
some point X and never changes it.

Definition (¢)

We call ¢ the supremum of the ordinals with eventually writable
codes.

A real X is accidentally writable if there is an ITTM that write X
at some point X of its computation.

Definition (X)

We call X the supremum of the ordinals with accidentally writable
codes.
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Constructibility

Godel's constructible are defined by induction over the ordinals:
Lo =0
Lot = {{xely Ly EPXx)}:Paformula}
L = |t
a<A
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Constructibility

Godel's constructible are defined by induction over the ordinals:

Lo[X] = {X}
Lot1[X] = {{x € Lu[X]: La[X] = ®(x)} : @ a formula}
I—)\[X] U La[X]

a<<\
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Fundamental theorem for ITTMs

These ordinals A\, ¢ and X are characterized in the following
theorem:
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Fundamental theorem for ITTMs

These ordinals A\, ¢ and X are characterized in the following
theorem:

Theorem (Welch)

(A ,¢ ,X ) is the smallest triplet such that
L)\ =<1 Lg ~2 L):

Moreover v =\ .

Definition (Stability)

A <, B if for every ¥, formula ¢ with parameter in A, A = ¢ if
and only if B = &.
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Fundamental theorem for ITTMs

These ordinals A\, ¢ and X are characterized in the following
theorem:

Theorem (Welch)

Let x be any real.

(N*, %, LX) is the smallest triplet such that
L)\X[X] <1 LCX [X] <2 LZX[X]

Moreover v* = \*.

Definition (Stability)

A <, B if for every ¥, formula ¢ with parameter in A, A = ¢ if
and only if B = &.
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Fundamental theorem for ITTMs

Theorem (Welch)

(A ,¢ ,X ) is the smallest triplet such that

Ly <1 LC <5 Ly

Moreover v =\ .

Theorem (Welch)
(A ,¢ ,X ) are such that

Ly is the set of sets with writable code
L is the set of sets with eventually writable code
Ly is the set of sets with accidentally writable code

A\
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Fundamental theorem for ITTMs
Theorem (Welch)

Let x be any real.

(N, %, LX) is the smallest triplet such that

La<[x] <1 Lex[x] <2 Lyx[x]

Moreover v* = \X.

Theorem (Welch)
(\*, ¢*, LX) are such that

Lyx[x] is the set of sets with writable code
Lex[x] is the set of sets with eventually writable code

Lyx[x] is the set of sets with accidentally writable code

A\
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or

“Ep,
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Randomness

We will use the following paradigm to define randomness:

Paradigm

A set Z is random if it avoids all the sufficiently simple null sets.

@ Having countably many simple sets ensures that the randoms
are co-null

@ The more null sets are avoided, the more random the set is.
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Some notions of Randomness

Let v be an ordinal.

Definition (randomness over L,, Carl and Schlicht)

A set X is random over L, if X is in no null Borel set with code in
L.

Randomness over L cx corresponds to Al-randomness
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Some notions of Randomness

Let v be an ordinal.

Definition (randomness over L,, Carl and Schlicht)

A set X is random over L, if X is in no null Borel set with code in
L.

Randomness over L cx corresponds to Al-randomness

Definition (ITTM-decidable-randomness, Carl and Schlicht)

A set X is ITTM-decidable random if X is in no null
ITTM-decidable set.

Randomness over L) corresponds to ITTM-decidable-randomness
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Definitions

Definition (a-ce open sets)

An open set U is a-ce if

u= {J [l

Lo=d(0)

oE2<Y¥

for some X7 formula ® with parameters in L,.

Definition (a-ML-randomness, Carl and Schlicht)

A set X is a-ML random if X is in no uniform intersection (), U,
of uniformly a-ce open sets such that A(U/,) < 27".

M}-ML-randomness is also w{¥-ML-randomness.
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Comparison with higher randomness

In higher randomness, we have the following:

Ni-ML randomness is strictly stronger than Al-randomness.

Could we generalize the results to other ordinals?

For which ordinals o« do we have:
“a-ML randomness is strictly stronger than randomness over L,"?

o For a = wiX, it is the case.
@ What about o = A, or (, or X7
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Projectibility

To answer this question, we need the concept of projectibility.

Definition (Projectible ordinals)

We say that an ordinal « is projectible into an ordinal 3 if there is
an injective function from « to 8 that is X1-definable in L,.

We say that « is projectible if « is projectible into some 8 < a.
The least such 3 is called the projectum of a.

Theorem (A., Monin)

Let « be limit and such that L, ="everything is countable”. Then,
the following are equivalent:

@ « is projectible into w,
@ There is a universal a-ML random test,

@ a-ML-randomness is strictly stronger than randomness over
Lo.
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Application with A\, (, &

Theorem (Friedman)

If L, ="3x : x is uncountable”, then there exists 3, < a such
that Lg < L.

Therefore, Ly, L and Ly all satify “everything is countable”.
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Application with A\, (, &

Theorem (Friedman)

If L, ="3x : x is uncountable”, then there exists 3, < a such
that Lg < L.

Therefore, Ly, L and Ly all satify “everything is countable”.

The ordinal A is projectible into w.

Assign any o < A to the code of the ITTM writing a.

A-ML-randomness is strictly stronger than ITTM-decidable
randomness.
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Application with A\, (, &

Theorem (Friedman)

If L, ="3x : x is uncountable”, then there exists 3, < a such
that Lg < L.

Therefore, Ly, L and Ly all satify “everything is countable”.

The ordinal ¢ is not projectible into w.

Suppose that an eventually writable parameter « can be used to
have a projectum f : { — w. Then every eventually writable
ordinals become writable using . Then ( becomes eventually
writable using «.. But then ( is eventually writable.

¢-ML-randomness coincide with randomness over L;, and there is
no universal (-ML-test.
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Application with A\, (, &

Theorem (Friedman)

If L, ="3x : x is uncountable”, then there exists 3, < a such
that Lg < L.

Therefore, Ly, L and Ly all satify “everything is countable”.

The ordinal ¥ is projectible into w, using ¢ as a parameter.

Recall that X is not admissible!

Y -ML-randomness is strictly stronger than randomness over Ly .
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ITTM randomness

What about equivalent of M} randomness?

Definition (ITTM randomness)

A real X is said ITTM-random if it is in no ITTM-semi-decidable
null set.

Theorem (Carl, Schlicht)

X is ITTM-random <= X is random over Ly and ¥X = X
<= X is random over L; and X =¢
<= X is random over Ly and \X =\
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ITTM randomness

What about equivalent of M} randomness?

Definition (ITTM randomness)

A real X is said ITTM-random if it is in no ITTM-semi-decidable
null set.

Theorem (Carl, Schlicht)

X is ITTM-random <= X is random over Ly and ¥X = X
< X is random over L; and (X =
<= X is random over Ly and \X =\

Compared with higher randomness:

Let X be a real. Then

X is M-random <= X is A}-random and wf = WX
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Diverging from higher randomness

In the higher randomness case, we have:

Al-randomness C Ni-ML-randomness C M}-randomness

However, in the ITTM case we have :

ITTM-randomness

A-ML-randomness C
(-ML-randomness C ITTM-randomness
C

Randomness over L)
Randomness over L¢
Randomness over Ls

ITTM-randomness Y -ML-randomness
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Diverging from higher randomness

In the higher randomness case, we have:

Al-randomness C Ni-ML-randomness C M}-randomness

However, in the ITTM case we have :

ITTM-randomness

A-ML-randomness C
(-ML-randomness C ITTM-randomness
C

Randomness over L)
Randomness over L¢
Randomness over Ls

ITTM-randomness Y -ML-randomness
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Diverging from higher randomness

In the higher randomness case, we have:

Al-randomness C Ni-ML-randomness C M}-randomness

However, in the ITTM case we have :

ITTM-randomness

A-ML-randomness C
(-ML-randomness C ITTM-randomness
C

Randomness over L)
Randomness over L¢
Randomness over Ls

ITTM-randomness Y -ML-randomness

Paul-Elliot Anglés d’Auriac Benoit Monin Genericity and randomness with ITTMs



Diverging from higher randomness

In the higher randomness case, we have:

Al-randomness C Ni-ML-randomness C M}-randomness

However, in the ITTM case we have :

A-ML-randomness C ITTM-randomness
(-ML-randomness C ITTM-randomness
C

Randomness over L)
Randomness over L¢
Randomness over Ls

c
C ITTM-randomness Y -ML-randomness

Which leaves us with the question:

Do we have?

randomness over Ly # ITTM-randomness
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Do we have?

randomness over Ly # ITTM-randomness

@ It is equivalent to the question: Does Y-randomness for X
implies L[ X] <2 Ls[X]?

@ The problem comes from the fact that X is not admissible (ie.
Ly is not a model of X;-replacement)

© What about genericity?
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Do we have?

randomness over Ly # ITTM-randomness

@ It is equivalent to the question: Does Y-randomness for X
implies L[ X] <2 Ls[X]?

@ The problem comes from the fact that X is not admissible (ie.
Ly is not a model of X;-replacement)

© What about genericity?
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Generic objects corresponds to the typical objects with regard to
Baire categoricity.

Definition (Meager sets)

A co-meager set is a countable intersection of dense open sets. The
complement of a co-meager set is a meager set.
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Generic objects corresponds to the typical objects with regard to
Baire categoricity.

Definition (Meager sets)

A co-meager set is a countable intersection of dense open sets. The
complement of a co-meager set is a meager set.

Definition (Genericity over L)

We say that X is generic over L, if X is in every dense open set
with code in L.

A\

Definition (ITTM-genericity)

We say that X is ITTM-generic if X is in no ITTM-semi-decidable
meager set.
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The theorem relating ITTM-genericity and genericity over Ly still
holds:

Let X be a real. Then

X is ITTM-generic <= X is generic over Ly and ¥X = ¥

But in fact...
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The theorem relating ITTM-genericity and genericity over Ly still
holds:

Let X be a real. Then

X is ITTM-generic <= X is generic over Ly and ¥X = ¥

But in fact...

If Z is generic over Ly, then L:[Z] <2 Ls[Z]. In particular, ¥4 = ¥

ITTM-genericity and genericity over Ly are two equivalent notions.

there is no difference between the two notions!
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Conclusion

To conclude:

Do we have?

randomness over Ly # ITTM-randomness

is still unsolved...
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