$\alpha\text{-Recursion}$ and Randomness

Paul-Elliot Anglès d'Auriac

March 12, 2019

A D > <
 B >

★ E ► ★ E ►

< ≣ >

∢ ≣⇒

Consider the following game:

Game of Guessing the Random

For every N:

- I choose a sequence in 2^N (deterministically)
- I randomly get another one by throwing N times a coin
- The other player have to bet on which was obtained randomly.

Consider the following game:

Game of Guessing the Random

For every N:

- I choose a sequence in 2^N (deterministically)
- I randomly get another one by throwing N times a coin
- The other player have to bet on which was obtained randomly.

Which sequence would you bet is obtained randomly ?

Consider the following game:

Game of Guessing the Random

For every N:

- I choose a sequence in 2^N (deterministically)
- I randomly get another one by throwing N times a coin
- The other player have to bet on which was obtained randomly.

Which sequence would you bet is obtained randomly ?

However $\mathbf{Pr}(\text{obtaining } A) = \mathbf{Pr}(\text{obtaining } B) = 2^{-11}...$

Consider the following game:

Game of Guessing the Random

For every N:

- I choose a sequence in 2^N (deterministically)
- I randomly get another one by throwing N times a coin
- The other player have to bet on which was obtained randomly.

Which sequence would you bet is obtained randomly ?

However $\mathbf{Pr}(\text{obtaining } A) = \mathbf{Pr}(\text{obtaining } B) = 2^{-11}...$

How to compare the randomness of two sequences sequence ? A random is expected to

- Have no structure
- be not predictable,
- be hard to remember
- ...

How to compare the randomness of two sequences sequence ? A random is expected to

- Have no structure
- be not predictable,
- be hard to remember = being incompressible
- ...

Suppose I moved to 182718525747285286528 Logic Street.

Hi Mom!

Please note my new address is 182718525747285286528 Logic Street.

How to compare the randomness of two sequences sequence ? A random is expected to

- Have no structure
- be not predictable,
- be hard to remember = being incompressible
- ...

Suppose I moved to 100000000000000000 Logic Street.

Hi Mom!

Please note my new address is "1" and 20 "0" Logic Street.

Intuition

The more a string is random the bigger is its shortest description (in some coding).

Definition (Kolmogorov Complexity)

$$C(\sigma) = \min(\{|\tau| : M(\tau) = \sigma\})$$

where

$$M(0^e 1\sigma) = M_e(\sigma)$$

- $182718525747285286528 \rightarrow 0^{e_{id}} 1182718525747285286528$.
- $10000000000000000 \rightarrow 0^{e}120.$

Pseudorandomness is not random at all !!!

イロン イヨン イヨン

Strategy for the second player

Between A and B, choose the sequence with higher Kolmogorov complexity !

(if you can find it...)

通 とう ほとう きょう

Strategy for the second player

Between A and B, choose the sequence with higher Kolmogorov complexity !

(if you can find it...) Conclusion:

screen320x480-eps-converted-to.pd

Infinitary case

Now we consider reals.

Question

How would we define a real in 2^ω obtained by tossing infinitely many coins ?

- Every reals have 0 chance to appear,
- would be awkward if it is definable by a finite sentence.

Infinitary case

Now we consider reals.

Question

How would we define a real in 2^ω obtained by tossing infinitely many coins ?

- Every reals have 0 chance to appear,
- would be awkward if it is definable by a finite sentence.

There exists several paradigms to define what it is to be random for a sequence of bits :

Paradigm

- Impredictability,
- Incompressibility of prefixes,
- No exceptionnal properties.

We will use the third paradigm.

Paradigm

A set A is random if it has no sufficiently simple exceptional property.

Definition

Let $C \subseteq \mathcal{P}(2^{\omega})$, and $X \subseteq 2^{\omega}$. We define *C*-randomness by:

X is C-random if $\forall P \in C$, if $\lambda(P) = 0$ then $\neg P(X)$.

イロン 不同 とくほど 不同 とう

Paradigm

A set A is random if it has no sufficiently simple exceptional property.

Definition

Let $C \subseteq \mathcal{P}(2^{\omega})$, and $X \subseteq 2^{\omega}$. We define *C*-randomness by:

X is C-random if $\forall P \in C$, if $\lambda(P) = 0$ then $\neg P(X)$.

 ${\cal C}$ countable ensures that the ${\cal C}\mbox{-}{\rm randoms}$ are have measure 1. Examples :

- the class of Π⁰₂ sets, the sets that need two quantifiers (starting with ∀) over N to be defined,
- the class of effectively Borel sets,
- the class of ITTM-semi-recursive.

ヘロト ヘ回ト ヘヨト ヘヨト

- Randomness Theory is the study of these different notions, how they relate to each others, what are the properties, computationnal power of random reals, etc.
- Notions are stratified in complexity by logic:
 - Complexity theory studies "low" complexity sets,
 - Polynomial Hierarchy
 - Recursion theory studies "medium" complexity sets,
 - (Hyper)arithmetical Hierarchy
 - Set theory studies "high" complexity sets.
- Let's see how set theory gives us new natural \mathcal{C} .

< ≣ >

∢ ≣⇒

 $\alpha\text{-}\mathsf{Recursion}$ comes naturally from the theorem :

Theorem

Let $A \subseteq \omega$. Then the following are equivalent:

- A is recursively enumerable,
- $\exists \phi \Sigma_1$ such that $n \in A \Leftrightarrow HF \models \phi(n)$.

Where HF is the set of all hereditarily finite sets.

 $\alpha\text{-}\mathsf{Recursion}$ comes naturally from the theorem :

Theorem

Let $A \subseteq \omega$. Then the following are equivalent:

- A is recursively enumerable,
- $\exists \phi \Sigma_1$ such that $n \in A \Leftrightarrow HF \models \phi(n)$.

Where HF is the set of all hereditarily finite sets.

Strategy

We'll change HF by a level of the Godel Hierarchy!

Gödel's constructible universe (1938)

Gödel's constructible at rank $\alpha,$ written L_α are defined by induction along ordinals :

- $L_0 = \emptyset$, • $L_{\alpha+1} = Def(L_{\alpha})$,

The constructibles are the elements of $\bigcup_{\alpha} L_{\alpha}$.

Definition

$$Def(M) = \left\{ E^{M}_{\phi, \bar{p}} : \phi \text{ is a formula and } \bar{p} \in M
ight\}$$

where

$$E^M_{\phi, \bar{p}} = \{x \in M : \phi(x, \bar{p}) \text{ is true in } M\}$$

Omega_squared12.png

constr9-eps-converted-to.pdf

回 とう ほ とう きょう

Omega_squared11.png

constr8-eps-converted-to.pdf

回とくほとくほと

Omega_squared10.png

constr7-eps-converted-to.pdf

回 とう ほ とう きょう

Omega_squared9.png

constr6-eps-converted-to.pdf

イロン イヨン イヨン イヨン

Omega_squared8.png

constr5-eps-converted-to.pdf

イロン イヨン イヨン イヨン

Omega_squared7.png

mieux-eps-converted-to.pdf

イロン イヨン イヨン イヨン

Omega_squared6.png

mieux2-eps-converted-to.pdf

イロン イヨン イヨン イヨン

Omega_squared5.png

mieux3-eps-converted-to.pdf

イロン イヨン イヨン イヨン

Omega_squared3.png

constrbis3-eps-converted-to.pdf

イロン イヨン イヨン イヨン

Omega_squared2.png

constrbis4-eps-converted-to.pdf

イロト イヨト イヨト イヨト

Omega_squared0.png

constrbis5-eps-converted-to.pdf

回とくほとくほと

 $L = \bigcup_{\alpha \in Ord} L_{\alpha}$ is a model of ZFC These are some particular layers :

•
$$L_{n+1} = \mathcal{P}(L_n)$$
 for n an integer;

2 $L_{\omega} = HF$, the hereditarily finite sets ;

③ $L_{\omega,CK} = HYP$, the sets with hyperarithmetic codes ;

•
$$L_{\lambda} = WRT$$
, the sets with writable codes.

We find again HF !

→ E → < E →</p>

 $HF = L_{\omega}$. Recall our theorem

Theorem (Characterization of recursive enumerability)

Let $A \subseteq \omega$. Then we have :

A is r.e. $\iff \exists \phi \ \Sigma_1 \text{ such that } n \in A \Leftrightarrow \underline{L}_{\omega} \models \phi(n)$

・ロト ・回ト ・ヨト ・ヨト

 $HF = L_{\omega}$. Recall our theorem

Theorem (Characterization of recursive enumerability)

Let $A \subseteq \omega$. Then we have :

A is r.e. $\iff \exists \phi \ \Sigma_1 \text{ such that } n \in A \Leftrightarrow \underline{L}_{\omega} \models \phi(n)$

The basic definition of α -recursion :

Definition

Let α be an ordinal and $A \subseteq L_{\alpha}$. We say that :

- **0** A is α -finite if $A \in L_{\alpha}$;
- **2** A is α -recursive if A is Δ_1 -comprehensible in L_{α} ;
- **3** A is α -recursively enumerable if A is Σ_1 -comprehensible in L_{α} .

 $HF = L_{\omega}$. Recall our theorem

Theorem (Characterization of recursive enumerability)

Let $A \subseteq \omega$. Then we have :

A is r.e. $\iff \exists \phi \ \Sigma_1 \text{ such that } n \in A \Leftrightarrow \underline{L}_{\omega} \models \phi(n)$

The basic definition of α -recursion :

Definition

Let α be an ordinal and $A \subseteq L_{\alpha}$. We say that :

- **1** A is α -finite if $A \in L_{\alpha}$;
- **2** A is α -recursive if A is Δ_1 -comprehensible in L_{α} ;
- **3** A is α -recursively enumerable if A is Σ_1 -comprehensible in L_{α} .
 - Intuition: In α -recursion, we see a computation as a search into all the α -finite sets.
 - Some α will reveal more interesting than others,
 - A is a set of α -finite elements, not only integers.

- We can define new classes C of "sufficiently simple" properties by mimiking the classical case,
- for example,
 - from Π_2^0 to α -recursive Π_2^0 ,
 - from ML tests to $\alpha\text{-ML}$ tests...
- What happens to the relation between higher counterparts of classical notions ?

- We can define new classes C of "sufficiently simple" properties by mimiking the classical case,
- for example,
 - from Π_2^0 to α -recursive Π_2^0 ,
 - $\bullet\,$ from ML tests to $\alpha\text{-ML}$ tests...
- What happens to the relation between higher counterparts of classical notions ?

Thank you for your attention!

Intuition

We see a computation as a search into all the α -finite sets.

It is not yet finished ! Because :

Remark

Some α will reveal more interesting than others...

Which α ? Or, a better question would be which L_{α} ?

同下 くまた くまと

Definition

An α is said admissible of the image of any $\alpha\text{-finite}$ set over an $\alpha\text{-recursive}$ function is $\alpha\text{-finite}.$

•
$$\omega$$
, ω_1^{CK} , ω_1^{CKA} , λ , ω_1 are admissibles. $\omega \cdot 2$ is not.

Intuition

An ordinal α is admissible if the $\alpha\text{-recursion}$ is not too far from computability.

イロン イヨン イヨン イヨン

臣

Intuition

We see a computation as a search into all the α -finite sets.

- ω -recursion, is classical computability ;
- $\omega_1^{\mathit{CK}}\text{-recursion, is higher computability ;}$
- λ -recursion, is ITTM computability.

We have a general and satisfying definition of computability.

Following this principle, we define the tests in L_{α} .

Definition

X is random over L_{α} (or α -random) if X do not belong to any null borel set with code in L_{α} .

We continue the process to generalise Martin-Löf's idea :

Definition

- A ML test is a set $A \subseteq 2^{\omega}$, with $A = \bigcap \mathcal{U}_n$ a Π_2^0 set with $\lambda(\mathcal{U}_n) \leq 2^{-n}$,
- an α -ML test is a Martin-Löf test $\mathcal{U} \subseteq \omega \times 2^{<\omega}$ which is α -recursively enumerable,
- X is α -ML random if it is in no α -ML tests.
- ω -ML randomness is ML random,
- ω_1^{CK} -ML randomness is Π_1^1 -ML randomness,
- λ -ML randomness is ITTM_{ML} randomness

Question

For every $\alpha,$ do the notions of " $\alpha\text{-random"}$ and " $\alpha\text{-ML}$ random" coincide ?

イロト イヨト イヨト イヨト

э

Question

For every $\alpha,$ do the notions of " $\alpha\text{-random"}$ and " $\alpha\text{-ML}$ random" coincide ?

Theorem

 Δ_1^1 -randomness and Π_1^1 -ML randomness are different notion.

This answers the quesion in a particular case. We would like a condition on α for it to be true.

projectum-eps-converted-to.pdf

イロト イヨト イヨト イヨト

Definition

 α is projectible into β if there exists an $\alpha\text{-recursive}$ function, one-one from α to $\beta.$

- ω_1^{CK} , λ are projectible into ω ;
- \bullet it means the whole is being projectible into the $\alpha\mbox{-finite}$;
- not every ordinals are projective into a smaller ordinal than themselves.

A fine structure property of the universe of set!

Theorem

The following are equivalent :

- **1** α is projectible into ω , and
- 2 α -randomness and α -ML randomness are different notions.

Corollary

ITTM-randomness and ITTM_{ML} randomness are two different notions.

- $\alpha\text{-recursion}$ extends computability, and includes other extensions ;
- it allows us to define new notions of randomness ;
- we have an equivalence between a property of set theory and a property of algorithmic randomness.

Thanks for your attention !

ヘロン 人間 とくほど くほどう

æ