Generic additive subroup of a field of positive characteristic.

Christian d'Elbée

October 16, 2018

Generic additive subroup of a field of positive characteristic

Christian d'Elbée

Generic Predicate. [Chatzidakis-Pillay 98] T a model complete L-theory which eliminate ∃[∞]. The L ∪ {P}-theory T with a unary predicate, admits a model-companion TP. If T is simple then so is TP.

- Generic Predicate. [Chatzidakis-Pillay 98] T a model complete L-theory which eliminate ∃[∞]. The L ∪ {P}-theory T with a unary predicate, admits a model-companion TP. If T is simple then so is TP.

- Generic Predicate. [Chatzidakis-Pillay 98] T a model complete L-theory which eliminate ∃[∞]. The L ∪ {P}-theory T with a unary predicate, admits a model-companion TP. If T is simple then so is TP.
- - YES : if (and only if) T eliminate \exists^{∞} [Winkler 1975]

- Generic Predicate. [Chatzidakis-Pillay 98] T a model complete L-theory which eliminate ∃[∞]. The L ∪ {P}-theory T with a unary predicate, admits a model-companion TP. If T is simple then so is TP.
- - YES : if (and only if) T eliminate \exists^{∞} [Winkler 1975]
 - If T is NSOP₁ then so is T_{L'} [Kruckman-Ramsey 2018].
 ([Jeřábek 2018] for T[∅]_{L'})

Fix p > 0 prime number. \mathbb{F}_p field with p elements, $\overline{\mathbb{F}}_p$ its algebraic closure.

Fix p > 0 prime number. \mathbb{F}_p field with p elements, $\overline{\mathbb{F}}_p$ its algebraic closure.

Let $\mathscr{L} = \{+, -, \cdot, ^{-1}, 0, 1\}$ and $\mathscr{L}^{G} = \mathscr{L} \cup \{G\}$, G unary predicate.

Fix p > 0 prime number. \mathbb{F}_p field with p elements, $\overline{\mathbb{F}}_p$ its algebraic closure.

Let $\mathscr{L} = \{+, -, \cdot, ^{-1}, 0, 1\}$ and $\mathscr{L}^{G} = \mathscr{L} \cup \{G\}$, G unary predicate. Let ACF_{p}^{G} be the \mathscr{L}^{G} -theory whose model (F, H) satisfies:

•
$$F \models ACF_p$$
;

Fix p > 0 prime number. \mathbb{F}_p field with p elements, $\overline{\mathbb{F}}_p$ its algebraic closure.

Let $\mathscr{L} = \{+, -, \cdot, ^{-1}, 0, 1\}$ and $\mathscr{L}^G = \mathscr{L} \cup \{G\}$, G unary predicate. Let ACF_p^G be the \mathscr{L}^G -theory whose model (F, H) satisfies:

•
$$F \models ACF_p;$$

• H = G(F) is an additive subgroup of F.

Fix p > 0 prime number. \mathbb{F}_p field with p elements, $\overline{\mathbb{F}}_p$ its algebraic closure.

Let $\mathscr{L} = \{+, -, \cdot, ^{-1}, 0, 1\}$ and $\mathscr{L}^{G} = \mathscr{L} \cup \{G\}$, G unary predicate. Let ACF_{p}^{G} be the \mathscr{L}^{G} -theory whose model (F, H) satisfies:

- $F \models ACF_p$;
- H = G(F) is an additive subgroup of F.

Theorem

 ACF_p^G admits a model companion, we call it ACF_pG .

Fix p > 0 prime number. \mathbb{F}_p field with p elements, $\overline{\mathbb{F}}_p$ its algebraic closure.

Let $\mathscr{L} = \{+, -, \cdot, ^{-1}, 0, 1\}$ and $\mathscr{L}^{G} = \mathscr{L} \cup \{G\}$, G unary predicate. Let ACF_{p}^{G} be the \mathscr{L}^{G} -theory whose model (F, H) satisfies:

- $F \models ACF_p$;
- H = G(F) is an additive subgroup of F.

Theorem

 ACF_p^G admits a model companion, we call it ACF_pG .

• Every model of ACF_p^G embbeds in a model of ACF_pG ;

Fix p > 0 prime number. \mathbb{F}_p field with p elements, $\overline{\mathbb{F}}_p$ its algebraic closure.

Let $\mathscr{L} = \{+, -, \cdot, ^{-1}, 0, 1\}$ and $\mathscr{L}^{G} = \mathscr{L} \cup \{G\}$, G unary predicate. Let ACF_{p}^{G} be the \mathscr{L}^{G} -theory whose model (F, H) satisfies:

- $F \models ACF_p$;
- H = G(F) is an additive subgroup of F.

Theorem

 ACF_p^G admits a model companion, we call it ACF_pG .

- Every model of ACF_p^G embbeds in a model of ACF_pG ;
- Every model of ACF_pG is existentially closed in every model of ACF^G_p extending it.

Fix p > 0 prime number. \mathbb{F}_p field with p elements, $\overline{\mathbb{F}}_p$ its algebraic closure.

Let $\mathscr{L} = \{+, -, \cdot, ^{-1}, 0, 1\}$ and $\mathscr{L}^{G} = \mathscr{L} \cup \{G\}$, G unary predicate. Let ACF_{p}^{G} be the \mathscr{L}^{G} -theory whose model (F, H) satisfies:

- $F \models ACF_p$;
- H = G(F) is an additive subgroup of F.

Theorem

 ACF_p^G admits a model companion, we call it ACF_pG .

- Every model of ACF_p^G embbeds in a model of ACF_pG ;
- Every model of ACF_pG is existentially closed in every model of ACF^G_p extending it.

 ACF_pG is an axiomatisation of the classe of all existentially closed models of ACF_p^G .

Fact (Chatzidakis-Pillay)

If T eliminate \exists^{∞} then for any formula $\phi(x, y)$ there is a formula $\theta_{\phi}(y)$ such that for any tuple b from $\mathscr{M} \models T$ we have

 $\mathscr{M} \models \theta_{\phi}(b) \iff$ there exists a tuple a from $\mathscr{N} \succ \mathscr{M}$ such that $a \cap \mathscr{M} = \emptyset$ and $\mathscr{N} \models \phi(a, b)$

Fact (Chatzidakis-Pillay)

If T eliminate \exists^{∞} then for any formula $\phi(x, y)$ there is a formula $\theta_{\phi}(y)$ such that for any tuple b from $\mathscr{M} \models T$ we have

 $\mathscr{M} \models \theta_{\phi}(b) \iff$ there exists a tuple a from $\mathscr{N} \succ \mathscr{M}$ such that $a \cap \mathscr{M} = \emptyset$ and $\mathscr{N} \models \phi(a, b)$

In our case: For every \mathscr{L} -formula $\phi(x, y)$ there exists $\theta_{\phi}(y)$ such that for all $K \models ACF_p$ and all tuple *b* from *K*

 $K \models \theta_{\phi}(b) \iff$ there exists a tuple *a* in some field extension of *K* such that *a* is \mathbb{F}_{ρ} -linearly independent over *K* and $\models \phi(a, b)$

The theory ACF_pG

Let $\langle a \rangle$ denote the \mathbb{F}_p -vector space spanned by a.

The theory ACF_pG

Let $\langle a \rangle$ denote the \mathbb{F}_p -vector space spanned by a. The theory ACF_pG is obtained by adding to ACF_p the following axiom-schema; for all \mathscr{L} -formula $\phi(x, y)$, $x' \subseteq x$, $y' \subseteq y$:

The theory $ACF_{p}G$

Let $\langle a \rangle$ denote the \mathbb{F}_p -vector space spanned by a. The theory ACF_pG is obtained by adding to ACF_p the following axiom-schema; for all \mathscr{L} -formula $\phi(x, y)$, $x' \subseteq x$, $y' \subseteq y$:

 $\forall y \left(heta_{\phi}(y) \land \langle y'
angle \cap G = \{ 0 \}$

The theory ACF_pG

Let $\langle a \rangle$ denote the \mathbb{F}_p -vector space spanned by a. The theory ACF_pG is obtained by adding to ACF_p the following axiom-schema; for all \mathscr{L} -formula $\phi(x, y)$, $x' \subseteq x$, $y' \subseteq y$:

 $\forall y \left(\theta_{\phi}(y) \land \langle y' \rangle \cap \mathcal{G} = \{ 0 \} \ \rightarrow \exists x (\phi(x,y) \land \langle xy' \rangle \cap \mathcal{G} = \langle x' \rangle) \right)$

Let $\langle a \rangle$ denote the \mathbb{F}_p -vector space spanned by a. The theory ACF_pG is obtained by adding to ACF_p the following axiom-schema; for all \mathscr{L} -formula $\phi(x, y)$, $x' \subseteq x$, $y' \subseteq y$:

$$\forall y \left(\theta_{\phi}(y) \land \langle y' \rangle \cap \mathsf{G} = \{ \mathsf{0} \} \to \exists x (\phi(x,y) \land \langle xy' \rangle \cap \mathsf{G} = \langle x' \rangle) \right)$$

Completions. Completions of ACF_pG are given by the \mathscr{L}^G -isomorphism type of $(\overline{\mathbb{F}}_p, G(\overline{\mathbb{F}}_p))$, i.e. for two models (K_1, G_1) and (K_2, G_2) of ACF_pG ,

$$(K_1, G_1) \equiv (K_2, G_2) \iff (\overline{\mathbb{F}}_p, G_1(\overline{\mathbb{F}}_p)) \text{ and } (\overline{\mathbb{F}}_p, G_2(\overline{\mathbb{F}}_p)) \text{ are}$$

 $\mathscr{L}^G - \text{isomorphic.}$

Generic additive subroup of a field of positive characteristi

Let $\langle a \rangle$ denote the \mathbb{F}_p -vector space spanned by a. The theory ACF_pG is obtained by adding to ACF_p the following axiom-schema; for all \mathscr{L} -formula $\phi(x, y)$, $x' \subseteq x$, $y' \subseteq y$:

$$\forall y \left(\theta_{\phi}(y) \land \langle y' \rangle \cap \mathsf{G} = \{ \mathsf{0} \} \to \exists x (\phi(x,y) \land \langle xy' \rangle \cap \mathsf{G} = \langle x' \rangle) \right)$$

Completions. Completions of ACF_pG are given by the \mathscr{L}^G -isomorphism type of $(\overline{\mathbb{F}}_p, G(\overline{\mathbb{F}}_p))$, i.e. for two models (K_1, G_1) and (K_2, G_2) of ACF_pG ,

$$(K_1, G_1) \equiv (K_2, G_2) \iff (\overline{\mathbb{F}}_p, G_1(\overline{\mathbb{F}}_p)) \text{ and } (\overline{\mathbb{F}}_p, G_2(\overline{\mathbb{F}}_p)) \text{ are}$$

 $\mathscr{L}^G - \text{isomorphic.}$

Algebraic closure. The algebraic closure in ACF_pG is given by the field theoretic algebraic closure.

Proposition

For every $n \in \mathbb{N}$ and G_0 subgroup of \mathbb{F}_{p^n} there exists $G_0 \subset G \subset \overline{\mathbb{F}}_p$ such that $(\overline{\mathbb{F}}_p, G) \models ACF_pG$.

Proposition

For every $n \in \mathbb{N}$ and G_0 subgroup of \mathbb{F}_{p^n} there exists $G_0 \subset G \subset \overline{\mathbb{F}}_p$ such that $(\overline{\mathbb{F}}_p, G) \models ACF_pG$.

Consider a non principal ultrafilter \mathscr{U} on the set of prime numbers, and a model $(\overline{\mathbb{F}}_q, G_q)$ of ACF_qG , for each prime q. What is

 $\prod_{q\in\mathscr{U}}(\overline{\mathbb{F}}_q,G_q)?$

Proposition

For every $n \in \mathbb{N}$ and G_0 subgroup of \mathbb{F}_{p^n} there exists $G_0 \subset G \subset \overline{\mathbb{F}}_p$ such that $(\overline{\mathbb{F}}_p, G) \models ACF_pG$.

Consider a non principal ultrafilter \mathscr{U} on the set of prime numbers, and a model $(\overline{\mathbb{F}}_q, G_q)$ of ACF_qG , for each prime q. What is

$$\prod_{q\in\mathscr{U}}(\overline{\mathbb{F}}_q,G_q)?$$

Remark (Characteristic 0?)

If (K, G) is an existentially closed models of the the class of (K, G) with char(K) = 0, then Stab $(G) = \mathbb{Z}$. Not axiomatisable.

Classification for ACF_pG NSOP₁, Kim-forking

Definition

Let T be an arbitrary theory and $\phi(x, y)$ a formula in the language of T.

- We say that $\phi(x, y)$ has the 1-strong order property (SOP₁) if there exists a tree of tuple $(b_{\eta})_{\eta \in 2^{<\omega}}$ such that
 - for all $\eta \in 2^{\omega}$ $\{\phi(x, b_{\eta \restriction \alpha} \mid \alpha < \omega\}$ is consistent
 - for all η ∈ 2^{<ω} if η[¬]0 ⊲ ν then {φ(x, b_ν), φ(x, b_{η¬1}} is inconsistent.

Let T be an arbitrary theory and $\phi(x, y)$ a formula in the language of T.

Let T be an arbitrary theory and $\phi(x, y)$ a formula in the language of T.

We say that φ(x, b) Kim-divides over A if for some A-invariant global extension p(x) of tp(b/A) and (b_i)_{i<ω} such that b_i ⊨ p ↾ Ab_{<i} then Λ_{i<ω} φ(x, b_i) is inconsistent.

Let T be an arbitrary theory and $\phi(x, y)$ a formula in the language of T.

- We say that φ(x, b) Kim-divides over A if for some A-invariant global extension p(x) of tp(b/A) and (b_i)_{i<ω} such that b_i ⊨ p ↾ Ab_{<i} then Λ_{i<ω} φ(x, b_i) is inconsistent.
- We say that φ(x, b) Kim-forks over A if φ(x, b) implies a disjunction of formula each of which Kim-divides over A.

Let T be an arbitrary theory and $\phi(x, y)$ a formula in the language of T.

- We say that φ(x, b) Kim-divides over A if for some A-invariant global extension p(x) of tp(b/A) and (b_i)_{i<ω} such that b_i ⊨ p ↾ Ab_{<i} then Λ_{i<ω} φ(x, b_i) is inconsistent.
- We say that φ(x, b) Kim-forks over A if φ(x, b) implies a disjunction of formula each of which Kim-divides over A.
- **③** We define the Kim-forking independence relation

$$A \underset{C}{\bigcup}^{K} B \iff tp(A/BC)$$
 does not Kim-forks over C.

• Symmetry.

If $A \bigcup_{\mathcal{M}} B$ then $B \bigcup_{\mathcal{M}} A$.

- Symmetry.
- Monotonicity.

If $A \bigsqcup_{\mathscr{M}} BD$ then $A \bigsqcup_{\mathscr{M}} B$.

- Symmetry.
- Monotonicity.
- Existence.

For any \mathcal{M} and a we have $a \, \bigcup_{\mathcal{M}} \, \mathcal{M}$

- Symmetry.
- Monotonicity.
- Existence.
- Strong Finite Character. For any model \mathcal{M} , if $a \not \perp_{\mathcal{M}} b$, then there is a formula $\phi(x, b, m) \in tp(a/b\mathcal{M})$ such that for all a', if $a' \models \phi(x, b, m)$ then $a' \not \perp_{\mathcal{M}} b$.

- Symmetry.
- Monotonicity.
- Existence.

t

- Strong Finite Character.
- 3-amalgamation.

For all model ${\mathscr M}$ if there exists tuples c_1,c_2 and sets A,B such that

•
$$c_1 \equiv_{\mathscr{M}} c_2$$

• $A \bigcup_E B$
• $c_1 \bigcup_{\mathscr{M}} A$ and $c_2 \bigcup_{\mathscr{M}} B$
hen there exists $c \bigcup_{\mathscr{M}} A, B$ such that $c \equiv_A c_1$ and $c \equiv_B c_2$.

- Symmetry.
- Monotonicity.
- Existence.
- Strong Finite Character.
- 3-amalgamation.
- Witnessing.

Let $a, b, (b_i)_{i < \omega}$ and a model \mathscr{M} and assume the following:

- for p some global \mathcal{M} -invariant extension of $tp(b/\mathcal{M})$, $b_i \models p \upharpoonright Cb_{< i}$.

Then $\bigwedge_{i < \omega} \phi(x, b_i, m)$ is inconsistent.

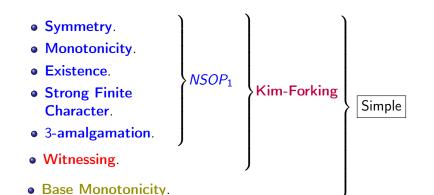
Let \bigcup be an invariant ternary relation in T.

- Symmetry.
- Monotonicity.
- Existence.
- Strong Finite Character.
- 3-amalgamation.
- Witnessing.
- Base Monotonicity.

For
$$\mathcal{M} \subset \mathcal{N}$$
 if $A \bigsqcup_{\mathcal{M}} B \mathcal{N}$ then $A \bigsqcup_{\mathcal{N}} B$.

Let igcup be an invariant ternary relation in T.

- Symmetry.
- Monotonicity.
- Existence.
- Strong Finite Character.
- 3-amalgamation.
- Witnessing.
- Base Monotonicity.



We define for A, B, C algebraically closed sets in a model of ACF_pG

We define for A, B, C algebraically closed sets in a model of ACF_pG

 $A \bigcup_{C}^{w} B$

We define for A, B, C algebraically closed sets in a model of ACF_pG

$$A \underset{C}{\downarrow^{w}} B \iff A \underset{C}{\downarrow^{ACF}} B \text{ and}$$

We define for A, B, C algebraically closed sets in a model of $ACF_{p}G$

$$A \underset{C}{\downarrow^{w}} B \iff A \underset{C}{\downarrow^{ACF}} B \text{ and } G(\overline{AC} + \overline{BC}) = G(\overline{AC}) + G(\overline{BC})$$

We define for A, B, C algebraically closed sets in a model of ACF_pG

$$A \underset{C}{\downarrow^{w}} B \iff A \underset{C}{\downarrow^{ACF}} B \text{ and } G(\overline{AC} + \overline{BC}) = G(\overline{AC}) + G(\overline{BC})$$

$$A \underset{C}{\downarrow^{st}B} \iff A \underset{C}{\downarrow^{ACF}B} \text{ and } G(\overline{ABC}) = G(\overline{AC}) + G(\overline{BC})$$

We define for A, B, C algebraically closed sets in a model of ACF_pG

$$A \underset{C}{\downarrow^{w}} B \iff A \underset{C}{\downarrow^{ACF}} B \text{ and } G(\overline{AC} + \overline{BC}) = G(\overline{AC}) + G(\overline{BC})$$

$$A \underset{C}{\downarrow^{st}B} \iff A \underset{C}{\downarrow^{ACF}B} \text{ and } G(\overline{ABC}) = G(\overline{AC}) + G(\overline{BC})$$

Theorem

 ↓^w satisfies Symmetry, Monotonicity, Existence, Strong Finite Character, 3-amalgamation so ACF_pG is NSOP1. It also satisfies Witnessing, so ↓^w agrees with Kim-forking over models. ↓^w doesn't satisfy Base Monotonicity, so ACF_pG is not simple, has TP₂.

We define for A, B, C algebraically closed sets in a model of ACF_pG

$$A \underset{C}{\downarrow^{w}} B \iff A \underset{C}{\downarrow^{ACF}} B \text{ and } G(\overline{AC} + \overline{BC}) = G(\overline{AC}) + G(\overline{BC})$$

$$A \underset{C}{\downarrow^{st}B} \iff A \underset{C}{\downarrow^{ACF}B} \text{ and } G(\overline{ABC}) = G(\overline{AC}) + G(\overline{BC})$$

Theorem

- ↓^w satisfies Symmetry, Monotonicity, Existence, Strong Finite Character, 3-amalgamation so ACF_pG is NSOP1. It also satisfies Witnessing, so ↓^w agrees with Kim-forking over models. ↓^w doesn't satisfy Base Monotonicity, so ACF_pG is not simple, has TP₂.
- \bigcup^{st} satisfies every property except **Strong Finite Character** and **Witnessing**.

Remark (More properties for \bigcup^{w} and \bigcup^{st})

Actually, all properties listed in the last slide are satisfied over **algebraically closed sets**.

Remark (More properties for \bigcup^{w} and \bigcup^{st})

Actually, all properties listed in the last slide are satisfied over algebraically closed sets. Furthermore both \bigcup^{w} and \bigcup^{st} satisfies Finite Character, Extension and Transitivity. \bigcup^{w} satisfies Local Character and \bigcup^{st} doesn't. \bigcup^{st} is stationnary over algebraically closed sets.

Remark (More properties for \bigcup^{w} and \bigcup^{st})

Actually, all properties listed in the last slide are satisfied over algebraically closed sets. Furthermore both \bigcup^{w} and \bigcup^{st} satisfies Finite Character, Extension and Transitivity. \bigcup^{w} satisfies Local Character and \bigcup^{st} doesn't. \bigcup^{st} is stationnary over algebraically closed sets.

Local Character. For all A countable, and B, there exists countable $B_0 \subseteq B$ such that

$$A \underset{B_0}{\bigcup} B.$$

$$\pi: K \to K/G.$$

$$\pi: K \to K/G.$$

By (K, K/G) we mean the two sorted structure with one sort for the field K,

$$\pi: K \to K/G.$$

By (K, K/G) we mean the two sorted structure with one sort for the field K, one sort for the \mathbb{F}_p -vector space K/G,

$$\pi: K \to K/G.$$

By (K, K/G) we mean the two sorted structure with one sort for the field K, one sort for the \mathbb{F}_p -vector space K/G, and the quotient map $\pi : K \to K/G$.

$$\pi: K \to K/G.$$

By (K, K/G) we mean the two sorted structure with one sort for the field K, one sort for the \mathbb{F}_p -vector space K/G, and the quotient map $\pi : K \to K/G$. This structure is interdefinable with (K, G) hence $NSOP_1$, and Kim-forking can be described.

$$\pi: K \to K/G.$$

By (K, K/G) we mean the two sorted structure with one sort for the field K, one sort for the \mathbb{F}_{p} -vector space K/G, and the quotient map $\pi : K \to K/G$. This structure is interdefinable with (K, G) hence $NSOP_1$, and Kim-forking can be described. It also satisfies 3-amalgamation over algebraically closed sets.

$$\pi: K \to K/G.$$

By (K, K/G) we mean the two sorted structure with one sort for the field K, one sort for the \mathbb{F}_{p} -vector space K/G, and the quotient map $\pi : K \to K/G$. This structure is interdefinable with (K, G) hence $NSOP_1$, and Kim-forking can be described. It also satisfies 3-amalgamation over algebraically closed sets.

Theorem

(K, K/G) has weak elimination of imaginaries.

Generic additive subroup of a field of positive characteristi

$$A \bigsqcup_{C}^{wmon} B : \iff \forall D \subseteq \overline{BC} \ A \bigsqcup_{CD}^{wmon} B.$$

Generic additive subroup of a field of positive characteristic

$$A \bigsqcup_{C}^{wmon} B : \iff \forall D \subseteq \overline{BC} \ A \bigsqcup_{CD}^{w} B.$$

 $\bigcup^f / \bigcup^d / \bigcup^b =$ forking/dividing/thorn-forking independence relation.

$$A \bigsqcup_{C}^{wmon} B : \iff \forall D \subseteq \overline{BC} \ A \bigsqcup_{CD}^{wmon} B.$$

 $\bigcup_{i=1}^{f} / \bigcup_{i=1}^{d} / \bigcup_{i=1}^{b} =$ forking/dividing/thorn-forking independence relation.

Proposition

• $\bigcup^{w^{mon}}$ doesn't satisfy Local Character.

Generic additive subroup of a field of positive characteristic

Christian d'Elbée

$$A \bigsqcup_{C}^{wmon} B : \iff \forall D \subseteq \overline{BC} \ A \bigsqcup_{CD}^{wmon} B.$$

 $\bigcup^{f} / \bigcup^{d} / \bigcup^{b} =$ forking/dividing/thorn-forking independence relation.

Proposition

- $\bigcup^{w^{mon}}$ doesn't satisfy Local Character.
- 2 ACF_pG is not rosy $(\downarrow^p \to \downarrow^{wmon})$.

$$A \bigsqcup_{C}^{wmon} B : \iff \forall D \subseteq \overline{BC} \ A \bigsqcup_{CD}^{wmon} B.$$

 $\bigcup^{f} / \bigcup^{d} / \bigcup^{b} =$ forking/dividing/thorn-forking independence relation.

Proposition

- $\bigcup^{w^{mon}}$ doesn't satisfy Local Character.
- 2 ACF_pG is not rosy $(\downarrow^b \to \downarrow^{wmon})$.
- Set A, B, C, D be algebraically closed, A, B, D containing C, B ⊆ D.

$$A \bigsqcup_{C}^{wmon} B : \iff \forall D \subseteq \overline{BC} \ A \bigsqcup_{CD}^{wmon} B.$$

 $\bigcup^{f} / \bigcup^{d} / \bigcup^{b} =$ forking/dividing/thorn-forking independence relation.

Proposition

- $\bigcup^{w^{mon}}$ doesn't satisfy Local Character.
- 2 ACF_pG is not rosy $(\downarrow^p \to \downarrow^{wmon})$.
- Set A, B, C, D be algebraically closed, A, B, D containing C, B ⊆ D.

if
$$A \bigsqcup_{C}^{wmon} B$$
 and $A \bigsqcup_{B}^{st} D$ then $A \bigsqcup_{C}^{wmon} D$.

Generic additive subroup of a field of positive characteristic

$$A \bigsqcup_{C}^{wmon} B : \iff \forall D \subseteq \overline{BC} \ A \bigsqcup_{CD}^{wmon} B.$$

 $\bigcup^{f} / \bigcup^{d} / \bigcup^{b} =$ forking/dividing/thorn-forking independence relation.

Proposition

- $\bigcup^{w^{mon}}$ doesn't satisfy Local Character.
- $\textbf{ acF}_pG \text{ is not rosy } (\bot^b \to \bot^{wmon}).$
- Let A, B, C, D be algebraically closed, A, B, D containing C, B ⊆ D.

if
$$A \bigsqcup_{C}^{wmon} B$$
 and $A \bigsqcup_{B}^{st} D$ then $A \bigsqcup_{C}^{wmon} D$.

Let $\mathscr{L}_0 \subseteq \mathscr{L}$, T a complete \mathscr{L} -theory and $T_0 = T \upharpoonright \mathscr{L}_0$.

Generic additive subroup of a field of positive characteristic

Let $\mathscr{L}_0 \subseteq \mathscr{L}$, T a complete \mathscr{L} -theory and $T_0 = T \upharpoonright \mathscr{L}_0$. Let $\mathscr{L}^S = \mathscr{L} \cup \{S\}$ a new unary predicate

Let $\mathscr{L}_0 \subseteq \mathscr{L}$, T a complete \mathscr{L} -theory and $T_0 = T \upharpoonright \mathscr{L}_0$. Let $\mathscr{L}^S = \mathscr{L} \cup \{S\}$ a new unary predicate and let T^S be the \mathscr{L}^S theory whose models are models \mathscr{M} of T in which $S(\mathscr{M})$ is an \mathscr{L}_0 -submodel of T_0 of \mathscr{M} .

Let $\mathscr{L}_0 \subseteq \mathscr{L}$, T a complete \mathscr{L} -theory and $T_0 = T \upharpoonright \mathscr{L}_0$. Let $\mathscr{L}^S = \mathscr{L} \cup \{S\}$ a new unary predicate and let T^S be the \mathscr{L}^S theory whose models are models \mathscr{M} of T in which $S(\mathscr{M})$ is an \mathscr{L}_0 -submodel of T_0 of \mathscr{M} .

General setting

① T model-complete and T_0 has quantifier elimination in \mathcal{L}_0

Let $\mathscr{L}_0 \subseteq \mathscr{L}$, T a complete \mathscr{L} -theory and $T_0 = T \upharpoonright \mathscr{L}_0$. Let $\mathscr{L}^S = \mathscr{L} \cup \{S\}$ a new unary predicate and let T^S be the \mathscr{L}^S theory whose models are models \mathscr{M} of T in which $S(\mathscr{M})$ is an \mathscr{L}_0 -submodel of T_0 of \mathscr{M} .

General setting

- **①** T model-complete and T_0 has quantifier elimination in \mathscr{L}_0
- 2 T_0 geometric and modular

Let $\mathscr{L}_0 \subseteq \mathscr{L}$, T a complete \mathscr{L} -theory and $T_0 = T \upharpoonright \mathscr{L}_0$. Let $\mathscr{L}^S = \mathscr{L} \cup \{S\}$ a new unary predicate and let T^S be the \mathscr{L}^S theory whose models are models \mathscr{M} of T in which $S(\mathscr{M})$ is an \mathscr{L}_0 -submodel of T_0 of \mathscr{M} .

General setting

- **①** T model-complete and T_0 has quantifier elimination in \mathcal{L}_0
- 2 T_0 geometric and modular
- Solution for every *L*-formula φ(x, y) there exists an *L*-formula $θ_φ(y)$ such that for all model *M* of *T* and *b* ∈ *M*

Let $\mathscr{L}_0 \subseteq \mathscr{L}$, T a complete \mathscr{L} -theory and $T_0 = T \upharpoonright \mathscr{L}_0$. Let $\mathscr{L}^S = \mathscr{L} \cup \{S\}$ a new unary predicate and let T^S be the \mathscr{L}^S theory whose models are models \mathscr{M} of T in which $S(\mathscr{M})$ is an \mathscr{L}_0 -submodel of T_0 of \mathscr{M} .

General setting

- **①** T model-complete and T_0 has quantifier elimination in \mathcal{L}_0
- **2** T_0 geometric and modular
- So for every *L*-formula φ(x, y) there exists an *L*-formula $θ_φ(y)$ such that for all model *M* of *T* and *b* ∈ *M*

$$\begin{split} \mathscr{M} \models \theta_{\phi}(b) \iff & \text{there exists } \mathscr{N} \succ \mathscr{M} \text{ and tuple } a \text{ from } \mathscr{N} \\ & \text{such that } a \text{ is independent over } \mathscr{M} \\ & (\text{for the pregeometry } acl_0) \text{ and } \mathscr{N} \models \phi(a, b) \end{split}$$

Then T_S admits a model companion, call it TS.

Example

 Generic 𝔽_{pⁿ}-subvector space. For every model-complete theory of 𝔽_{pⁿ}-vector space that eliminate ∃[∞], one can add one (many) generic 𝔽_{pⁿ}-subvector space. For instance ACF_p, Psf_p, DCF_p, ACFA_p, PAC_p....

Example

- Generic 𝔽_{pⁿ}-subvector space. For every model-complete theory of 𝔽_{pⁿ}-vector space that eliminate ∃[∞], one can add one (many) generic 𝔽_{pⁿ}-subvector space. For instance ACF_p, Psf_p, DCF_p, ACFA_p, PAC_p....
- Multiplicative subgroup. Generic multiplicative subgroup of an algebraically closed field of characteristic p ≥ 0 (p > 0 can add generic additive and multiplicative subgroup).

NSOP₁-conservative expansion

If T is $NSOP_1$ and Kim-forking satisfies : for A, B, C algebraically closed and Kim-independent over some model M then

 $acl_0(acl_T(AC), acl_T(BC)) \cap acl_T(AB) = acl_0(A, B)$

If TS exists, then TS is $NSOP_1$. The following are equivalent:

- TS is not simple
- **2** *T* is not simple or there exist algebraically closed sets A, B, C, D such that A, B, D contain *C* and $A \bigcup_{C}^{K} BD$, and such that

 $\operatorname{acl}_0(A,\operatorname{acl}_T(BD)) \cup \operatorname{acl}_T(AD) \neq \operatorname{acl}_0(\operatorname{acl}_T(AD),\operatorname{acl}_T(BD)).$

Generic additive subroup of a field of positive characteristi

NSOP₁-conservative expansion

If T is $NSOP_1$ and Kim-forking satisfies : for A, B, C algebraically closed and Kim-independent over some model M then

 $acl_0(acl_T(AC), acl_T(BC)) \cap acl_T(AB) = acl_0(A, B)$

If TS exists, then TS is $NSOP_1$. The following are equivalent:

- TS is not simple
- **2** *T* is not simple or there exist algebraically closed sets A, B, C, D such that A, B, D contain *C* and $A \bigcup_{C}^{K} BD$, and such that

$$\operatorname{acl}_0(A,\operatorname{acl}_T(BD)) \cup \operatorname{acl}_T(AD) \neq \operatorname{acl}_0(\operatorname{acl}_T(AD),\operatorname{acl}_T(BD)).$$

Example

All examples above are NSOP₁.

Thanks ;)

Generic additive subroup of a field of positive characteristic

Christian d'Elbée