α-Recursion and Randomness

Paul-Elliot Anglès d'Auriac

March 12, 2019

Paul-Elliot Anglès d'Auriac *α***[-Recursion and Randomness](#page-0-0)**

 $(1, 1)$ $(1, 1)$

k 로)

 \rightarrow \equiv \rightarrow

重

a mille

 \Box

メミメメ ヨメ

重

Consider the following game:

Game of Guessing the Random

For every N:

- \bullet I choose a sequence in 2^N (deterministically)
- \bullet I randomly get another one by throwing N times a coin
- The other player have to bet on which was obtained randomly.

Consider the following game:

Game of Guessing the Random

For every N:

- I choose a sequence in 2^N (deterministically)
- \bullet I randomly get another one by throwing N times a coin
- The other player have to bet on which was obtained randomly.

Which sequence would you bet is obtained randomly ?

$$
\begin{array}{l} A = \hspace{1mm}0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \\ B = \hspace{1mm}0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0 \end{array}
$$

Consider the following game:

Game of Guessing the Random

For every N:

- I choose a sequence in 2^N (deterministically)
- \bullet I randomly get another one by throwing N times a coin
- The other player have to bet on which was obtained randomly.

Which sequence would you bet is obtained randomly ?

$$
\begin{array}{l} A = \hspace{1mm}0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \\ B = \hspace{1mm}0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0 \end{array}
$$

However $\mathsf{Pr}(\text{obtaining } A) = \mathsf{Pr}(\text{obtaining } B) = 2^{-11}...$

Consider the following game:

Game of Guessing the Random

For every N:

- I choose a sequence in 2^N (deterministically)
- \bullet I randomly get another one by throwing N times a coin
- The other player have to bet on which was obtained randomly.

Which sequence would you bet is obtained randomly ?

$$
\begin{array}{l} A = \hspace{1mm}0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \\ B = \hspace{1mm}0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0 \end{array}
$$

However $\mathsf{Pr}(\text{obtaining } A) = \mathsf{Pr}(\text{obtaining } B) = 2^{-11}...$

$$
\begin{array}{l} A = 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1... \\ B = 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0... \end{array}
$$

How to compare the randomness of two sequences sequence ? A random is expected to

- Have no structure
- be not predictable,
- **o** be hard to remember
- \bullet

How to compare the randomness of two sequences sequence ? A random is expected to

- Have no structure
- be not predictable,
- \bullet be hard to remember $=$ being incompressible
- \bullet

Suppose I moved to 182718525747285286528 Logic Street.

Hi Mom!

Please note my new address is 182718525747285286528 Logic **Street**

How to compare the randomness of two sequences sequence ? A random is expected to

- **Have no structure**
- be not predictable,
- \bullet be hard to remember $=$ being incompressible
- \bullet

Suppose I moved to 100000000000000000000 Logic Street.

Hi Mom!

Please note my new address is "1" and 20 "0" Logic Street.

つへへ

Intuition

The more a string is random the bigger is its shortest description (in some coding).

Definition (Kolmogorov Complexity)

$$
C(\sigma) = \min(\{|\tau| : M(\tau) = \sigma\})
$$

where

$$
M(0^e1\sigma)=M_e(\sigma)
$$

- $182718525747285286528 \rightarrow 0^{e_{id}}1182718525747285286528.$
- $1000000000000000000000 \rightarrow 0e120$.

Pseudorandomness is not random at all !!!

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

重

Strategy for the second player

Between A and B, choose the sequence with higher Kolmogorov complexity !

(if you can find it...)

COLLA

4. 동)

∢ 重 ≯

É

Strategy for the second player

Between A and B, choose the sequence with higher Kolmogorov complexity !

(if you can find it...) Conclusion:

screen320x480-eps-converted-to.pd

 $2Q$

K 로)

Infinitary case

Now we consider reals.

Question

How would we define a real in 2*^ω* obtained by tossing infinitely many coins ?

- Every reals have 0 chance to appear,
- would be awkward if it is definable by a finite sentence.

Infinitary case

Now we consider reals.

Question

How would we define a real in 2*^ω* obtained by tossing infinitely many coins ?

- Every reals have 0 chance to appear,
- would be awkward if it is definable by a finite sentence.

There exists several paradigms to define what it is to be random for a sequence of bits :

Paradigm

- **1** Impredictability,
- **2** Incompressibility of prefixes,
- **3** No exceptionnal properties.

We will use the third paradigm.

つへへ

Paradigm

A set A is random if it has no sufficiently simple exceptional property.

Definition

Let $\mathcal{C} \subseteq \mathcal{P}(2^{\omega})$, and $X \subseteq 2^{\omega}$. We define $\mathcal{C}\text{-}$ randomness by:

X is C-random if $\forall P \in C$, if $\lambda(P) = 0$ then $\neg P(X)$.

 $2Q$

→ 唐 × → 唐 × 。

Paradigm

A set A is random if it has no sufficiently simple exceptional property.

Definition

Let $\mathcal{C} \subseteq \mathcal{P}(2^{\omega})$, and $X \subseteq 2^{\omega}$. We define $\mathcal{C}\text{-}$ randomness by:

X is C-random if $\forall P \in C$, if $\lambda(P) = 0$ then $\neg P(X)$.

C countable ensures that the C-randoms are have measure 1. Examples :

- the class of Π^0_2 sets, the sets that need two quantifiers (starting with \forall) over N to be defined,
- the class of effectively Borel sets,
- the class of ITTM-semi-recursive.

- Randomness Theory is the study of these different notions, how they relate to each others, what are the properties, computationnal power of random reals, etc.
- Notions are stratified in complexity by logic:
	- Complexity theory studies "low" complexity sets,
		- **•** Polynomial Hierarchy
	- Recursion theory studies "medium" complexity sets,
		- (Hyper)arithmetical Hierarchy
	- Set theory studies "high" complexity sets.
- \bullet Let's see how set theory gives us new natural C.

a mille

 \Box

メミメメ ヨメ

重

α-Recursion comes naturally from the theorem :

Theorem

Let $A \subseteq \omega$. Then the following are equivalent:

- A is recursively enumerable,
- $\bullet \exists \phi \Sigma_1$ such that $n \in A \Leftrightarrow HF \models \phi(n)$.

Where HF is the set of all hereditarily finite sets.

つくい

α-Recursion comes naturally from the theorem :

Theorem

Let $A \subseteq \omega$. Then the following are equivalent:

- A is recursively enumerable,
- $\bullet \exists \phi \Sigma_1$ such that $n \in A \Leftrightarrow HF \models \phi(n)$.

Where HF is the set of all hereditarily finite sets.

Strategy

We'll change HF by a level of the Godel Hierarchy!

つくい

Gödel's constructible universe (1938)

Gödel's constructible at rank *α*, written L*^α* are defined by induction along ordinals :

- \bullet L₀ = \emptyset . **2** $L_{\alpha+1} = Def(L_{\alpha})$,
- **3** $L_{\lambda} = \bigcup_{\alpha < \lambda} L_{\alpha}$.

The constructibles are the elements of $\bigcup_{\alpha} L_{\alpha}.$

Definition

$$
\mathit{Def}(M) = \left\{E_{\phi,\bar{p}}^{M}: \phi \text{ is a formula and } \bar{p} \in M\right\}
$$

where

$$
E^M_{\phi,\bar{p}} = \{x \in M : \phi(x,\bar{p}) \text{ is true in } M\}
$$

Omega_squared12.png

constr9-eps-converted-to.pdf

メロトメ 伊 トメ 君 トメ 君 トッ

重

Omega_squared11.png

constr8-eps-converted-to.pdf

メロメ メ御 メメ ミメメ ヨメ

重

Omega_squared10.png

constr7-eps-converted-to.pdf

メロメ メ御 メメ ミメメ ヨメ

重

Omega_squared9.png

constr6-eps-converted-to.pdf

メロトメ 伊 トメ 君 トメ 君 トッ

重

Omega_squared8.png

constr5-eps-converted-to.pdf

メロトメ 伊 トメ 君 トメ 君 トッ

重

Omega_squared7.png mieux-eps-converted-to.pdf

メロトメ 伊 トメ 君 トメ 君 トッ

È

Omega_squared6.png mieux2-eps-converted-to.pdf

メロトメ 伊 トメ 君 トメ 君 トッ

重

Omega_squared5.png mieux3-eps-converted-to.pdf

メロトメ 伊 トメ 君 トメ 君 トッ

È

Omega_squared3.png

constrbis3-eps-converted-to.pdf

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ .

重

Omega_squared2.png

constrbis4-eps-converted-to.pdf

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ .

重

Omega_squared0.png

constrbis5-eps-converted-to.pdf

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ .

重

 $\mathcal{L} = \bigcup_{\alpha \in \mathit{Ord}} L_\alpha$ is a model of ZFC These are some particular layers :

•
$$
L_{n+1} = \mathcal{P}(L_n)
$$
 for *n* an integer ;

² L*^ω* = HF, the hereditarily finite sets ;

 \bullet $L_{\omega_{1}^{CK}}=HYP,$ the sets with hyperarithmetic codes ;

•
$$
L_{\lambda} = WRT
$$
, the sets with writable codes.

We find again *HF* !

 $HF = L_{\omega}$. Recall our theorem

Theorem (Characterization of recursive enumerability)

Let $A \subseteq \omega$. Then we have :

A is r.e. $\iff \exists \phi \Sigma_1$ such that $n \in A \Leftrightarrow L_\omega \models \phi(n)$

 $2Q$

∢ 倒 ▶ -∢ ヨ ▶ -∢ ヨ ▶

 $HF = L_{\omega}$. Recall our theorem

Theorem (Characterization of recursive enumerability)

Let $A \subseteq \omega$. Then we have :

A is r.e. $\iff \exists \phi \Sigma_1$ such that $n \in A \Leftrightarrow L_{\omega} \models \phi(n)$

The basic definition of *α*-recursion :

Definition

Let α be an ordinal and $A \subseteq L_{\alpha}$. We say that :

- **4** A is α -finite if $A \in L_{\alpha}$;
- **²** A is *α*-recursive if A is ∆1-comprehensible in L*^α* ;
- **3** A is α -recursively enumerable if A is Σ_1 -comprehensible in L_{α} .

 $HF = L_{\omega}$. Recall our theorem

Theorem (Characterization of recursive enumerability)

Let $A \subseteq \omega$. Then we have :

A is r.e. $\iff \exists \phi \Sigma_1$ such that $n \in A \Leftrightarrow L_\omega \models \phi(n)$

The basic definition of *α*-recursion :

Definition

Let α be an ordinal and $A \subseteq L_{\alpha}$. We say that :

- **4** A is α -finite if $A \in L_{\alpha}$;
- **²** A is *α*-recursive if A is ∆1-comprehensible in L*^α* ;
- **3** A is α -recursively enumerable if A is Σ_1 -comprehensible in L_{α} .
	- \bullet Intuition: In α -recursion, we see a computation as a search into all the *α*-finite sets.
	- \bullet Some α will reveal more interesting than others,
	- \bullet A is a set of α -finite elements, not only [in](#page-34-0)t[egers.](#page-0-0)
- We can define new classes $\mathcal C$ of "sufficiently simple" properties by mimiking the classical case,
- **•** for example,
	- from Π^0_2 to α -recursive Π^0_2 ,
	- from ML tests to *α*-ML tests...
- What happens to the relation between higher counterparts of classical notions ?

- We can define new classes $\mathcal C$ of "sufficiently simple" properties by mimiking the classical case,
- **•** for example,
	- from Π^0_2 to α -recursive Π^0_2 ,
	- from ML tests to *α*-ML tests...
- What happens to the relation between higher counterparts of classical notions ?

Thank you for your attention!

Intuition

We see a computation as a search into all the *α*-finite sets.

It is not yet finished ! Because :

Remark

Some α will reveal more interesting than others...

Which *α* ? Or, a better question would be which L*^α* ?

④重 > ④重 > 。

Definition

An *α* is said admissible of the image of any *α*-finite set over an *α*-recursive function is *α*-finite.

•
$$
\omega
$$
, ω_1^{CK} , ω_1^{CKA} , λ , ω_1 are admissible. $\omega \cdot 2$ is not.

Intuition

An ordinal *α* is admissible if the *α*-recursion is not too far from computability.

(ロ) (倒)

メミメメ ヨメ

重

Intuition

We see a computation as a search into all the *α*-finite sets.

- *ω*-recursion, is classical computability ;
- ω_1^{CK} -recursion, is higher computability ;
- *λ*-recursion, is ITTM computability.

We have a general and satisfying definition of computability.

Following this principle, we define the tests in L*α*.

Definition

X is random over L_{α} (or α -random) if X do not belong to any null borel set with code in L*α*.

We continue the process to generalise Martin-Löf's idea :

Definition

- A ML test is a set $A \subseteq 2^\omega$, with $A = \bigcap \mathcal{U}_n$ a Π_2^0 set with $\lambda(\mathcal{U}_n) \leq 2^{-n}$,
- an *α*-ML test is a Martin-Löf test U ⊆ *ω* × 2 *<ω* which is *α*-recursively enumerable,
- X is *α*-ML random if it is in no *α*-ML tests.
- *ω*-ML randomness is ML random,
- $ω_1^{CK}$ -ML randomness is Π^1_1 -ML randomness,
- \bullet λ -ML randomness is ITTM_{ML} randomness

つへへ

Question

For every *α*, do the notions of "*α*-random" and "*α*-ML random" coincide ?

Kロト K倒下

メミメメ ヨメ

È

Question

For every *α*, do the notions of "*α*-random" and "*α*-ML random" coincide ?

Theorem

 Δ^1_1 -randomness and $\Pi^1_1\text{-}ML$ randomness are different notion.

This answers the quesion in a particular case. We would like a condition on *α* for it to be true.

projectum-eps-converted-to.pdf

へのへ

Definition

α is projectible into *β* if there exists an *α*-recursive function, one-one from *α* to *β*.

- ω_1^{CK} , λ are projectible into ω ;
- \bullet it means the whole is being projectible into the α -finite;
- not every ordinals are projective into a smaller ordinal than themselves.

A fine structure property of the universe of set!

Theorem

The following are equivalent :

¹ *α* is projectible into *ω*, and

² *α*-randomness and *α*-ML randomness are different notions.

Corollary

ITTM-randomness and ITTM $_{MI}$ randomness are two different notions.

€

つくい

- *α*-recursion extends computability, and includes other extensions ;
- it allows us to define new notions of randomness :
- we have an equivalence between a property of set theory and a property of algorithmic randomness.

Thanks for your attention !

メロメメ 御 メメ きょくきょう

È