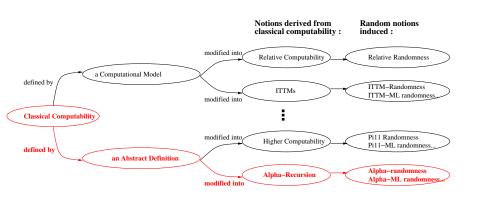
α -Recursion and Randomness

Paul-Elliot Anglès d'Auriac

December 5, 2018

Table of contents



Preliminaries

Three running examples:

- usual Recursion Theory;
- Π_1^1 -recursion: Π_1^1 are equivalents of r.e. sets, Δ_1^1 are equivalents of recursive sets;
- Infinite Time Turing Machine. Recall that λ is the supremum of the halting stages of ITTMs.

α -recursion

 $\alpha\text{-recursion}$ comes naturally from the theorem :

Theorem

Let $A \subseteq \omega$. Then we have :

A is r.e. $\iff \exists \phi \; \Sigma_1 \; \text{such that } n \in A \Leftrightarrow L_\omega \models \phi(n)$

α -recursion

lpha-recursion comes naturally from the theorem :

Theorem

Let $A \subseteq \omega$. Then we have :

A is r.e. $\iff \exists \phi \ \Sigma_1 \text{ such that } n \in A \Leftrightarrow L_\omega \models \phi(n)$

Definition

Let $A \subseteq \omega$. We say that:

- A is α -r.e. if $n \in A \Leftrightarrow L_{\alpha} \models \phi(n)$ with ϕ a Σ_1 -formula with parameters,
- A is α -recursive. if $n \in A \Leftrightarrow L_{\alpha} \models \phi(n)$ with ϕ a Δ_1 -formula with parameters,
- A is α -finite if $A \in L_{\alpha}$.

Back to the examples

Theorem (Spector, Gandy)

A set
$$A \subseteq \mathbb{N}$$
 is Π^1_1 iff $A = \{n \in \mathbb{N} : L_{\omega_1^{CK}} \models \phi(n)\}.$

So, on \mathbb{N} , Π_1^1 -recursion is ω_1^{CK} -recursion.

Back to the examples

Theorem (Spector, Gandy)

A set $A \subseteq \mathbb{N}$ is Π^1_1 iff $A = \{n \in \mathbb{N} : L_{\omega_1^{CK}} \models \phi(n)\}.$

So, on \mathbb{N} , Π_1^1 -recursion is ω_1^{CK} -recursion.

Theorem

A set $A \subseteq \mathbb{N}$ is ITTM-recursive iff A is λ -recursive.

So, on \mathbb{N} , ITTM-recursion is λ -recursion.

Admissibility

A condition on α to behave as intended:

Definition

We say that α is admissible if $\forall f \ \alpha$ -r.e, $\forall a \ \alpha$ -finite,

$$a \subseteq dom(f) \Rightarrow f[a]$$
 is α -finite.

This is $B\Sigma_1$ pendant. It allows swapping quantifiers.

What about our examples ?

Admissibility

A condition on α to behave as intended:

Definition.

We say that α is admissible if $\forall f \ \alpha$ -r.e, $\forall a \ \alpha$ -finite,

$$a \subseteq dom(f) \Rightarrow f[a]$$
 is α -finite.

This is $\mathsf{B}\Sigma_1$ pendant. It allows swapping quantifiers. What about our examples ?

Example

- \bullet ω is admissible,
- ω_1^{CK} is admissible,
- λ and ζ are admissible, but Σ is not.

Projectibility

Another property on α :

Definition

We say that α is projectible in $\beta < \alpha$ if there exists an α -recursive mapping one-one from α to β .

This is an analogue of $C\Sigma_1$. What about our examples ?

Projectibility

Another property on α :

Definition

We say that α is projectible in $\beta < \alpha$ if there exists an α -recursive mapping one-one from α to β .

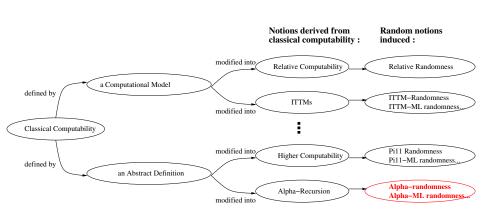
This is an analogue of $C\Sigma_1$. What about our examples ?

Example

- \bullet ω is not projectible,
- \bullet ω_1^{CK} is projectible,
- λ is projectible, but ζ is not.

It allows priority arguments!

Randomness Part



Recreation time

Defining randomness

There are three paradigms to define randomness.

- Incompressibility: if A is random, then all prefixes are hard to describe;
- Impredictability: given the first n bits of a random set we can't predict the n + 1th;
- No exceptional property: a random set has no sufficiently simple exceptional property;

Defining randomness

Definition

A set A is random if it has no sufficiently simple exceptional property.

Definition

Let $C \subseteq \mathcal{P}(2^{\omega})$, and $A \subseteq 2^{\omega}$. We define C-randomness by:

A is C-random if
$$\forall P \in C$$
, $\lambda(A) = 0 \Rightarrow \neg P(X)$.

Defining randomness

Definition

A set A is random if it has no sufficiently simple exceptional property.

Definition

Let $C \subseteq \mathcal{P}(2^{\omega})$, and $A \subseteq 2^{\omega}$. We define C-randomness by:

A is C-random if
$$\forall P \in \mathcal{C}$$
, $\lambda(A) = 0 \Rightarrow \neg P(X)$.

Examples of classes C:

- If C is the class of effectively null Π_2^0 set, we call that ML-randomness,
- C the class of Π_1^1 sets we get Π_1^1 -randomness,
- C the class of ITTM-semi-recursive sets we get ITTM-randomness.

Randomness is Lebesgue pendant of genericity, but is very different.

α -randomness

In the scope of α -recursion :

Definition

A set is α -random if $\neg P(x)$ for all P with ∞ Borel code in L_{α} .

What about ML randomness?

Definition

A is α -ML-random if A is in no effectively null set $\bigcap_n \mathcal{U}_n$ where $\{(n,\sigma): [\sigma]\subseteq \mathcal{U}_n\}$ is α -recursively enumerable.

α -randomness

In the scope of α -recursion :

Definition

A set is α -random if $\neg P(x)$ for all P with $^{\infty}$ Borel code in L_{α} .

What about ML randomness?

Definition

A is α -ML-random if A is in no effectively null set $\bigcap_n \mathcal{U}_n$ where $\{(n,\sigma): [\sigma] \subseteq \mathcal{U}_n\}$ is α -recursively enumerable.

Example

- ω_1^{CK} -randomness is Δ_1^1 -randomness, and ω_1^{CK} -ML-randomness is Π_1^1 -ML-randomness ;
- λ -randomness and λ -ML-randomness can also be defined in term of Infinite Time Turing Machine

Relation between randomness versions

Theorem

 Π^1_1 -ML-randomness is strictly stronger than Δ^1_1 -randomness.

Question

Is ITTM-ML-randomness strictly stronger than λ -randomness ?

Relation between randomness versions

Theorem

 Π^1_1 -ML-randomness is strictly stronger than Δ^1_1 -randomness.

Question

Is ITTM-ML-randomness strictly stronger than λ -randomness ?

Theorem

Let α be a countable admissible and $L_{\alpha} \models$ "everything is countable". Then the following are equivalent:

- **1** α -ML-randomness is strictly stronger than α -randomness,
- \mathbf{Q} α is projectible.

Proof.

Sketch if we have time...

Relation between randomness versions

$\mathsf{Theorem}$

A is ITTM-random iff A is Σ -random and $\Sigma^{\times} = \Sigma$.

Question

We have

 Σ -randomness $\supseteq \Gamma$ -mL-randomness.

Which of these inequalities are strict?

Thank you! See you on Sentosa Beach! Meeting with Sabrina at 8:00pm in front of PGPR.

