Base.Applicativemodule type Applicative_infix = sig ... endmodule type Applicative_infix2 = sig ... endmodule type Applicative_infix3 = sig ... endmodule type Basic = sig ... endmodule type Basic2 = sig ... endmodule type Basic3 = sig ... endmodule type Basic_using_map2 = sig ... endmodule type Basic2_using_map2 = sig ... endmodule type Basic3_using_map2 = sig ... endmodule type Let_syntax = sig ... endmodule type Let_syntax2 = sig ... endmodule type Let_syntax3 = sig ... endmodule type S = sig ... endmodule type S2 = sig ... endmodule type S3 = sig ... endmodule Make_let_syntax
(X : sig ... end)
(Intf : sig ... end)
(Impl : Intf.S) :
Let_syntax with type 'a t := 'a X.t with module Open_on_rhs_intf := Intfmodule Make_let_syntax2
(X : sig ... end)
(Intf : sig ... end)
(Impl : Intf.S) :
Let_syntax2
with type ('a, 'e) t := ( 'a, 'e ) X.t
with module Open_on_rhs_intf := Intfmodule Make_let_syntax3
(X : sig ... end)
(Intf : sig ... end)
(Impl : Intf.S) :
Let_syntax3
with type ('a, 'd, 'e) t := ( 'a, 'd, 'e ) X.t
with module Open_on_rhs_intf := Intfmodule Make_using_map2 (X : Basic_using_map2) : S with type 'a t := 'a X.tmodule Make2_using_map2
(X : Basic2_using_map2) :
S2 with type ('a, 'e) t := ( 'a, 'e ) X.tmodule Make3_using_map2
(X : Basic3_using_map2) :
S3 with type ('a, 'd, 'e) t := ( 'a, 'd, 'e ) X.tThe following functors give a sense of what Applicatives one can define.
Of these, Of_monad is likely the most useful. The others are mostly didactic.