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Infinite Time Turing Machine

Definition (Hamkins, Lewis, 2000)

An Infinite Time Turing Machine is a Turing Machine with a special
state called “limit state” and three tapes:

The input tape,
the working tape, and
the output tape.

We now need to define a computation by an ITTM. Computations
are indexed by ordinals.

At successor step, the behaviour is the same as regular Turing
Machines.
We need to specify the behaviour at limit steps.
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Limit steps

At limit steps:
The state becomes the special “limit state”.

f u n c t i o n l i m i t ( ) {
. . .

}

The value of each cells is the lim inf of its values at previous
stage of computation:

Cell Ci : 0 → 1 → 0 → 1 → 0 → 1 · · · lim inf−−−→ 0

Cell Cj : 1 → 1 → 0 → 0 → 0 → 0 · · · lim inf−−−→ 0

Cell Ck : 0 → 0 → 1 → 1 → 1 → 1 · · · lim inf−−−→ 1
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Computing with an ITTM

We have a notion of computability for reals;

Definition (Writability)

A real x is writable if there is an ITTM M starting with blank input
tape, which reach a halting state with x written on its output tape.

But also for classes of reals:

Definition (Decidability)

A class of reals A is ITTM-decidable if there exists an ITTM M
such that M(X ) ↓= 1 if X ∈ A and M(X ) ↓= 0 otherwise.
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The power of ITTM-decidability

Are ITTMs really strong?

Theorem
The class WO of codes for well-orders is ITTM-decidable.

Corollary

All Π1
1 sets (resp. class) are writable (resp. decidable).

Corollary

Kleene’s O, and OO and O(OO) · · · are writable.
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Where does it stop?

Theorem
If an ITTM stops, it stops before ω1.

Definition
We define γ = sup{α : α is a halting time}.

By cofinality, γ < ω1.
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Toward Set Theory

Definition (λ)

We call λ the supremum of the ordinals with writable codes.

A real X is eventually writable if there is an ITTM that write X at
some point X and never changes it.

Definition (ζ)

We call ζ the supremum of the ordinals with eventually writable
codes.

A real X is accidentally writable if there is an ITTM that write X
at some point X of its computation.

Definition (Σ)

We call Σ the supremum of the ordinals with accidentally writable
codes.
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Constructibility

Definition
Gödel’s constructible are defined by induction over the ordinals:

L0

[X ]

= ∅

{X}

Lα+1

[X ]

= {{x ∈ Lα

[X ]

: Lα

[X ]

|= Φ(x)} : Φ a formula}
Lλ

[X ]

=
⋃
α<λ

Lα

[X ]
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Constructibility

Definition
Gödel’s constructible are defined by induction over the ordinals:

L0[X ] = {X}
Lα+1[X ] = {{x ∈ Lα[X ] : Lα[X ] |= Φ(x)} : Φ a formula}

Lλ[X ] =
⋃
α<λ

Lα[X ]
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Fundamental theorem for ITTMs

These ordinals λ, ζ and Σ are characterized in the following
theorem:

Theorem (Welch)

Let x be any real.

(λ

x

, ζ

x

,Σ

x

) is the smallest triplet such that

Lλ

x [x ]

≺1 Lζ

x [x ]

≺2 LΣ

x [x ]

Moreover γ

x

= λ

x

.

Definition (Stability)

A ≺n B if for every Σn formula φ with parameter in A, A |= Φ if
and only if B |= Φ.
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Fundamental theorem for ITTMs

Theorem (Welch)

Let x be any real.

(λx , ζx ,Σx) is the smallest triplet such that

Lλx [x ] ≺1 Lζx [x ] ≺2 LΣx [x ]

Moreover γx = λx .

Theorem (Welch)

(λx , ζx ,Σx) are such that

Lλx [x ] is the set of sets with writable code
Lζx [x ] is the set of sets with eventually writable code
LΣx [x ] is the set of sets with accidentally writable code
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Randomness

We will use the following paradigm to define randomness:

Paradigm
A set Z is random if it avoids all the sufficiently simple null sets.

Having countably many simple sets ensures that the randoms
are co-null
The more null sets are avoided, the more random the set is.
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Some notions of Randomness

Let α be an ordinal.

Definition (randomness over Lα, Carl and Schlicht)

A set X is random over Lα if X is in no null Borel set with code in
Lα.

Example

Randomness over LωCK
1

corresponds to ∆1
1-randomness

Definition (ITTM-decidable-randomness, Carl and Schlicht)

A set X is ITTM-decidable random if X is in no null
ITTM-decidable set.

Theorem
Randomness over Lλ corresponds to ITTM-decidable-randomness
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Definitions

Definition (α-ce open sets)

An open set U is α-ce if

U =
⋃

Lα|=Φ(σ)
σ∈2<ω

[σ]

for some Σ1 formula Φ with parameters in Lα.

Definition (α-ML-randomness, Carl and Schlicht)

A set X is α-ML random if X is in no uniform intersection
⋂

n Un
of uniformly α-ce open sets such that λ(Un) ≤ 2−n.

Example

Π1
1-ML-randomness is also ωCK

1 -ML-randomness.
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Comparison with higher randomness

In higher randomness, we have the following:

Theorem

Π1
1-ML randomness is strictly stronger than ∆1

1-randomness.

Could we generalize the results to other ordinals?

Question
For which ordinals α do we have:
“α-ML randomness is strictly stronger than randomness over Lα”?

For α = ωCK
1 , it is the case.

What about α = λ, or ζ, or Σ?
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Projectibility

To answer this question, we need the concept of projectibility.

Definition (Projectible ordinals)

We say that an ordinal α is projectible into an ordinal β if there is
an injective function from α to β that is Σ1-definable in Lα.
We say that α is projectible if α is projectible into some β < α.
The least such β is called the projectum of α.

Theorem (A., Monin)

Let α be limit and such that Lα |=“everything is countable”. Then,
the following are equivalent:

α is projectible into ω,
There is a universal α-ML random test,
α-ML-randomness is strictly stronger than randomness over
Lα.
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Application with λ, ζ, Σ

Theorem (Friedman)

If Lα |=“∃x : x is uncountable”, then there exists β, γ < α such
that Lβ ≺ Lγ .

Therefore, Lλ, Lζ and LΣ all satify “everything is countable”.

Theorem
The ordinal Σ is projectible into ω, using ζ as a parameter.

Recall that Σ is not admissible!

Corollary
Σ-ML-randomness is strictly stronger than randomness over LΣ.
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If Lα |=“∃x : x is uncountable”, then there exists β, γ < α such
that Lβ ≺ Lγ .
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ITTM randomness

What about equivalent of Π1
1 randomness?

Definition (ITTM randomness)

A real X is said ITTM-random if it is in no ITTM-semi-decidable
null set.

Theorem (Carl, Schlicht)

X is ITTM-random ⇐⇒ X is random over LΣ and ΣX = Σ
⇐⇒ X is random over Lζ and ζX = ζ
⇐⇒ X is random over Lλ and λX = λ

Compared with higher randomness:

Theorem
Let X be a real. Then

X is Π1
1-random⇐⇒ X is ∆1

1-random and ωX
1 = ωCK

1
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Diverging from higher randomness

In the higher randomness case, we have:

Theorem

∆1
1-randomness ( Π1

1-ML-randomness ( Π1
1-randomness

However, in the ITTM case we have :

Theorem

Randomness over Lλ ( λ-ML-randomness ( ITTM-randomness
Randomness over Lζ = ζ-ML-randomness ( ITTM-randomness
Randomness over LΣ ⊆ ITTM-randomness ( Σ-ML-randomness

Which leaves us with the question:

Question
Do we have?

randomness over LΣ 6= ITTM-randomness
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Question

Question
Do we have?

randomness over LΣ 6= ITTM-randomness

1 It is equivalent to the question: Does Σ-randomness for X
implies Lζ [X ] ≺2 LΣ[X ]?

2 The problem comes from the fact that Σ is not admissible (ie.
LΣ is not a model of Σ1-replacement)

3 What about genericity?
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Genericity

Generic objects corresponds to the typical objects with regard to
Baire categoricity.

Definition (Meager sets)

A co-meager set is a countable intersection of dense open sets. The
complement of a co-meager set is a meager set.

Definition (Genericity over Lα)

We say that X is generic over Lα if X is in every dense open set
with code in Lα.

Definition (ITTM-genericity)

We say that X is ITTM-generic if X is in no ITTM-semi-decidable
meager set.
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Genericity

The theorem relating ITTM-genericity and genericity over LΣ still
holds:

Theorem
Let X be a real. Then

X is ITTM-generic⇐⇒ X is generic over LΣ and ΣX = Σ

But in fact...

Theorem

If Z is generic over LΣ, then Lζ [Z ] ≺2 LΣ[Z ]. In particular, ΣZ = Σ

Corollary
ITTM-genericity and genericity over LΣ are two equivalent notions.

there is no difference between the two notions!
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Conclusion

To conclude:

Question
Do we have?

randomness over LΣ 6= ITTM-randomness

is still unsolved...
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