Source file avltree.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
(* A few small things copied from other parts of Base because they depend on us, so we
   can't use them. *)

open! Import

let raise_s = Error.raise_s

module Int = struct
  type t = int

  let max (x : t) y = if x > y then x else y
end

(* Its important that Empty have no args. It's tempting to make this type a record
   (e.g. to hold the compare function), but a lot of memory is saved by Empty being an
   immediate, since all unused buckets in the hashtbl don't use any memory (besides the
   array cell) *)
type ('k, 'v) t =
  | Empty
  | Node of
      { mutable left : ('k, 'v) t
      ; key : 'k
      ; mutable value : 'v
      ; mutable height : int
      ; mutable right : ('k, 'v) t
      }
  | Leaf of
      { key : 'k
      ; mutable value : 'v
      }

let empty = Empty

let is_empty = function
  | Empty -> true
  | Leaf _ | Node _ -> false
;;

let height = function
  | Empty -> 0
  | Leaf _ -> 1
  | Node { left = _; key = _; value = _; height; right = _ } -> height
;;

let invariant compare =
  let legal_left_key key = function
    | Empty -> ()
    | Leaf { key = left_key; value = _ }
    | Node { left = _; key = left_key; value = _; height = _; right = _ } ->
      assert (compare left_key key < 0)
  in
  let legal_right_key key = function
    | Empty -> ()
    | Leaf { key = right_key; value = _ }
    | Node { left = _; key = right_key; value = _; height = _; right = _ } ->
      assert (compare right_key key > 0)
  in
  let rec inv = function
    | Empty | Leaf _ -> ()
    | Node { left; key = k; value = _; height = h; right } ->
      let hl, hr = height left, height right in
      inv left;
      inv right;
      legal_left_key k left;
      legal_right_key k right;
      assert (h = Int.max hl hr + 1);
      assert (abs (hl - hr) <= 2)
  in
  inv
;;

let invariant t ~compare = invariant compare t

(* In the following comments,
   't is balanced' means that 'invariant t' does not
   raise an exception.  This implies of course that each node's height field is
   correct.
   't is balanceable' means that height of the left and right subtrees of t
   differ by at most 3. *)

(* @pre: left and right subtrees have correct heights
   @post: output has the correct height *)
let update_height = function
  | Node ({ left; key = _; value = _; height = old_height; right } as x) ->
    let new_height = Int.max (height left) (height right) + 1 in
    if new_height <> old_height then x.height <- new_height
  | Empty | Leaf _ -> assert false
;;

(* @pre: left and right subtrees are balanced
   @pre: tree is balanceable
   @post: output is balanced (in particular, height is correct) *)
let balance tree =
  match tree with
  | Empty | Leaf _ -> tree
  | Node ({ left; key = _; value = _; height = _; right } as root_node) ->
    let hl = height left
    and hr = height right in
    (* + 2 is critically important, lowering it to 1 will break the Leaf
       assumptions in the code below, and will force us to promote leaf nodes in
       the balance routine. It's also faster, since it will balance less often.
       Note that the following code is delicate.  The update_height calls must
       occur in the correct order, since update_height assumes its children have
       the correct heights.  *)
    if hl > hr + 2
    then (
      match left with
      (* It cannot be a leaf, because even if right is empty, a leaf
         is only height 1 *)
      | Empty | Leaf _ -> assert false
      | Node
          ({ left = left_node_left
           ; key = _
           ; value = _
           ; height = _
           ; right = left_node_right
           } as left_node) ->
        if height left_node_left >= height left_node_right
        then (
          root_node.left <- left_node_right;
          left_node.right <- tree;
          update_height tree;
          update_height left;
          left)
        else (
          (* if right is a leaf, then left must be empty. That means
             height is 2. Even if hr is empty we still can't get here. *)
          match left_node_right with
          | Empty | Leaf _ -> assert false
          | Node
              ({ left = lr_left; key = _; value = _; height = _; right = lr_right } as
               lr_node) ->
            left_node.right <- lr_left;
            root_node.left <- lr_right;
            lr_node.right <- tree;
            lr_node.left <- left;
            update_height left;
            update_height tree;
            update_height left_node_right;
            left_node_right))
    else if hr > hl + 2
    then (
      (* see above for an explanation of why right cannot be a leaf *)
      match right with
      | Empty | Leaf _ -> assert false
      | Node
          ({ left = right_node_left
           ; key = _
           ; value = _
           ; height = _
           ; right = right_node_right
           } as right_node) ->
        if height right_node_right >= height right_node_left
        then (
          root_node.right <- right_node_left;
          right_node.left <- tree;
          update_height tree;
          update_height right;
          right)
        else (
          (* see above for an explanation of why this cannot be a leaf *)
          match right_node_left with
          | Empty | Leaf _ -> assert false
          | Node
              ({ left = rl_left; key = _; value = _; height = _; right = rl_right } as
               rl_node) ->
            right_node.left <- rl_right;
            root_node.right <- rl_left;
            rl_node.left <- tree;
            rl_node.right <- right;
            update_height right;
            update_height tree;
            update_height right_node_left;
            right_node_left))
    else (
      update_height tree;
      tree)
;;

(* @pre: tree is balanceable
   @pre: abs (height (right node) - height (balance tree)) <= 3
   @post: result is balanceable *)

(* @pre: tree is balanceable
   @pre: abs (height (right node) - height (balance tree)) <= 3
   @post: result is balanceable *)
let set_left node tree =
  let tree = balance tree in
  match node with
  | Node ({ left; key = _; value = _; height = _; right = _ } as r) ->
    if phys_equal left tree then () else r.left <- tree;
    update_height node
  | _ -> assert false
;;

(* @pre: tree is balanceable
   @pre: abs (height (left node) - height (balance tree)) <= 3
   @post: result is balanceable *)
let set_right node tree =
  let tree = balance tree in
  match node with
  | Node ({ left = _; key = _; value = _; height = _; right } as r) ->
    if phys_equal right tree then () else r.right <- tree;
    update_height node
  | _ -> assert false
;;

(* @pre: t is balanced.
   @post: result is balanced, with new node inserted
   @post: !added = true iff the shape of the input tree changed.  *)
let add =
  let rec add t replace added compare k v =
    match t with
    | Empty ->
      added := true;
      Leaf { key = k; value = v }
    | Leaf ({ key = k'; value = _ } as r) ->
      let c = compare k' k in
      (* This compare is reversed on purpose, we are pretending
         that the leaf was just inserted instead of the other way
         round, that way we only allocate one node. *)
      if c = 0
      then (
        added := false;
        if replace then r.value <- v;
        t)
      else (
        added := true;
        if c < 0
        then Node { left = t; key = k; value = v; height = 2; right = Empty }
        else Node { left = Empty; key = k; value = v; height = 2; right = t })
    | Node ({ left; key = k'; value = _; height = _; right } as r) ->
      let c = compare k k' in
      if c = 0
      then (
        added := false;
        if replace then r.value <- v)
      else if c < 0
      then set_left t (add left replace added compare k v)
      else set_right t (add right replace added compare k v);
      t
  in
  fun t ~replace ~compare ~added ~key ~data ->
    let t = add t replace added compare key data in
    if !added then balance t else t
;;

let rec first t =
  match t with
  | Empty -> None
  | Leaf { key = k; value = v }
  | Node { left = Empty; key = k; value = v; height = _; right = _ } -> Some (k, v)
  | Node { left = l; key = _; value = _; height = _; right = _ } -> first l
;;

let rec last t =
  match t with
  | Empty -> None
  | Leaf { key = k; value = v }
  | Node { left = _; key = k; value = v; height = _; right = Empty } -> Some (k, v)
  | Node { left = _; key = _; value = _; height = _; right = r } -> last r
;;


let[@inline always] rec findi_and_call_impl
                          t
                          ~compare
                          k
                          arg1
                          arg2
                          ~call_if_found
                          ~call_if_not_found
                          ~if_found
                          ~if_not_found
  =
  match t with
  | Empty -> call_if_not_found ~if_not_found k arg1 arg2
  | Leaf { key = k'; value = v } ->
    if compare k k' = 0
    then call_if_found ~if_found ~key:k' ~data:v arg1 arg2
    else call_if_not_found ~if_not_found k arg1 arg2
  | Node { left; key = k'; value = v; height = _; right } ->
    let c = compare k k' in
    if c = 0
    then call_if_found ~if_found ~key:k' ~data:v arg1 arg2
    else
      findi_and_call_impl
        (if c < 0 then left else right)
        ~compare
        k
        arg1
        arg2
        ~call_if_found
        ~call_if_not_found
        ~if_found
        ~if_not_found
;;

let find_and_call =
  let call_if_found ~if_found ~key:_ ~data () () = if_found data in
  let call_if_not_found ~if_not_found key () () = if_not_found key in
  fun t ~compare k ~if_found ~if_not_found ->
    findi_and_call_impl
      t
      ~compare
      k
      ()
      ()
      ~call_if_found
      ~call_if_not_found
      ~if_found
      ~if_not_found
;;

let findi_and_call =
  let call_if_found ~if_found ~key ~data () () = if_found ~key ~data in
  let call_if_not_found ~if_not_found key () () = if_not_found key in
  fun t ~compare k ~if_found ~if_not_found ->
    findi_and_call_impl
      t
      ~compare
      k
      ()
      ()
      ~call_if_found
      ~call_if_not_found
      ~if_found
      ~if_not_found
;;

let find_and_call1 =
  let call_if_found ~if_found ~key:_ ~data arg () = if_found data arg in
  let call_if_not_found ~if_not_found key arg () = if_not_found key arg in
  fun t ~compare k ~a ~if_found ~if_not_found ->
    findi_and_call_impl
      t
      ~compare
      k
      a
      ()
      ~call_if_found
      ~call_if_not_found
      ~if_found
      ~if_not_found
;;

let findi_and_call1 =
  let call_if_found ~if_found ~key ~data arg () = if_found ~key ~data arg in
  let call_if_not_found ~if_not_found key arg () = if_not_found key arg in
  fun t ~compare k ~a ~if_found ~if_not_found ->
    findi_and_call_impl
      t
      ~compare
      k
      a
      ()
      ~call_if_found
      ~call_if_not_found
      ~if_found
      ~if_not_found
;;

let find_and_call2 =
  let call_if_found ~if_found ~key:_ ~data arg1 arg2 = if_found data arg1 arg2 in
  let call_if_not_found ~if_not_found key arg1 arg2 = if_not_found key arg1 arg2 in
  fun t ~compare k ~a ~b ~if_found ~if_not_found ->
    findi_and_call_impl
      t
      ~compare
      k
      a
      b
      ~call_if_found
      ~call_if_not_found
      ~if_found
      ~if_not_found
;;

let findi_and_call2 =
  let call_if_found ~if_found ~key ~data arg1 arg2 = if_found ~key ~data arg1 arg2 in
  let call_if_not_found ~if_not_found key arg1 arg2 = if_not_found key arg1 arg2 in
  fun t ~compare k ~a ~b ~if_found ~if_not_found ->
    findi_and_call_impl
      t
      ~compare
      k
      a
      b
      ~call_if_found
      ~call_if_not_found
      ~if_found
      ~if_not_found
;;

let find =
  let if_found v = Some v in
  let if_not_found _ = None in
  fun t ~compare k -> find_and_call t ~compare k ~if_found ~if_not_found
;;

let mem =
  let if_found _ = true in
  let if_not_found _ = false in
  fun t ~compare k -> find_and_call t ~compare k ~if_found ~if_not_found
;;

let remove =
  let rec min_elt tree =
    match tree with
    | Empty -> Empty
    | Leaf _ -> tree
    | Node { left = Empty; key = _; value = _; height = _; right = _ } -> tree
    | Node { left; key = _; value = _; height = _; right = _ } -> min_elt left
  in
  let rec remove_min_elt tree =
    match tree with
    | Empty -> assert false
    | Leaf _ -> Empty (* This must be the root *)
    | Node { left = Empty; key = _; value = _; height = _; right } -> right
    | Node { left = Leaf _; key = k; value = v; height = _; right = Empty } ->
      Leaf { key = k; value = v }
    | Node { left = Leaf _; key = _; value = _; height = _; right = _ } as node ->
      set_left node Empty;
      tree
    | Node { left; key = _; value = _; height = _; right = _ } as node ->
      set_left node (remove_min_elt left);
      tree
  in
  let merge t1 t2 =
    match t1, t2 with
    | Empty, t -> t
    | t, Empty -> t
    | _, _ ->
      let tree = min_elt t2 in
      (match tree with
       | Empty -> assert false
       | Leaf { key = k; value = v } ->
         let t2 = balance (remove_min_elt t2) in
         Node
           { left = t1
           ; key = k
           ; value = v
           ; height = Int.max (height t1) (height t2) + 1
           ; right = t2
           }
       | Node _ as node ->
         set_right node (remove_min_elt t2);
         set_left node t1;
         node)
  in
  let rec remove t removed compare k =
    match t with
    | Empty ->
      removed := false;
      Empty
    | Leaf { key = k'; value = _ } ->
      if compare k k' = 0
      then (
        removed := true;
        Empty)
      else (
        removed := false;
        t)
    | Node { left; key = k'; value = _; height = _; right } ->
      let c = compare k k' in
      if c = 0
      then (
        removed := true;
        merge left right)
      else if c < 0
      then (
        set_left t (remove left removed compare k);
        t)
      else (
        set_right t (remove right removed compare k);
        t)
  in
  fun t ~removed ~compare k -> balance (remove t removed compare k)
;;

let rec fold t ~init ~f =
  match t with
  | Empty -> init
  | Leaf { key; value = data } -> f ~key ~data init
  | Node
      { left = Leaf { key = lkey; value = ldata }
      ; key
      ; value = data
      ; height = _
      ; right = Leaf { key = rkey; value = rdata }
      } -> f ~key:rkey ~data:rdata (f ~key ~data (f ~key:lkey ~data:ldata init))
  | Node
      { left = Leaf { key = lkey; value = ldata }
      ; key
      ; value = data
      ; height = _
      ; right = Empty
      } -> f ~key ~data (f ~key:lkey ~data:ldata init)
  | Node
      { left = Empty
      ; key
      ; value = data
      ; height = _
      ; right = Leaf { key = rkey; value = rdata }
      } -> f ~key:rkey ~data:rdata (f ~key ~data init)
  | Node
      { left; key; value = data; height = _; right = Leaf { key = rkey; value = rdata } }
    -> f ~key:rkey ~data:rdata (f ~key ~data (fold left ~init ~f))
  | Node
      { left = Leaf { key = lkey; value = ldata }; key; value = data; height = _; right }
    -> fold right ~init:(f ~key ~data (f ~key:lkey ~data:ldata init)) ~f
  | Node { left; key; value = data; height = _; right } ->
    fold right ~init:(f ~key ~data (fold left ~init ~f)) ~f
;;

let rec iter t ~f =
  match t with
  | Empty -> ()
  | Leaf { key; value = data } -> f ~key ~data
  | Node { left; key; value = data; height = _; right } ->
    iter left ~f;
    f ~key ~data;
    iter right ~f
;;

let rec mapi_inplace t ~f =
  match t with
  | Empty -> ()
  | Leaf ({ key; value } as t) -> t.value <- f ~key ~data:value
  | Node ({ left; key; value; height = _; right } as t) ->
    mapi_inplace ~f left;
    t.value <- f ~key ~data:value;
    mapi_inplace ~f right
;;

let choose_exn = function
  | Empty -> raise_s (Sexp.message "[Avltree.choose_exn] of empty hashtbl" [])
  | Leaf { key; value; _ } | Node { key; value; _ } -> key, value
;;