Erratum: On the complete ordered field

Christian d'Elbée

October 6, 2018

Lemma 2.4.13 (p40). Proof of iii. We assume that l > 0, the case l = 0 is treated and the case l < 0 follows as stated. Using ii take k > 0 such that $\lambda((k-1)a) \leq l \leq \lambda(ka)$. Using that for all $x \in \mathbb{Z}$ we have

$$|\lambda(x+1) - \lambda(x)| \le |\lambda(1)| + 1$$

it follows that for all $0 \leq i \leq a-1$ we have $|\lambda((k-1)a+i+1) - \lambda((k-1)a+i)| \leq |\lambda(1)| + 1$. Since $\lambda((k-1)a) \leq l \leq \lambda(ka)$, there exists $0 \leq i \leq a-1$ such that $\lambda((k-1)a+i) \leq l \leq \lambda((k-1)a+i+1)$, and set $n_l = (k-1)a+i$. Many thanks to Zafer Ercan for pointing out this mistake.