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This note is about the ultraproduct construction for fields, leading to a proof of a theorem proven inde-
pendently by Grothendieck and Ax in the 60’s.

1 Filtres and Ultrafiltres

Let X be a set. We denote by P(X) the power set of X, i.e. the set consisting of all subsets of X. We say
that F ⊆P(X) is a filter on X if

• X ∈ F and ∅ /∈ F

• if A,B ∈ F then A ∩B ∈ F

• if A ∈ F and A ⊆ B ⊆ X then B ∈ F

Example 1.1. 1. Let λ be the Lebesgue measure on R. Then {X ⊆ R, λ(R \X) = 0} is a filter on R.

2. For any set X and any cardinal κ < |X| the set {A ⊆ X, |X \A| ≤ κ} is a filter on X. For κ = ℵ0 we
call this filter the Fréchet filter on X. It is the set of all cofinite subsets of X.

3. Let x ∈ X. Then Fx := {A ⊆ X,x ∈ A} is a filter.
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We call principal filter any filter F on X such that there exists x ∈ X such that F = Fx.
This kind of filter is a bit different from the two others examples, as for any A ⊂ X we have either A ∈ Fx

or X \A ∈ Fx. We call such a filter an ultrafilter.

Remark 1.2. A filter on X is an ultrafilter if and only if it is maximal as a filter in the poset (P(P(X)),⊆).

Remark 1.3. A ultrafilter on X is principal if and only if one of its element is a finite subset of X.

Remark 1.4. A ultrafilter on X is non principal if and only if it contains the Fréchet filter on X.

The existence of non principal ultrafilter is unclear at first sight. The axiom of choice will give us the
existence of many a ultrafilter.

Lemma 1.5. Every filter on X is included in an ultrafilter on X.

Proof. Let F be a filter on X. We apply Zorn’s lemma to the poset consisting of the filters on X
containing F . �

As the topology on a set come from the need to capture the concept of nearness, an ultrafilter captures
the notion of largeness. An ultraproduct U on a set X give birth to a finitely additive measure, with value
in {0, 1}, by U (A) = 1 if A ∈ U and 0 if not. There is in fact a bijection between the set of finitely additive
{0, 1}-valued measures on X and the set of all ultrafilters on X.

2 Ultraproducts of fields and the Ax-Grothendieck theorem

For any fieldK we say that f : Kn → Kn is a polynomial map if f(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn))
with fi ∈ K[X1, . . . , Xn]. We now prove the theorem, due independently to James Ax in 1968 and Alexandre
Grothendieck in 1966. There has been other proofs later on, by Borel in 1969 and Rudin in 1995.

Theorem 2.1 (Ax, Grothendieck). Every injective polynomial map f : Cn → Cn is surjective.

Remark that the converse is obviousely untrue, as x 7→ x2 is surjective in C but not injective. The proof
of this theorem is an example of a Lefshetz principle, a transfert theorem from the positive characteristic
context to the zero characteristic one. We first need the result in positive characteristic.

Lemma 2.2. Every injective polynomial map f : (Falgp )n → (Falgp )n is surjective.

Proof. Let f = (f1, . . . , fn) be an injective polynomial map from (Falpp )n to itself. Assume that f is not
surjective, witnessed by y = (y1, . . . , yn). Let S be the (finite) set consisting of all the coefficients (in Falgp )
appearing in the fi’s. Let K = Fp(S, y), this field is finite. Then it makes sens to consider f�K : Kn → Kn,
and this restriction is still injective. Now any injection from a finite set to itself is also surjective, and as
y ∈ Kn we reach to a contradiction. �

Now the idea is to construct a field which is in some sens the limit of the Falgp . Let P be the set of prime
numbers and let U be a non principal ultrafilter on the set P. Let C be the set

∏
p∈P Falgp , the infinite

cartesian product. Note that C is a ring, for the componentwise addition and multiplication. We denote 0
and 1 the infinite tuples consisting of 0p and 1p respectively. Set an equivalence relation on C in the following
way :

a ∼U b ⇐⇒ {p ∈ P, ap = bp} ∈ U

Now consider the quotient set C := C
/
∼U . Denote by ā the ∼U -class of a ∈ C . We define on C the following

operations for ā, b̄ ∈ C :
ā+ b̄ = ¯a+ b

ā · b̄ = ¯a · b
These two operations are compatible with the equivalence relation and turn C into a ring.
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Lemma 2.3. C is an algebraically closed field of characteristic 0.

Proof. We show that the inverse exists. Take ā ∈ C \ {0̄}. As a � 0 there is A ∈ U such that for all
p ∈ A ap 6= 0. Now set bp = a−1p for p ∈ A and bp = 0 for p /∈ A. Now let c̄ = āb. For every p ∈ A we have
cp = 1 and hence c ∼ 1̄. Let P̄ (X) ∈ C[X] of degree at least 1, say P̄ (X) = n̄aX

n + · · ·+ 0̄a with n ≥ 1 and
na � 0. This polynomial induces polynomials for each p, namely napX

n + · · ·+ 0ap ∈ Falgp [X] =: Pp(X). As
na � 0, there is A ∈ U such that for all p ∈ A, the polynomial Pp(X) is not constant. Let αp be a root of the
latter for each p ∈ A and set the infinite tuple α = (αp)p∈A ∪ (0p)p/∈A. Then P (α) = (Pp(αp))p∈P and these
coordinate are 0 for each p ∈ A, hence P (α) ∼ 0. So C is algebraically closed. Suppose that s = charC > 0
and let A = P \ s. A is cofinite so A ∈ U . Now s1 = (s1p)p∈P has nonzero coordinate for each p ∈ A so
s1 � 0, a contradiction. �

The field C is called the ultraproduct of the familly (Falgp )p∈P over U .

Lemma 2.4. Every injective polynomial map f̄ : Cn → Cn is surjective.

Proof. Let f̄ = (1̄f, . . . , n̄f) be such a polynomial map, with if ∈ C [X1, . . . , Xn] and assume that
it is injective. Observe that for each p, if induces a polynomial map say ifp : (Falgp )n → Falgp , and so
fp := (1fp, . . . , nfp) : (Falgp )n → (Falgp )n.

Claim : There is A ∈ U such that for each p ∈ A, fp is injective.

Let A be the set of prime numbers such that fp is injective. If A is not in U , then B := P \ A is in U .
Hence for each p ∈ B we can find α̃p, β̃p ∈ (Falgp )n such that α̃p 6= β̃p and fp(α̃p) = fp(β̃p). Now complete
the tuples (α̃p)p∈B and (β̃p)p∈B in any ways, in two tuples (of n-tuples) say α̃ = (α̃p)p∈P and β̃ = (β̃p)p∈P.
Now α̃ �U β̃ as they don’t agree on B ∈ U , but f(α̃) ∼U f(β̃), and this contradict the injectivity of f̄ .
By the lemma 2.2, for each p ∈ A fp is also surjective. Now for any (1b, . . . ,n b) ∈ C n we can find for each
p ∈ A, (1ap, . . . , nap) ∈ (Falgp )n such that fp(1ap, . . . , nap) = (1bp, . . . ,n bp). Now complete (iap)p∈A with any
coordinate in an element 1a, . . . ,n a ∈ C n, and f(1a, . . . ,n a) ∼U (1b, . . . ,n b). �

Lemma 2.5. The cardinality of C is 2ℵ0 .

Proof. Begin by a claim : There exists a set E ⊆ NN of functions such that |E| = 2ℵ0 and for all
f, g ∈ E with f 6= g, then {i ∈ N, f(i) = g(i)} is finite. Indeed, consider for each φ ∈ 2ℵ0 the function fφ ∈ NN

defined by fφ(n) =
∑
i<n φ(i)2i, and let E =

{
fφ, φ ∈ 2N

}
.[to be finish] This set can be injected in C in the

following way : consider ψ : P→ N any bijection and σp : Falgp → N [to be finish] �

Recall the following classical result of Steinitz :

Fact 2.6 (Steinitz’s theorem). Algebraically closed fields of fixed characteristic are classified up to the cardi-
nality of their transcendance basis.

We conclud from the lemma that C is isomorphic to C and hence the theorem is proven.

3 Topological contents, and model theory

Filters and ultrafilters can also be used in topology. When some topological space is getting too complicated,
for instance if it is not metrisable, filters and ultrafilters can be used to speak of convergence. Let X be a
topological space, and x ∈ X. We call V (x) the set of all neigbourhood of x, i.e. the subsets of X which
contains an open containing x. The set V (x) is a filter on X, we call it the neigbourhood filter. Let U be
an ultrafilter on X, we say that U converges to x ∈ X if V (x) ⊆ U . Let f : X → Y any function between
two topological spaces. Let U be an ultrafilter on X, we say that y ∈ Y is a limit of f along U if f(U )
converges to y (f(U ) is an ultrafilter on Y ). We say that x ∈ X is a limit of (xi)i∈I along U if We have the
following basics results.
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Lemma 3.1. • X is Haussdorf if and only if each ultrafilter converges to at most one adherent point.

• X is compact if and only if each ultrafilter converges to at least one point.

• If X is compact Haussdorf, for any set I, for any sequence (xi)i∈I and for any ultrafilter U on I,
limU (xi) ∈ X.

Now we are getting a bit informal, this part is intend to give an intuition of the topological contents of
the proof. Consider the class F of all fields in the language of rings, L . We put on F a topology given by
first order sentences in L in the following sense. For θ a L -sentence consider the class Uθ of all fields K in
F such that K |= θ. Observe that Uθ ∩ Uφ = Uθ∧φ, and {Uθ, θ ∈ L } is the basis of a topology on F. Now
Gödel’s theorem tells us that with this topology, the class F is compact. This implies that for instance the
infinite set

{
Falgp , p ∈ P

}
has a limit along any nonprincipal ultrafilter over P, this limit is C. The topology

defined before is not Haussdorf as since Qalg ≡ C, there is no way to seperate them with an open in this
topology. To do so, we need to identify these two, and consider fields up to elementary equivalence. So we
want to quotient F by the relation ≡. Now what is a ≡-class but a complete theory ?
We now start this formally. We consider Fields the (incomplete) theory of (commutative) fields in L . Now
the collection of all completions of Fields will be called S , this is really a set. Now we define a topology on
S as before, so for θ any L -sentence, let < θ > be the set of all elements T of S such that T |= θ. The
< θ > for L -sentences θ form a basis of neigbourhood, and the topology spanned by those is called the Stone
topology.

Theorem 3.2 (Gödel). The space S is compact.

Now observe that ACFp, ACF0 are elements of S . Let U be a non principal ultrafilter on P. By
compactness the sequence (ACFp)p∈P has a limit along U . The Ax-Grothendieck theorem is a manifestation
of the following fact:

limU ACFp = ACF0

4 More model theory

From what we have seen, the ultraproduct construction leads to some universal object in some sens, as some
properties are conserved and some not. We can see that ultraproduct of algebraically closed fields stays
an algebraically closed field. On the other hand, the ultraproduct of positive characteristic fields may not
be of positive characteristic. A question arose : what class of property is conserved when passing to the
ultraproduct ? The answer is the first order logical properties. Los’ theorem says that a first order property
is true in the ultraproduct if and only if it is true in almost all the structures. Here are some other transfert
principles.

Example 4.1. Let K be a field. For each n, the property K has a unique algebraic extension of degree n
is first order. Notice that it is true in every finite field. This means that a non-principal ultraproduct of all
finite fields will also satisfy. This means that Gal(

∏
U Fq) ∼= Ẑ

Example 4.2. Every finite field Fq has some Artin-Schreier extension as the application x 7→ xp − x is not
surjective (it has nontrivial kernel). Having an Artin-Schreier extension is a first order property, hence the
ultraproduct of all the finite field is a field which is not Artin-Schreier clos. Together with a result about NIP
fields of positive characteristic, this implies that such a field has the independance property.

Example 4.3. Let U be a non principal ultrafilter on P. The Ax-Kochen principle can be stated as follows :∏
U

Qp ≡
∏
U

Fp((t))

This very strong result has some beautiful applications, such as the following result. For all d ∈ N there is
N = N(d) ∈ N such that for all prime numbers p ≥ N , if f(X1, . . . , Xn) ∈ Zp[X1, . . . , Xn] is homogeneous
of degree d and n > d2, then there exists a nonzero x ∈ Znp with f(x) = 0.
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5 Historical remarks

Filters and ultrafilters have been used by model theorists since Tarski in 1930. They have been used as well
in topology, first by Cartan in 1937, and also by Bourbaki in the 70’s. The first construction of ultraproduct
is due to Los, in 1955, even though an ultraproduct construction of arithmetic was due to Skolem in 1938.
The use of ultraproduct in algebra is first due to Kochen and Ax.
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