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Generic constructions

@ Generic Predicate. [Chatzidakis-Pillay 98] T a model
complete .#-theory which eliminate 3°°. The £ U {P}-theory

T with a unary predicate, admits a model-companion TP. If
T is simple then so is TP.
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Generic constructions

@ Generic Predicate. [Chatzidakis-Pillay 98] T a model
complete .#-theory which eliminate 3°°. The £ U {P}-theory
T with a unary predicate, admits a model-companion TP. If
T is simple then so is TP.

@ Generic expansion. T a model complete .Z-theory,

£ C &, does T as an (incomplete) .£’-theory admits a
model-companion T g/?
o YES : if (and only if) T eliminate 3°° [Winkler 1975]
o If T is NSOP; then so is T/ [Kruckman-Ramsey 2018].
([Jerabek 2018] for TY,))
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The theory ACF,G
Model-companion

Fix p > 0 prime number. F, field with p elements, I, its algebraic
closure.
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The theory ACF,G

Model-companion
Fix p > 0 prime number. F, field with p elements, F, its algebraic
closure.
Let ¥ = {—i—, —,-,7to, 1} and ¢ = ZU{G}, G unary
predicate. Let ACFPG be the .#C-theory whose model (F, H)
satisfies:
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predicate. Let ACFPG be the .#C-theory whose model (F, H)
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e H = G(F) is an additive subgroup of F.

Theorem
ACFPG admits a model companion, we call it ACF,G.
o Every model of ACFS embbeds in a model of ACF,G;

o Every model of ACF,G is existentially closed in every model of
ACFIf extending it.
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The theory ACF,G

Model-companion

Fix p > 0 prime number. [, field with p elements, I, its algebraic
closure.
Let ¥ = {—i—, —,-,7to, 1} and ¢ = ZU{G}, G unary
predicate. Let ACFPG be the .#C-theory whose model (F, H)
satisfies:

o F = ACF,;

e H = G(F) is an additive subgroup of F.

Theorem
ACFPG admits a model companion, we call it ACF,G.
o Every model of ACFS embbeds in a model of ACF,G;
o Every model of ACF,G is existentially closed in every model of
ACFIf extending it.
ACF,G is an axiomatisation of the classe of all existentially closed
models of ACFPG.
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The theory ACF,G

Axioms

Fact (Chatzidakis-Pillay)

If T eliminate 3°° then for any formula ¢(x,y) there is a formula
4(y) such that for any tuple b from .# = T we have

M = 04(b) <= there exists a tuple a from A = ./ such that
an.# =0 and A = ¢(a,b)
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The theory ACF,G

Axioms

Fact (Chatzidakis-Pillay)

If T eliminate 3°° then for any formula ¢(x,y) there is a formula
4(y) such that for any tuple b from .# = T we have

M = 04(b) <= there exists a tuple a from A = ./ such that
an.# =0 and A = ¢(a,b)

In our case: For every .Z-formula ¢(x, y) there exists 64(y) such
that for all K |= ACF, and all tuple b from K

K |= 04(b) <= there exists a tuple a in some field extension of K

such that a is Fp-linearly independent over K and

= ¢(a, b)
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The theory ACF,G
Axioms

Let (a) denote the [F-vector space spanned by a.
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Let (a) denote the F,-vector space spanned by a. The theory
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for all Z-formula ¢(x,y), X' Cx, y' Cy:
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The theory ACF,G
Axioms

Let (a) denote the F,-vector space spanned by a. The theory
ACF,G is obtained by adding to ACF, the following axiom-schema;
for all Z-formula ¢(x,y), X' Cx, y' Cy:

Yy (Bs(y) A (y') NG = {0} = Ix(d(x,y) A (xy) N G = (X))

Completions. Completions of ACF,G are given by the
% C-isomorphism type of (F,, G(F,)), i.e. for two models (K1, Gi)
and (K, Gy) of ACF,G,

(Kl, Gl) = (Kz, G2) < (Fp, Gl(Fp)) and (Fp, GQ(FP)) are

¢ — isomorphic.

Christian d'Elbée



The theory ACF,G
Axioms

Let (a) denote the F,-vector space spanned by a. The theory
ACF,G is obtained by adding to ACF, the following axiom-schema;
for all Z-formula ¢(x,y), X' Cx, y' Cy:

Yy (Bs(y) A (y') NG = {0} = Ix(d(x,y) A (xy) N G = (X))

Completions. Completions of ACF,G are given by the
% C-isomorphism type of (F,, G(F,)), i.e. for two models (K1, Gi)
and (K, Gy) of ACF,G,
(Kl, Gl) = (Kz, G2) < (Fp, Gl(Fp)) and (Fp, GQ(FP)) are
¢ — isomorphic.

Algebraic closure. The algebraic closure in ACF,G is given by the
field theoretic algebraic closure.
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The theory ACF,G
Examples

Proposition

For every n € N and Go subgroup of Fpn there exists Go C G C Fp
such that (Fp, G) = ACF,G.
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The theory ACF,G
Examples

Proposition

For every n € N and Go subgroup of Fpn there exists Go C G C Fp
such that (Fp, G) = ACF,G.

Consider a non principal ultrafilter % on the set of prime numbers,
and a model (Fg, G,) of ACF,G, for each prime q. What is

[ (7o Go) 2

qeEU
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The theory ACF,G
Examples

Proposition

For every n € N and Go subgroup of Fpn there exists Go C G C Fp
such that (Fp, G) = ACF,G.

Consider a non principal ultrafilter % on the set of prime numbers,
and a model (Fg, G,) of ACF,G, for each prime q. What is

[ (7o Go) 2

qeEU

Remark (Characteristic 07)

If (K, G) is an existentially closed models of the the class of (K, G)
with char(K) = 0, then Stab(G) = Z. Not axiomatisable.
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Classification for ACF,G

NSOP;:, Kim-forking

Let T be an arbitrary theory and ¢(x,y) a formula in the language
of T.
© We say that ¢(x,y) has the 1-strong order property (SOP; ) if
there exists a tree of tuple (by),co<w~ such that
o foralln e 2¥ {¢(x, byja | & < w} is consistent
o for allm e 2< ifn=0 < v then {¢(x, b,), d(x, by~1} is
inconsistent.
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NSOP;, Kim-forking

Let T be an arbitrary theory and ¢(x,y) a formula in the language
of T.

© We say that ¢(x, b) Kim-divides over A if for some A-invariant
global extension p(x) of tp(b/A) and (b;)i<w such that
bi = p | Ab.; then \;_,, ¢(x, b;) is inconsistent.
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Let T be an arbitrary theory and ¢(x,y) a formula in the language
of T.
© We say that ¢(x, b) Kim-divides over A if for some A-invariant
global extension p(x) of tp(b/A) and (b;)i<w such that
bi = p | Ab.; then \;_,, ¢(x, b;) is inconsistent.
@ We say that ¢(x, b) Kim-forks over A if ¢(x, b) implies a
disjunction of formula each of which Kim-divides over A.
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Classification for ACF,G

NSOP;, Kim-forking

Let T be an arbitrary theory and ¢(x,y) a formula in the language
of T.

© We say that ¢(x, b) Kim-divides over A if for some A-invariant
global extension p(x) of tp(b/A) and (b;)i<w such that
bi = p | Ab.; then \;_,, ¢(x, b;) is inconsistent.

@ We say that ¢(x, b) Kim-forks over A if ¢(x, b) implies a
disjunction of formula each of which Kim-divides over A.

© We define the Kim-forking independence relation

A |XB <= tp(A/BC) does not Kim-forks over C.
c
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Classification for ACF,G

Independence relations and NSOP;, Chernikov-Ramsey ; Kaplan-Ramsey

Let | be an invariant ternary relation in T.
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Let | be an invariant ternary relation in T.

e Symmetry.
IfAL ,BthenB | A
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Classification for ACF,G

Independence relations and NSOP;, Chernikov-Ramsey ; Kaplan-Ramsey

Let | be an invariant ternary relation in T.

e Symmetry.

e Monotonicity.
IfAJ/j/BD then AL%B.
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Let | be an invariant ternary relation in T.
e Symmetry.
e Monotonicity.

e Existence.
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Classification for ACF,G

Independence relations and NSOP;, Chernikov-Ramsey ; Kaplan-Ramsey

Let | be an invariant ternary relation in T.
e Symmetry.
e Monotonicity.
o Existence.

o Strong Finite Character. For any model .7, if a /. b,
then there is a formula ¢(x, b, m) € tp(a/b.#') such that for
all &, if &' = ¢(x, b, m) then & [ b.
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Classification for ACF,G

Independence relations and NSOP;, Chernikov-Ramsey ; Kaplan-Ramsey

Let | be an invariant ternary relation in T.

Symmetry.
Monotonicity.

°
o

e Existence.
e Strong Finite Character.
o

3-amalgamation.
For all model . if there exists tuples ¢;, ¢» and sets A, B such

that
e Cl =y C
° ALEB

eal ,Aandc | B
then there exists ¢ | %A, B such that c =4 ¢; and ¢ =5 ©.
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Classification for ACF,G

Independence relations and NSOP;, Chernikov-Ramsey ; Kaplan-Ramsey

Let | be an invariant ternary relation in T.

Symmetry.
Monotonicity.

Strong Finite Character.

°
°
e Existence.
°
@ 3-amalgamation.
e Witnessing.
Let a, b, (bi)i<. and a model .# and assume the following:
° a ) b, witnessed by ¢(x, b, m)
o for p some global .Z-invariant extension of tp(b/.#),
bi = p | Cbe;.

Then A, #(x, bj, m) is inconsistent.
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Classification for ACF,G

Independence relations and NSOP;, Chernikov-Ramsey ; Kaplan-Ramsey

Let | be an invariant ternary relation in T.
e Symmetry.

Monotonicity.

Existence.

Strong Finite Character.

3-amalgamation.

Witnessing.

Base Monotonicity.
For .4 ¢ NV ifALJ/BJV then AL/VB.
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Classification for ACF,G

Independence relations and NSOP;, Chernikov-Ramsey ; Kaplan-Ramsey

Let | be an invariant ternary relation in T.

e Symmetry.

e Monotonicity.

e Existence.

Strong Finite Character.
3-amalgamation.

Witnessing.

Base Monotonicity.
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Classification for ACF,G

Chernikov-Ramsey (2015) ; Kaplan-Ramsey (2017)

e Symmetry.
e Monotonicity.

e Existence. NSOP;

@ Strong Finite Kim-Forking
Character.

e 3-amalgamation.

o Witnessing.

o Base Monotonicity. )
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Classification for ACF,G

Weak and strong independence in ACF,G

We define for A, B, C algebraically closed sets in a model of ACF,G
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Classification for ACF,G

Weak and strong independence in ACF,G

We define for A, B, C algebraically closed sets in a model of ACF,G

A |vB
C
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Classification for ACF,G

Weak and strong independence in ACF,G

We define for A, B, C algebraically closed sets in a model of ACF,G

A "B <= A |*°F B and
C C
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Classification for ACF,G

Weak and strong independence in ACF,G

We define for A, B, C algebraically closed sets in a model of ACF,G

A "B <= A |#“F B and G(AC + BC) = G(AC) + G(BC)
C C

A B < A |AF B and G(ABC) = G(AC) + G(BC)
C C
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Classification for ACF,G

Weak and strong independence in ACF,G

We define for A, B, C algebraically closed sets in a model of ACF,G

A |*B < A |A B and G(AC + BC) = G(AC) + G(BC)
C C

A B < A |AF B and G(ABC) = G(AC) + G(BC)
C C

e |Y satisfies Symmetry, Monotonicity, Existence, Strong
Finite Character, 3-amalgamation so ACF,G is NSOP1. It
also satisfies Witnessing, so | agrees with Kim-forking over
models. |“ doesn't satisfy Base Monotonicity, so ACF,G is
not simple, has TP.
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Classification for ACF,G

Weak and strong independence in ACF,G

We define for A, B, C algebraically closed sets in a model of ACF,G

A |*B < A |A B and G(AC + BC) = G(AC) + G(BC)
C C

A B < A |AF B and G(ABC) = G(AC) + G(BC)
C C

e |Y satisfies Symmetry, Monotonicity, Existence, Strong
Finite Character, 3-amalgamation so ACF,G is NSOP1. It
also satisfies Witnessing, so | agrees with Kim-forking over
models. |“ doesn't satisfy Base Monotonicity, so ACF,G is
not simple, has TP.

o | satisfies every property except Strong Finite Character
and Witnessing.
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Classification for ACF,G
Remark

Remark (More properties for |* and %)

Actually, all properties listed in the last slide are satisfied over
algebraically closed sets.
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Remark (More properties for |* and %)

Actually, all properties listed in the last slide are satisfied over
algebraically closed sets. Furthermore both |* and | satisfies
Finite Character, Extension and Transitivity. |" satisfies Local
Character and | doesn'’t. |" is stationnary over algebraically
closed sets.
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Classification for ACF,G
Remark

Remark (More properties for |* and %)

Actually, all properties listed in the last slide are satisfied over
algebraically closed sets. Furthermore both |* and | satisfies
Finite Character, Extension and Transitivity. |" satisfies Local
Character and | doesn'’t. |" is stationnary over algebraically
closed sets.

Local Character. For all A countable, and B, there exists
countable By C B such that

A\LB.
Bo
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Imaginaries in ACF,G

3-amalgamation (over algebraically closed sets)

For (K, G) = ACF,G, consider the quotient map

m:K— K/G.
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For (K, G) = ACF,G, consider the quotient map
m:K— K/G.

By (K, K/G) we mean the two sorted structure with one sort for
the field K,

Christian d'Elbée



Imaginaries in ACF,G
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For (K, G) = ACF,G, consider the quotient map
m:K— K/G.

By (K, K/G) we mean the two sorted structure with one sort for
the field K, one sort for the F,-vector space K/G,
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Imaginaries in ACF,G

3-amalgamation (over algebraically closed sets)

For (K, G) = ACF,G, consider the quotient map
m:K— K/G.

By (K, K/G) we mean the two sorted structure with one sort for
the field K, one sort for the F,-vector space K/G, and the
quotient map 7 : K — K/G.
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Imaginaries in ACF,G

3-amalgamation (over algebraically closed sets)

For (K, G) = ACF,G, consider the quotient map
m:K— K/G.

By (K, K/G) we mean the two sorted structure with one sort for
the field K, one sort for the F,-vector space K/G, and the
quotient map 7w : K — K/G. This structure is interdefinable with
(K, G) hence NSOP;, and Kim-forking can be described.
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the field K, one sort for the F,-vector space K/G, and the
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Imaginaries in ACF,G

3-amalgamation (over algebraically closed sets)

For (K, G) = ACF,G, consider the quotient map
m:K— K/G.

By (K, K/G) we mean the two sorted structure with one sort for
the field K, one sort for the F,-vector space K/G, and the
quotient map 7w : K — K/G. This structure is interdefinable with
(K, G) hence NSOP;, and Kim-forking can be described. It also
satisfies 3-amalgamation over algebraically closed sets.

(K, K/G) has weak elimination of imaginaries.
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Base Monotonicity and Forking

A |¥T°"B: <= YD C BC A |B.
cD

Christian d'Elbée



Base Monotonicity and Forking

A |"m"B : = YD CBC A |*B.
cD
1f/ 19/ b = forking/dividing/thorn-forking independence

relation.
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Base Monotonicity and Forking

A |"m"B : = YD CBC A |*B.
cD
1f/ 19/ b = forking/dividing/thorn-forking independence

relation.

@ V™" doesn't satisfy Local Character.
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Base Monotonicity and Forking

A"7°"B : «= YD CBC A |*B.
cD
£/ 19/ |b = forking/dividing/thorn-forking independence

relation.

@ """ doesn't satisfy Local Character.
@ ACF,G is not rosy (\Lb N lzvmon)_
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Base Monotonicity and Forking

A |"m"B : = YD CBC A |*B.
cD
1f/ 19/ b = forking/dividing/thorn-forking independence
relation.

@ V™" doesn't satisfy Local Character.

@ ACF,G is not rosy ( [P — [*™").

O Let A, B, C,D be algebraically closed, A, B, D containing C,
BCD.
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Base Monotonicity and Forking

A |"m"B : = YD CBC A |*B.
cD
1f/ 19/ b = forking/dividing/thorn-forking independence
relation.

@ V™" doesn't satisfy Local Character.

@ ACF,G is not rosy ( [P — [*™").

O Let A, B, C,D be algebraically closed, A, B, D containing C,
BCD.

if A"T"B and A [*D then A |*'Z°"D.
B
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Base Monotonicity and Forking

A |"m"B : = YD CBC A |*B.
cD
1f/ 19/ b = forking/dividing/thorn-forking independence
relation.

@ V™" doesn't satisfy Local Character.

@ ACF,G is not rosy ( [P — [*™").

O Let A, B, C,D be algebraically closed, A, B, D containing C,
BCD.

if A"T"B and A [*D then A |*'Z°"D.
B

o Im= ==L
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General setting

Let % C.Z, T a complete .Z-theory and To = T | 4.
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L5 = 2 U{S} a new unary predicate and let T° be the £
theory whose models are models .# of T in which S(.#Z) is an
Zo-submodel of Ty of Z.
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Christian d’Elbée



General setting

Let £ C.Z, T a complete .Z-theory and To = T [ %. Let
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theory whose models are models .# of T in which S(.#Z) is an

Zo-submodel of Ty of Z.

General setting
© T model-complete and Ty has quantifier elimination in %

@ Ty geometric and modular
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General setting

Let £ C.Z, T a complete .Z-theory and To = T [ %. Let
L5 = 2 U{S} a new unary predicate and let T° be the £
theory whose models are models .# of T in which S(.#Z) is an

Zo-submodel of Ty of Z.

General setting
© T model-complete and Ty has quantifier elimination in %

@ Ty geometric and modular

© for every Z-formula ¢(x, y) there exists an .Z-formula 64(y)
such that for all model .# of T and b e .#
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General setting

Let £ C.Z, T a complete .Z-theory and To = T [ %. Let
L5 = 2 U{S} a new unary predicate and let T° be the £
theory whose models are models .# of T in which S(.#Z) is an

Zo-submodel of Ty of Z.

General setting
© T model-complete and Ty has quantifier elimination in %

@ Ty geometric and modular

© for every Z-formula ¢(x, y) there exists an .Z-formula 64(y)
such that for all model .# of T and b e .#

M = 04(b) <= there exists A" >~ .4 and tuple a from A"
such that a is independent over .#

(for the pregeometry acly) and A" = ¢(a, b)

Then Ts admits a model companion, call it TS.
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Existence of a model-companion

o Generic Fr-subvector space. For every model-complete
theory of IF pn-vector space that eliminate 3°°, one can add one
(many) generic IF pn-subvector space. For instance
ACFp, Psf,, DCF,, ACFA,, PAG,....
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Existence of a model-companion

o Generic Fr-subvector space. For every model-complete
theory of IF pn-vector space that eliminate 3°°, one can add one
(many) generic IF pn-subvector space. For instance
ACFp, Psf,, DCF,, ACFA,, PAG,....

e Multiplicative subgroup.Generic multiplicative subgroup of
an algebraically closed field of characteristic p > 0 (p > 0 can
add generic additive and multiplicative subgroup).
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General setting

NSOP;-conservative expansion
If T is NSOP; and Kim-forking satisfies : for A, B, C algebraically
closed and Kim-independent over some model .# then

acly(aclT(AC), aclt(BC)) N aclt(AB) = aclh(A, B)

If TS exists, then TS is NSOP;. The following are equivalent:
@ TS is not simple

@ T is not simple or there exist algebraically closed sets
A, B, C, D such that A, B, D contain C and A J/KC BD, and
such that

acly(A, aclt(BD)) U aclt(AD) # acly(aclt(AD), acl+(BD)).
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If TS exists, then TS is NSOP;. The following are equivalent:
@ TS is not simple

@ T is not simple or there exist algebraically closed sets
A, B, C, D such that A, B, D contain C and A J/KC BD, and
such that

acly(A, aclt(BD)) U aclt(AD) # acly(aclt(AD), acl+(BD)).

All examples above are NSOP; .
ene add e Broup of 3 field of positive characteristi
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Thanks ;)
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